1
|
Forsting J, Rehmann R, Rohm M, Kocabas A, De Lorenzo A, Güttsches AK, Vorgerd M, Froeling M, Schlaffke L. Prospective longitudinal cohort study of quantitative muscle magnetic resonance imaging in a healthy control population. NMR IN BIOMEDICINE 2024; 37:e5214. [PMID: 38982853 DOI: 10.1002/nbm.5214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 06/03/2024] [Accepted: 06/18/2024] [Indexed: 07/11/2024]
Abstract
Quantitative muscle magnetic resonance imaging (qMRI) is a valuable methodology for assessing muscular injuries and neuromuscular disorders. Notably, muscle diffusion tensor imaging (DTI) gives insights into muscle microstructural and macrostructural characteristics. However, the long-term reproducibility and robustness of these measurements remain relatively unexplored. The purpose of this prospective longitudinal cohort study was to assess the long-term robustness and range of variation of qMRI parameters, especially DTI metrics, in the lower extremity muscles of healthy controls under real-life conditions. Twelve volunteers (seven females, age 44.1 ± 12.1 years, body mass index 23.3 ± 2.0 kg/m2) underwent five leg muscle MRI sessions every 20 ± 4 weeks over a total period of 1.5 years. A multiecho gradient-echo Dixon-based sequence, a multiecho spin-echo T2-mapping sequence, and a spin-echo echo planar imaging diffusion-weighted sequence were acquired bilaterally with a Philips 3-T Achieva MR System using a 16-channel torso coil. Fifteen leg muscles were segmented in both lower extremities. qMRI parameters, including fat fraction (FF), water T2 relaxation time, and the diffusion metrics fractional anisotropy (FA) and mean diffusivity (MD), were evaluated. Coefficients of variance (wsCV) and intraclass correlation coefficients (ICCs) were calculated to assess the reproducibility of qMRI parameters. The standard error of measurement (SEM) and the minimal detectable change (MDC) were calculated to determine the range of variation. All tests were applied to all muscles and, subsequently, to each muscle separately. wsCV showed good reproducibility (≤ 10%) for all qMRI parameters in all muscles. The ICCs revealed excellent agreement between time points (FF = 0.980, water T2 = 0.941, FA = 0.952, MD = 0.948). Random measurement errors assessed by SEM and the MDC were low (< 12%). In conclusion, in this study, we showed that qMRI parameters in healthy volunteers living normal lives are stable over 18 months, thereby defining a benchmark for the expected range of variation over time.
Collapse
Affiliation(s)
- Johannes Forsting
- Department of Neurology, BG-University Hospital Bergmannsheil, Ruhr-University Bochum, Bochum, Germany
| | - Robert Rehmann
- Department of Neurology, BG-University Hospital Bergmannsheil, Ruhr-University Bochum, Bochum, Germany
- Department of Neurology, Klinikum Dortmund, University Witten-Herdecke, Dortmund, Germany
| | - Marlena Rohm
- Department of Neurology, BG-University Hospital Bergmannsheil, Ruhr-University Bochum, Bochum, Germany
- Heimer Institute for Muscle Research, BG-University Hospital Bergmannsheil, Bochum, Germany
| | - Abdulhadi Kocabas
- Department of Neurology, BG-University Hospital Bergmannsheil, Ruhr-University Bochum, Bochum, Germany
| | - Alice De Lorenzo
- Department of Neurology, BG-University Hospital Bergmannsheil, Ruhr-University Bochum, Bochum, Germany
| | - Anne-Katrin Güttsches
- Department of Neurology, BG-University Hospital Bergmannsheil, Ruhr-University Bochum, Bochum, Germany
| | - Matthias Vorgerd
- Department of Neurology, BG-University Hospital Bergmannsheil, Ruhr-University Bochum, Bochum, Germany
- Heimer Institute for Muscle Research, BG-University Hospital Bergmannsheil, Bochum, Germany
| | - Martijn Froeling
- Department of Radiology, University Medical Centre Utrecht, Utrecht, Netherlands
| | - Lara Schlaffke
- Department of Neurology, BG-University Hospital Bergmannsheil, Ruhr-University Bochum, Bochum, Germany
| |
Collapse
|
2
|
Forsting J, Wächter M, Froeling M, Rohm M, Güttsches AK, De Lorenzo A, Südkamp N, Kocabas A, Vorgerd M, Enax-Krumova E, Rehmann R, Schlaffke L. Quantitative muscle magnetic resonance imaging in limb-girdle muscular dystrophy type R1 (LGMDR1): A prospective longitudinal cohort study. NMR IN BIOMEDICINE 2024; 37:e5172. [PMID: 38794994 DOI: 10.1002/nbm.5172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2023] [Revised: 04/16/2024] [Accepted: 04/20/2024] [Indexed: 05/27/2024]
Abstract
Limb-girdle muscular dystrophy (LGMD) type R1 (LGMDR1) is the most common subtype of LGMD in Europe. Prospective longitudinal data, including clinical assessments and new biomarkers such as quantitative magnetic resonance imaging (qMRI), are needed to evaluate the natural course of the disease and therapeutic options. We evaluated eight thigh and seven leg muscles of 13 LGMDR1 patients (seven females, mean age 36.7 years, body mass index 23.9 kg/m2) and 13 healthy age- and gender-matched controls in a prospective longitudinal design over 1 year. Clinical assessment included testing for muscle strength with quick motor function measure (QMFM), gait analysis and patient questionnaires (neuromuscular symptom score, activity limitation [ACTIVLIM]). MRI scans were performed on a 3-T MRI scanner, including a Dixon-based sequence, T2 mapping and diffusion tensor imaging. The qMRI values of fat fraction (FF), water T2 relaxation time (T2), fractional anisotropy, mean diffusivity, axial diffusivity and radial diffusivity were analysed. Within the clinical outcome measures, significant deterioration between baseline and follow-up was found for ACTIVLIM (p = 0.029), QMFM (p = 0.012). Analysis of qMRI parameters of the patient group revealed differences between time points for both FF and T2 when analysing all muscles (FF: p < 0.001; T2: p = 0.016). The highest increase of fat replacement was found in muscles with an FF of between 10% and 50% at baseline. T2 in muscles with low-fat replacement increased significantly. No significant differences were found for the diffusion metrics. Significant correlations between qMRI metrics and clinical assessments were found at baseline and follow-up, while only T2 changes in thigh muscles correlated with changes in ACTIVLIM over time (ρ = -0.621, p < 0.05). Clinical assessments can show deterioration of the general condition of LGMDR1 patients. qMRI measures can give additional information about underlying pathophysiology. Further research is needed to establish qMRI outcome measures for clinical trials.
Collapse
Affiliation(s)
- Johannes Forsting
- Department of Neurology, BG-University Hospital Bergmannsheil, Ruhr-University Bochum, Bochum, Germany
| | - Marian Wächter
- Department of Neurology, BG-University Hospital Bergmannsheil, Ruhr-University Bochum, Bochum, Germany
| | - Martijn Froeling
- Department of Radiology, University Medical Centre Utrecht, Utrecht, The Netherlands
| | - Marlena Rohm
- Department of Neurology, BG-University Hospital Bergmannsheil, Ruhr-University Bochum, Bochum, Germany
- Heimer Institute for Muscle Research, BG-University Hospital Bergmannsheil, Bochum, Germany
| | - Anne-Katrin Güttsches
- Department of Neurology, BG-University Hospital Bergmannsheil, Ruhr-University Bochum, Bochum, Germany
- Heimer Institute for Muscle Research, BG-University Hospital Bergmannsheil, Bochum, Germany
| | - Alice De Lorenzo
- Department of Neurology, BG-University Hospital Bergmannsheil, Ruhr-University Bochum, Bochum, Germany
| | - Nicolina Südkamp
- Department of Neurology, BG-University Hospital Bergmannsheil, Ruhr-University Bochum, Bochum, Germany
| | - Abdulhadi Kocabas
- Department of Neurology, BG-University Hospital Bergmannsheil, Ruhr-University Bochum, Bochum, Germany
| | - Matthias Vorgerd
- Department of Neurology, BG-University Hospital Bergmannsheil, Ruhr-University Bochum, Bochum, Germany
- Heimer Institute for Muscle Research, BG-University Hospital Bergmannsheil, Bochum, Germany
| | - Elena Enax-Krumova
- Department of Neurology, BG-University Hospital Bergmannsheil, Ruhr-University Bochum, Bochum, Germany
| | - Robert Rehmann
- Department of Neurology, BG-University Hospital Bergmannsheil, Ruhr-University Bochum, Bochum, Germany
- Department of Neurology, Klinikum Dortmund, University Witten-Herdecke, Dortmund, Germany
| | - Lara Schlaffke
- Department of Neurology, BG-University Hospital Bergmannsheil, Ruhr-University Bochum, Bochum, Germany
- Heimer Institute for Muscle Research, BG-University Hospital Bergmannsheil, Bochum, Germany
| |
Collapse
|
3
|
Tan L, Zschüntzsch J, Meyer S, Stobbe A, Bruex H, Regensburger AP, Claßen M, Alves F, Jüngert J, Rother U, Li Y, Danko V, Lang W, Türk M, Schmidt S, Vorgerd M, Schlaffke L, Woelfle J, Hahn A, Mensch A, Winterholler M, Trollmann R, Heiß R, Wagner AL, Raming R, Knieling F. Non-invasive optoacoustic imaging of glycogen-storage and muscle degeneration in late-onset Pompe disease. Nat Commun 2024; 15:7843. [PMID: 39245687 PMCID: PMC11381542 DOI: 10.1038/s41467-024-52143-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2023] [Accepted: 08/26/2024] [Indexed: 09/10/2024] Open
Abstract
Pompe disease (PD) is a rare autosomal recessive glycogen storage disorder that causes proximal muscle weakness and loss of respiratory function. While enzyme replacement therapy (ERT) is the only effective treatment, biomarkers for disease monitoring are scarce. Following ex vivo biomarker validation in phantom studies, we apply multispectral optoacoustic tomography (MSOT), a laser- and ultrasound-based non-invasive imaging approach, in a clinical trial (NCT05083806) to image the biceps muscles of 10 late-onset PD (LOPD) patients and 10 matched healthy controls. MSOT is compared with muscle magnetic resonance imaging (MRI), ultrasound, spirometry, muscle testing and quality of life scores. Next, results are validated in an independent LOPD patient cohort from a second clinical site. Our study demonstrates that MSOT enables imaging of subcellular disease pathology with increases in glycogen/water, collagen and lipid signals, providing higher sensitivity in detecting muscle degeneration than current methods. This translational approach suggests implementation in the complex care of these rare disease patients.
Collapse
Affiliation(s)
- Lina Tan
- Department of Pediatrics and Adolescent Medicine, University Hospital Erlangen, Friedrich-Alexander-Universität (FAU) Erlangen-Nürnberg, Erlangen, 91054, Germany
- Translational Pediatrics, Department of Pediatrics and Adolescent Medicine, University Hospital Erlangen, Friedrich-Alexander-Universität (FAU) Erlangen-Nürnberg, Erlangen, 91054, Germany
| | - Jana Zschüntzsch
- Neuromuscular Disease Research, Clinic for Neurology, University Medical Center Göttingen (UMG), Göttingen, 37075, Germany
| | - Stefanie Meyer
- Neuromuscular Disease Research, Clinic for Neurology, University Medical Center Göttingen (UMG), Göttingen, 37075, Germany
| | - Alica Stobbe
- Neuromuscular Disease Research, Clinic for Neurology, University Medical Center Göttingen (UMG), Göttingen, 37075, Germany
| | - Hannah Bruex
- Neuromuscular Disease Research, Clinic for Neurology, University Medical Center Göttingen (UMG), Göttingen, 37075, Germany
| | - Adrian P Regensburger
- Department of Pediatrics and Adolescent Medicine, University Hospital Erlangen, Friedrich-Alexander-Universität (FAU) Erlangen-Nürnberg, Erlangen, 91054, Germany
- Translational Pediatrics, Department of Pediatrics and Adolescent Medicine, University Hospital Erlangen, Friedrich-Alexander-Universität (FAU) Erlangen-Nürnberg, Erlangen, 91054, Germany
| | - Merle Claßen
- Department of Pediatrics and Adolescent Medicine, University Hospital Erlangen, Friedrich-Alexander-Universität (FAU) Erlangen-Nürnberg, Erlangen, 91054, Germany
- Translational Pediatrics, Department of Pediatrics and Adolescent Medicine, University Hospital Erlangen, Friedrich-Alexander-Universität (FAU) Erlangen-Nürnberg, Erlangen, 91054, Germany
| | - Frauke Alves
- Translational Molecular Imaging, Max-Planck Institute for Multidisciplinary Sciences (MPI-NAT), City Campus, Göttingen, 37075, Germany
- Clinic for Haematology and Medical Oncology, Institute of Diagnostic and Interventional Radiology, University Medical Center Göttingen (UMG), Göttingen, 37075, Germany
| | - Jörg Jüngert
- Department of Pediatrics and Adolescent Medicine, University Hospital Erlangen, Friedrich-Alexander-Universität (FAU) Erlangen-Nürnberg, Erlangen, 91054, Germany
| | - Ulrich Rother
- Department of Vascular Surgery, University Hospital Erlangen, Friedrich-Alexander-Universität (FAU) Erlangen-Nürnberg, Erlangen, 91054, Germany
| | - Yi Li
- Department of Vascular Surgery, University Hospital Erlangen, Friedrich-Alexander-Universität (FAU) Erlangen-Nürnberg, Erlangen, 91054, Germany
| | - Vera Danko
- Department of Pediatrics and Adolescent Medicine, University Hospital Erlangen, Friedrich-Alexander-Universität (FAU) Erlangen-Nürnberg, Erlangen, 91054, Germany
- Translational Pediatrics, Department of Pediatrics and Adolescent Medicine, University Hospital Erlangen, Friedrich-Alexander-Universität (FAU) Erlangen-Nürnberg, Erlangen, 91054, Germany
| | - Werner Lang
- Department of Vascular Surgery, University Hospital Erlangen, Friedrich-Alexander-Universität (FAU) Erlangen-Nürnberg, Erlangen, 91054, Germany
| | - Matthias Türk
- Department of Neurology, University Hospital Erlangen, Friedrich-Alexander-Universität (FAU) Erlangen-Nürnberg, Erlangen, 91054, Germany
| | - Sandy Schmidt
- Institute of Radiology, University Hospital Erlangen, Friedrich-Alexander-Universität (FAU) Erlangen-Nürnberg, Erlangen, 91054, Germany
| | - Matthias Vorgerd
- Department of Neurology, BG-University Hospital Bergmannsheil, Ruhr-University Bochum, 44789, Bochum, Germany
- Heimer Institute for Muscle Research, BG-University Hospital Bergmannsheil, 44789, Bochum, Germany
| | - Lara Schlaffke
- Department of Neurology, BG-University Hospital Bergmannsheil, Ruhr-University Bochum, 44789, Bochum, Germany
| | - Joachim Woelfle
- Department of Pediatrics and Adolescent Medicine, University Hospital Erlangen, Friedrich-Alexander-Universität (FAU) Erlangen-Nürnberg, Erlangen, 91054, Germany
| | - Andreas Hahn
- Department of Child Neurology, Justus-Liebig-Universität Giessen, 35385, Giessen, Germany
| | - Alexander Mensch
- Department of Neurology, Martin-Luther-Universität Halle-Wittenberg, 06120, Halle (Saale), Germany
| | | | - Regina Trollmann
- Department of Pediatrics and Adolescent Medicine, University Hospital Erlangen, Friedrich-Alexander-Universität (FAU) Erlangen-Nürnberg, Erlangen, 91054, Germany
- Center for Social Pediatrics, University Hospital Erlangen: Friedrich-Alexander-Universität (FAU) Erlangen-Nürnberg, Erlangen, 91054, Germany
| | - Rafael Heiß
- Institute of Radiology, University Hospital Erlangen, Friedrich-Alexander-Universität (FAU) Erlangen-Nürnberg, Erlangen, 91054, Germany
| | - Alexandra L Wagner
- Department of Pediatrics and Adolescent Medicine, University Hospital Erlangen, Friedrich-Alexander-Universität (FAU) Erlangen-Nürnberg, Erlangen, 91054, Germany
- Translational Pediatrics, Department of Pediatrics and Adolescent Medicine, University Hospital Erlangen, Friedrich-Alexander-Universität (FAU) Erlangen-Nürnberg, Erlangen, 91054, Germany
- Department of Pediatric Neurology, Center for Chronically Sick Children, Charité Berlin, 13353, Berlin, Germany
| | - Roman Raming
- Department of Pediatrics and Adolescent Medicine, University Hospital Erlangen, Friedrich-Alexander-Universität (FAU) Erlangen-Nürnberg, Erlangen, 91054, Germany
- Translational Pediatrics, Department of Pediatrics and Adolescent Medicine, University Hospital Erlangen, Friedrich-Alexander-Universität (FAU) Erlangen-Nürnberg, Erlangen, 91054, Germany
| | - Ferdinand Knieling
- Department of Pediatrics and Adolescent Medicine, University Hospital Erlangen, Friedrich-Alexander-Universität (FAU) Erlangen-Nürnberg, Erlangen, 91054, Germany.
- Translational Pediatrics, Department of Pediatrics and Adolescent Medicine, University Hospital Erlangen, Friedrich-Alexander-Universität (FAU) Erlangen-Nürnberg, Erlangen, 91054, Germany.
| |
Collapse
|
4
|
Sinha U, Sinha S. Magnetic Resonance Imaging Biomarkers of Muscle. Tomography 2024; 10:1411-1438. [PMID: 39330752 PMCID: PMC11436019 DOI: 10.3390/tomography10090106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2024] [Revised: 08/29/2024] [Accepted: 08/30/2024] [Indexed: 09/28/2024] Open
Abstract
This review is focused on the current status of quantitative MRI (qMRI) of skeletal muscle. The first section covers the techniques of qMRI in muscle with the focus on each quantitative parameter, the corresponding imaging sequence, discussion of the relation of the measured parameter to underlying physiology/pathophysiology, the image processing and analysis approaches, and studies on normal subjects. We cover the more established parametric mapping from T1-weighted imaging for morphometrics including image segmentation, proton density fat fraction, T2 mapping, and diffusion tensor imaging to emerging qMRI features such as magnetization transfer including ultralow TE imaging for macromolecular fraction, and strain mapping. The second section is a summary of current clinical applications of qMRI of muscle; the intent is to demonstrate the utility of qMRI in different disease states of the muscle rather than a complete comprehensive survey.
Collapse
Affiliation(s)
- Usha Sinha
- Department of Physics, San Diego State University, San Diego, CA 92182, USA
| | - Shantanu Sinha
- Muscle Imaging and Modeling Lab., Department of Radiology, University of California at San Diego, San Diego, CA 92037, USA
| |
Collapse
|
5
|
Hooijmans MT, Schlaffke L, Bolsterlee B, Schlaeger S, Marty B, Mazzoli V. Compositional and Functional MRI of Skeletal Muscle: A Review. J Magn Reson Imaging 2024; 60:860-877. [PMID: 37929681 PMCID: PMC11070452 DOI: 10.1002/jmri.29091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 10/09/2023] [Accepted: 10/09/2023] [Indexed: 11/07/2023] Open
Abstract
Due to its exceptional sensitivity to soft tissues, MRI has been extensively utilized to assess anatomical muscle parameters such as muscle volume and cross-sectional area. Quantitative Magnetic Resonance Imaging (qMRI) adds to the capabilities of MRI, by providing information on muscle composition such as fat content, water content, microstructure, hypertrophy, atrophy, as well as muscle architecture. In addition to compositional changes, qMRI can also be used to assess function for example by measuring muscle quality or through characterization of muscle deformation during passive lengthening/shortening and active contractions. The overall aim of this review is to provide an updated overview of qMRI techniques that can quantitatively evaluate muscle structure and composition, provide insights into the underlying biological basis of the qMRI signal, and illustrate how qMRI biomarkers of muscle health relate to function in healthy and diseased/injured muscles. While some applications still require systematic clinical validation, qMRI is now established as a comprehensive technique, that can be used to characterize a wide variety of structural and compositional changes in healthy and diseased skeletal muscle. Taken together, multiparametric muscle MRI holds great potential in the diagnosis and monitoring of muscle conditions in research and clinical applications. EVIDENCE LEVEL: 5 TECHNICAL EFFICACY: Stage 2.
Collapse
Affiliation(s)
- Melissa T Hooijmans
- Department of Radiology and Nuclear Medicine, Amsterdam UMC, University of Amsterdam, Amsterdam Movement Sciences, Amsterdam, The Netherlands
| | - Lara Schlaffke
- Department of Neurology BG-University Hospital Bergmannsheil, Ruhr-University Bochum, Bochum, Germany
| | - Bart Bolsterlee
- Neuroscience Research Australia (NeuRA), Sydney, New South Wales, Australia
- Graduate School of Biomedical Engineering, University of New South Wales, Sydney, New South Wales, Australia
- School of Mechanical, Medical and Process Engineering, Queensland University of Technology, Brisbane, Queensland, Australia
| | - Sarah Schlaeger
- Department of Diagnostic and Interventional Neuroradiology, School of Medicine, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
- Department of Radiology, LMU University Hospital, LMU Munich, Munich, Germany
| | - Benjamin Marty
- Institute of Myology, Neuromuscular Investigation Center, NMR Laboratory, Paris, France
| | - Valentina Mazzoli
- Department of Radiology, Stanford University, Stanford, California, USA
- Bernard and Irene Schwartz Center for Biomedical Imaging, Department of Radiology, NYU Langone Medical Center, New York, New York, USA
| |
Collapse
|
6
|
Barzaghi L, Paoletti M, Monforte M, Bortolani S, Bonizzoni C, Thorsten F, Bergsland N, Santini F, Deligianni X, Tasca G, Ballante E, Figini S, Ricci E, Pichiecchio A. Muscle diffusion tensor imaging in facioscapulohumeral muscular dystrophy. Muscle Nerve 2024; 70:248-256. [PMID: 38873946 DOI: 10.1002/mus.28179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 05/16/2024] [Accepted: 05/26/2024] [Indexed: 06/15/2024]
Abstract
INTRODUCTION/AIMS Muscle diffusion tensor imaging has not yet been explored in facioscapulohumeral muscular dystrophy (FSHD). We assessed diffusivity parameters in FSHD subjects compared with healthy controls (HCs), with regard to their ability to precede any fat replacement or edema. METHODS Fat fraction (FF), water T2 (wT2), mean, radial, axial diffusivity (MD, RD, AD), and fractional anisotropy (FA) of thigh muscles were calculated in 10 FSHD subjects and 15 HCs. All parameters were compared between FSHD and controls, also exploring their gradient along the main axis of the muscle. Diffusivity parameters were tested in a subgroup analysis as predictors of disease involvement in muscle compartments with different degrees of FF and wT2 and were also correlated with clinical severity scores. RESULTS We found that MD, RD, and AD were significantly lower in FSHD subjects than in controls, whereas we failed to find a difference for FA. In contrast, we found a significant positive correlation between FF and FA and a negative correlation between MD, RD, and AD and FF. No correlation was found with wT2. In our subgroup analysis we found that muscle compartments with no significant fat replacement or edema (FF < 10% and wT2 < 41 ms) showed a reduced AD and FA compared with controls. Less involved compartments showed different diffusivity parameters than more involved compartments. DISCUSSION Our exploratory study was able to demonstrate diffusivity parameter abnormalities even in muscles with no significant fat replacement or edema. Larger cohorts are needed to confirm these preliminary findings.
Collapse
Affiliation(s)
- Leonardo Barzaghi
- Department of Mathematics, University of Pavia, Pavia, Italy
- Advanced Imaging and Artificial Intelligence Center, Neuroradiology Department, IRCCS Mondino Foundation, Pavia, Italy
- INFN, Group of Pavia, Pavia, Italy
| | - Matteo Paoletti
- Advanced Imaging and Artificial Intelligence Center, Neuroradiology Department, IRCCS Mondino Foundation, Pavia, Italy
| | - Mauro Monforte
- UOC di Neurologia, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
| | - Sara Bortolani
- UOC di Neurologia, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
| | - Chiara Bonizzoni
- Advanced Imaging and Artificial Intelligence Center, Neuroradiology Department, IRCCS Mondino Foundation, Pavia, Italy
| | | | - Niels Bergsland
- Department of Neurology, Jacobs School of Medicine and Biomedical Sciences, Buffalo Neuroimaging Analysis Center, University of Buffalo, The State University of New York, Buffalo, New York, USA
- IRCCS, Fondazione Don Carlo Gnocchi ONLUS, Milan, Italy
| | - Francesco Santini
- Department of Radiology, University Hospital Basel, Basel, Switzerland
- Basel Muscle MRI, Department of Biomedical Engineering, University of Basel, Basel, Switzerland
| | - Xeni Deligianni
- Department of Radiology, University Hospital Basel, Basel, Switzerland
- Basel Muscle MRI, Department of Biomedical Engineering, University of Basel, Basel, Switzerland
| | - Giorgio Tasca
- UOC di Neurologia, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
- John Walton Muscular Dystrophy Research Centre, Newcastle University and Newcastle Hospitals NHS Foundation Trusts, Newcastle upon Tyne, UK
| | - Elena Ballante
- Department of Political and Social Sciences, University of Pavia, Pavia, Italy
- BioData Science Center, IRCCS Mondino Foundation, Pavia, Italy
| | - Silvia Figini
- Department of Political and Social Sciences, University of Pavia, Pavia, Italy
- BioData Science Center, IRCCS Mondino Foundation, Pavia, Italy
| | - Enzo Ricci
- UOC di Neurologia, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
| | - Anna Pichiecchio
- Advanced Imaging and Artificial Intelligence Center, Neuroradiology Department, IRCCS Mondino Foundation, Pavia, Italy
- Department of Brain and Behavioral Sciences, University of Pavia, Pavia, Italy
| |
Collapse
|
7
|
Schlaffke L, Rehmann R, Güttsches AK, Vorgerd M, Meyer-Frießem CH, Dinse HR, Enax-Krumova E, Froeling M, Forsting J. Evaluation of Neuromuscular Diseases and Complaints by Quantitative Muscle MRI. J Clin Med 2024; 13:1958. [PMID: 38610723 PMCID: PMC11012431 DOI: 10.3390/jcm13071958] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 03/14/2024] [Accepted: 03/22/2024] [Indexed: 04/14/2024] Open
Abstract
Background: Quantitative muscle MRI (qMRI) is a promising tool for evaluating and monitoring neuromuscular disorders (NMD). However, the application of different imaging protocols and processing pipelines restricts comparison between patient cohorts and disorders. In this qMRI study, we aim to compare dystrophic (limb-girdle muscular dystrophy), inflammatory (inclusion body myositis), and metabolic myopathy (Pompe disease) as well as patients with post-COVID-19 conditions suffering from myalgia to healthy controls. Methods: Ten subjects of each group underwent a 3T lower extremity muscle MRI, including a multi-echo, gradient-echo, Dixon-based sequence, a multi-echo, spin-echo (MESE) T2 mapping sequence, and a spin-echo EPI diffusion-weighted sequence. Furthermore, the following clinical assessments were performed: Quick Motor Function Measure, patient questionnaires for daily life activities, and 6-min walking distance. Results: Different involvement patterns of conspicuous qMRI parameters for different NMDs were observed. qMRI metrics correlated significantly with clinical assessments. Conclusions: qMRI metrics are suitable for evaluating patients with NMD since they show differences in muscular involvement in different NMDs and correlate with clinical assessments. Still, standardisation of acquisition and processing is needed for broad clinical use.
Collapse
Affiliation(s)
- Lara Schlaffke
- Department of Neurology, BG-University Hospital Bergmannsheil, Ruhr University Bochum, 44789 Bochum, Germany
| | - Robert Rehmann
- Department of Neurology, BG-University Hospital Bergmannsheil, Ruhr University Bochum, 44789 Bochum, Germany
- Department of Neurology, Klinikum Dortmund, University Witten-Herdecke, 44137 Dortmund, Germany
| | - Anne-Katrin Güttsches
- Department of Neurology, BG-University Hospital Bergmannsheil, Ruhr University Bochum, 44789 Bochum, Germany
| | - Matthias Vorgerd
- Department of Neurology, BG-University Hospital Bergmannsheil, Ruhr University Bochum, 44789 Bochum, Germany
- Heimer Institute for Muscle Research, BG-University Hospital Bergmannsheil, 44789 Bochum, Germany
| | - Christine H. Meyer-Frießem
- Department of Anaesthesiology, Intensive Care and Pain Management, St. Marien Hospital, 44534 Lünen, Germany
- Department of Anaesthesiology, Intensive Care Medicine and Pain Management, BG-University Hospital Bergmannsheil, Faculty of Medicine, Ruhr University Bochum, 44789 Bochum, Germany
| | - Hubert R. Dinse
- Department of Neurology, BG-University Hospital Bergmannsheil, Ruhr University Bochum, 44789 Bochum, Germany
| | - Elena Enax-Krumova
- Department of Neurology, BG-University Hospital Bergmannsheil, Ruhr University Bochum, 44789 Bochum, Germany
| | - Martijn Froeling
- Department of Radiology, University Medical Center Utrecht, 3584 CX Utrecht, The Netherlands
| | - Johannes Forsting
- Department of Neurology, BG-University Hospital Bergmannsheil, Ruhr University Bochum, 44789 Bochum, Germany
| |
Collapse
|
8
|
Raya JG, Duarte A, Wang N, Mazzoli V, Jaramillo D, Blamire AM, Dietrich O. Applications of Diffusion-Weighted MRI to the Musculoskeletal System. J Magn Reson Imaging 2024; 59:376-396. [PMID: 37477576 DOI: 10.1002/jmri.28870] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 06/05/2023] [Accepted: 06/05/2023] [Indexed: 07/22/2023] Open
Abstract
Diffusion-weighted imaging (DWI) is an established MRI technique that can investigate tissue microstructure at the scale of a few micrometers. Musculoskeletal tissues typically have a highly ordered structure to fulfill their functions and therefore represent an optimal application of DWI. Even more since disruption of tissue organization affects its biomechanical properties and may indicate irreversible damage. The application of DWI to the musculoskeletal system faces application-specific challenges on data acquisition including susceptibility effects, the low T2 relaxation time of most musculoskeletal tissues (2-70 msec) and the need for sub-millimetric resolution. Thus, musculoskeletal applications have been an area of development of new DWI methods. In this review, we provide an overview of the technical aspects of DWI acquisition including diffusion-weighting, MRI pulse sequences and different diffusion regimes to study tissue microstructure. For each tissue type (growth plate, articular cartilage, muscle, bone marrow, intervertebral discs, ligaments, tendons, menisci, and synovium), the rationale for the use of DWI and clinical studies in support of its use as a biomarker are presented. The review describes studies showing that DTI of the growth plate has predictive value for child growth and that DTI of articular cartilage has potential to predict the radiographic progression of joint damage in early stages of osteoarthritis. DTI has been used extensively in skeletal muscle where it has shown potential to detect microstructural and functional changes in a wide range of muscle pathologies. DWI of bone marrow showed to be a valuable tool for the diagnosis of benign and malignant acute vertebral fractures and bone metastases. DTI and diffusion kurtosis have been investigated as markers of early intervertebral disc degeneration and lower back pain. Finally, promising new applications of DTI to anterior cruciate ligament grafts and synovium are presented. The review ends with an overview of the use of DWI in clinical routine. EVIDENCE LEVEL: 5 TECHNICAL EFFICACY: Stage 3.
Collapse
Affiliation(s)
- José G Raya
- Department of Radiology, NYU Langone Health, New York, New York, USA
| | - Alejandra Duarte
- Division of Musculoskeletal Radiology, Department of Radiology, Fundación Santa Fe de Bogotá, Bogotá, Colombia
| | - Nian Wang
- Department of Radiology and Imaging Sciences, Indiana University, Indianapolis, Indiana, USA
- Stark Neurosciences Research Institute, Indiana University, Indianapolis, Indiana, USA
| | - Valentina Mazzoli
- Department of Radiology, Stanford University, Stanford, California, USA
| | - Diego Jaramillo
- Department of Radiology, Columbia University Medical Center, New York, New York, USA
| | - Andrew M Blamire
- Magnetic Resonance Centre, Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, UK
| | - Olaf Dietrich
- Department of Radiology, LMU University Hospital, LMU Munich, Munich, Germany
| |
Collapse
|
9
|
Schlaffke L, Rehmann R, Froeling M, Güttsches AK, Vorgerd M, Enax-Krumova E, Forsting J. Quantitative muscle MRI in sporadic inclusion body myositis (sIBM): A prospective cohort study. J Neuromuscul Dis 2024; 11:997-1009. [PMID: 39031378 PMCID: PMC11380292 DOI: 10.3233/jnd-240053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/22/2024]
Abstract
Background Sporadic inclusion body myositis (sIBM) is the predominant idiopathic inflammatory myopathy (IIM) in older people. Limitations of classical clinical assessments have been discussed as possible explanations for failed clinical trials, underlining the need for more sensitive outcome measures. Quantitative muscle MRI (qMRI) is a promising candidate for evaluating and monitoring sIBM. Objective Longitudinal assessment of qMRI in sIBM patients. Methods We evaluated fifteen lower extremity muscles of 12 sIBM patients (5 females, mean age 69.6, BMI 27.8) and 12 healthy age- and gender-matched controls. Seven patients and matched controls underwent a follow-up evaluation after one year. Clinical assessment included testing for muscle strength with Quick Motor Function Measure (QMFM), IBM functional rating scale (IBM-FRS), and gait analysis (6-minute walking distance). 3T-MRI scans of the lower extremities were performed, including a Dixon-based sequence, T2 mapping and Diffusion Tensor Imaging. The qMRI-values fat-fraction (FF), water T2 relaxation time (wT2), fractional anisotropy (FA), mean diffusivity (MD), axial diffusivity (λ1), and radial diffusivity (RD) were analysed. Results Compared to healthy controls, significant differences for all qMRI parameters averaged over all muscles were found in sIBM using a MANOVA (p < 0.001). In low-fat muscles (FF < 10%), a significant increase of wT2 and FA with an accompanying decrease of MD, λ1, and RD was observed (p≤0.020). The highest correlation with clinical assessments was found for wT2 values in thigh muscles (r≤-0.634). Significant changes of FF (+3.0%), wT2 (+0.6 ms), MD (-0.04 10-3mm2/s), λ1 (-0.05 10-3mm2/s), and RD (-0.03 10-3mm2/s) were observed in the longitudinal evaluation of sIBM patients (p≤0.001). FA showed no significant change (p = 0.242). Conclusion qMRI metrics correlate with clinical findings and can reflect different ongoing pathophysiological mechanisms. While wT2 is an emerging marker of disease activity, the role of diffusion metrics, possibly reflecting changes in fibre size and intracellular deposits, remains subject to further investigations.
Collapse
Affiliation(s)
- Lara Schlaffke
- Department of Neurology, BG-University Hospital Bergmannsheil, Ruhr-University Bochum, Bochum, Germany
| | - Robert Rehmann
- Department of Neurology, BG-University Hospital Bergmannsheil, Ruhr-University Bochum, Bochum, Germany
- Department of Neurology, Klinikum Dortmund, University Witten-Herdecke, Dortmund, Germany
| | - Martijn Froeling
- Department of Radiology, University Medical Centre Utrecht, Utrecht, The Netherlands
| | - Anne-Katrin Güttsches
- Department of Neurology, BG-University Hospital Bergmannsheil, Ruhr-University Bochum, Bochum, Germany
| | - Matthias Vorgerd
- Department of Neurology, BG-University Hospital Bergmannsheil, Ruhr-University Bochum, Bochum, Germany
- Heimer Institute for Muscle Research, BG-University Hospital Bergmannsheil, Bochum, Germany
| | - Elena Enax-Krumova
- Department of Neurology, BG-University Hospital Bergmannsheil, Ruhr-University Bochum, Bochum, Germany
| | - Johannes Forsting
- Department of Neurology, BG-University Hospital Bergmannsheil, Ruhr-University Bochum, Bochum, Germany
| |
Collapse
|
10
|
Rohm M, Russo G, Helluy X, Froeling M, Umathum V, Südkamp N, Manahan-Vaughan D, Rehmann R, Forsting J, Jacobsen F, Roos A, Shin Y, Schänzer A, Vorgerd M, Schlaffke L. Muscle diffusion MRI reveals autophagic buildup in a mouse model for Pompe disease. Sci Rep 2023; 13:22822. [PMID: 38129558 PMCID: PMC10739793 DOI: 10.1038/s41598-023-49971-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Accepted: 12/14/2023] [Indexed: 12/23/2023] Open
Abstract
Quantitative muscle MRI is increasingly important in the non-invasive evaluation of neuromuscular disorders and their progression. Underlying histopathotological alterations, leading to changes in qMRI parameters are incompletely unraveled. Early microstructural differences of unknown origin reflected by Diffusion MRI in non-fat infiltrated muscles were detected in Pompe patients. This study employed a longitudinal approach with a Pompe disease mouse model to investigate the histopathological basis of these changes. Monthly scans of Pompe (Gaa6neo/6neo) and wildtype mice (age 1-8 months) were conducted using diffusion MRI, T2-mapping, and Dixon-based water-fat imaging on a 7 T scanner. Immunofluorescence studies on quadriceps muscles were analyzed for lysosomal accumulations and autophagic buildup and correlated with MRI outcome measures. Fat fraction and water-T2 did not differ between groups and remained stable over time. In Pompe mice, fractional anisotropy increased, while mean diffusivity (MD) and radial diffusivity (RD) decreased in all observed muscles. Autophagic marker and muscle fibre diameter revealed significant negative correlations with reduced RD and MD, while lysosomal marker did not show any change or correlation. Using qMRI, we showed diffusion changes in muscles of presymptomatic Pompe mice without fat-infiltrated muscles and correlated them to autophagic markers and fibre diameter, indicating diffusion MRI reveals autophagic buildup.
Collapse
Affiliation(s)
- Marlena Rohm
- Department of Neurology, Berufsgenossenschaftliches-University Hospital Bergmannsheil gGmbH, Ruhr-University Bochum, Bürkle-de-la-Camp-Platz 1, 44789, Bochum, Germany
- Heimer Institute for Muscle Research, BG-University Hospital Bergmannsheil gGmbH, 44789, Bochum, Germany
| | - Gabriele Russo
- Department of Neurophysiology, Medical Faculty, Ruhr-University Bochum, 44801, Bochum, Germany
| | - Xavier Helluy
- Department of Neurophysiology, Medical Faculty, Ruhr-University Bochum, 44801, Bochum, Germany
- Department of Biopsychology, Institute of Cognitive Neuroscience, Faculty of Psychology, Ruhr-University Bochum, 44801, Bochum, Germany
| | - Martijn Froeling
- Department of Radiology, University Medical Centre Utrecht, 3584 CX, Utrecht, The Netherlands
| | - Vincent Umathum
- Institute of Neuropathology, Justus Liebig University, 35390, Giessen, Germany
- Institute of Pathology and Molecular Pathology, Bundeswehrkrankenhaus Ulm, 89081, Ulm, Germany
| | - Nicolina Südkamp
- Department of Neurology, Berufsgenossenschaftliches-University Hospital Bergmannsheil gGmbH, Ruhr-University Bochum, Bürkle-de-la-Camp-Platz 1, 44789, Bochum, Germany
- Heimer Institute for Muscle Research, BG-University Hospital Bergmannsheil gGmbH, 44789, Bochum, Germany
| | - Denise Manahan-Vaughan
- Department of Neurophysiology, Medical Faculty, Ruhr-University Bochum, 44801, Bochum, Germany
| | - Robert Rehmann
- Department of Neurology, Berufsgenossenschaftliches-University Hospital Bergmannsheil gGmbH, Ruhr-University Bochum, Bürkle-de-la-Camp-Platz 1, 44789, Bochum, Germany
| | - Johannes Forsting
- Department of Neurology, Berufsgenossenschaftliches-University Hospital Bergmannsheil gGmbH, Ruhr-University Bochum, Bürkle-de-la-Camp-Platz 1, 44789, Bochum, Germany
| | - Frank Jacobsen
- Department of Neurology, Berufsgenossenschaftliches-University Hospital Bergmannsheil gGmbH, Ruhr-University Bochum, Bürkle-de-la-Camp-Platz 1, 44789, Bochum, Germany
- Heimer Institute for Muscle Research, BG-University Hospital Bergmannsheil gGmbH, 44789, Bochum, Germany
| | - Andreas Roos
- Department of Neurology, Berufsgenossenschaftliches-University Hospital Bergmannsheil gGmbH, Ruhr-University Bochum, Bürkle-de-la-Camp-Platz 1, 44789, Bochum, Germany
- Heimer Institute for Muscle Research, BG-University Hospital Bergmannsheil gGmbH, 44789, Bochum, Germany
- Department of Neuropediatrics, University Hospital Essen, Duisburg-Essen University, 47057, Essen, Germany
| | - Yoon Shin
- Molecular Genetic and Metabolism Laboratory, 80333, Munic, Germany
- University Children's Hospital, 80333, Munich, Germany
| | - Anne Schänzer
- Institute of Neuropathology, Justus Liebig University, 35390, Giessen, Germany
| | - Matthias Vorgerd
- Department of Neurology, Berufsgenossenschaftliches-University Hospital Bergmannsheil gGmbH, Ruhr-University Bochum, Bürkle-de-la-Camp-Platz 1, 44789, Bochum, Germany
- Heimer Institute for Muscle Research, BG-University Hospital Bergmannsheil gGmbH, 44789, Bochum, Germany
| | - Lara Schlaffke
- Department of Neurology, Berufsgenossenschaftliches-University Hospital Bergmannsheil gGmbH, Ruhr-University Bochum, Bürkle-de-la-Camp-Platz 1, 44789, Bochum, Germany.
- Heimer Institute for Muscle Research, BG-University Hospital Bergmannsheil gGmbH, 44789, Bochum, Germany.
| |
Collapse
|
11
|
Malis V, Sinha U, Smitaman E, Obra JKL, Langer HT, Mossakowski AA, Baar K, Sinha S. Time-dependent diffusion tensor imaging and diffusion modeling of age-related differences in the medial gastrocnemius and feasibility study of correlations to histopathology. NMR IN BIOMEDICINE 2023; 36:e4996. [PMID: 37434581 PMCID: PMC10592510 DOI: 10.1002/nbm.4996] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 06/09/2023] [Accepted: 06/09/2023] [Indexed: 07/13/2023]
Abstract
PURPOSE Implement STEAM-DTI to model time-dependent diffusion eigenvalues using the random permeable barrier model (RPBM) to study age-related differences in the medial gastrocnemius (MG) muscle. Validate diffusion model-extracted fiber diameter for histological assessment. METHODS Diffusion imaging at different diffusion times (Δ) was performed on seven young and six senior participants. Time-dependent diffusion eigenvalues (λ2 (t), λ3 (t), and D⊥ (t); average of λ2 (t) and λ3 (t)) were fit to the RPBM to extract tissue microstructure parameters. Biopsy of the MG tissue for histological assessment was performed on a subset of participants (four young, six senior). RESULTS λ3 (t) was significantly higher in the senior cohort for the range of diffusion times. RPBM fits to λ2 (t) yielded fiber diameters in agreement to those from histology for both cohorts. The senior cohort had lower values of volume fraction of membranes, ζ, in fits to λ2 (t), λ3 (t), and D⊥ (t) (significant for fit to λ3 (t)). Fits of fiber diameter from RPBM to that from histology had the highest correlation for the fit to λ2 (t). CONCLUSION The age-related patterns in λ2 (t) and λ3 (t) could tentatively be explained from RPBM fits; these patterns may potentially arise from a decrease in fiber asymmetry and an increase in permeability with age.
Collapse
Affiliation(s)
- Vadim Malis
- Physics, UC San Diego, San Diego, California, USA
- Muscle Imaging and Modeling Lab, Department of Radiology, UC San Diego, San Diego, California, USA
| | - Usha Sinha
- Physics, San Diego State University, San Diego, California, USA
| | - Edward Smitaman
- Department of Radiology, UC San Diego, San Diego, California, USA
| | - Jed Keenan Lim Obra
- Department of Physiology and Membrane Biology, UC Davis, Davis, California, USA
| | - Henning T Langer
- Department of Physiology and Membrane Biology, UC Davis, Davis, California, USA
| | - Agata A Mossakowski
- Department of Physiology and Membrane Biology, UC Davis, Davis, California, USA
- Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Keith Baar
- Department of Physiology and Membrane Biology, UC Davis, Davis, California, USA
| | - Shantanu Sinha
- Muscle Imaging and Modeling Lab, Department of Radiology, UC San Diego, San Diego, California, USA
| |
Collapse
|
12
|
Enax-Krumova E, Forsting J, Rohm M, Schwenkreis P, Tegenthoff M, Meyer-Frießem CH, Schlaffke L. Quantitative muscle magnetic resonance imaging depicts microstructural abnormalities but no signs of inflammation or dystrophy in post-COVID-19 condition. Eur J Neurol 2023; 30:970-981. [PMID: 36693812 DOI: 10.1111/ene.15709] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 12/22/2022] [Accepted: 01/12/2023] [Indexed: 01/26/2023]
Abstract
BACKGROUND AND PURPOSE Post-COVID-19 condition (PCC) has high impact on quality of life, with myalgia and fatigue affecting at least 25% of PCC patients. This case-control study aims to noninvasively assess muscular alterations via quantitative muscle magnetic resonance imaging (MRI) as possible mechanisms for ongoing musculoskeletal complaints and premature exhaustion in PCC. METHODS Quantitative muscle MRI was performed on a 3 Tesla MRI scanner of the whole legs in PCC patients compared to age- and sex-matched healthy controls, including a Dixon sequence to determine muscle fat fraction (FF), a multi-echo spin-echo sequence for quantitative water mapping reflecting putative edema, and a diffusion-weighted spin-echo echo-planar imaging sequence to assess microstructural alterations. Clinical examination, nerve conduction studies, and serum creatine kinase were performed in all patients. Quantitative muscle MRI results were correlated to the results of the 6-min walk test and standardized questionnaires assessing quality of life, fatigue, and depression. RESULTS Twenty PCC patients (female: n = 15, age = 48.8 ± 10.1 years, symptoms duration = 13.4 ± 4.2 months, body mass index [BMI] = 28.8 ± 4.7 kg/m2 ) were compared to 20 healthy controls (female: n = 15, age = 48.1 ± 11.1 years, BMI = 22.9 ± 2.2 kg/m2 ). Neither FF nor T2 revealed signs of muscle degeneration or inflammation in either study groups. Diffusion tensor imaging (DTI) revealed reduced mean, axial, and radial diffusivity in the PCC group. CONCLUSIONS Quantitative muscle MRI did not depict any signs of ongoing inflammation or dystrophic process in the skeletal muscles in PCC patients. However, differences observed in muscle DTI depict microstructural abnormalities, which may reflect potentially reversible fiber hypotrophy due to deconditioning. Further longitudinal and interventional studies should prove this hypothesis.
Collapse
Affiliation(s)
- Elena Enax-Krumova
- Department of Neurology, BG University Hospital Bergmannsheil, Ruhr University Bochum, Bochum, Germany
| | - Johannes Forsting
- Department of Neurology, BG University Hospital Bergmannsheil, Ruhr University Bochum, Bochum, Germany
| | - Marlena Rohm
- Department of Neurology, BG University Hospital Bergmannsheil, Ruhr University Bochum, Bochum, Germany
- Heimer Institute for Muscle Research, BG University Hospital Bergmannsheil, Bochum, Germany
| | - Peter Schwenkreis
- Department of Neurology, BG University Hospital Bergmannsheil, Ruhr University Bochum, Bochum, Germany
| | - Martin Tegenthoff
- Department of Neurology, BG University Hospital Bergmannsheil, Ruhr University Bochum, Bochum, Germany
| | - Christine H Meyer-Frießem
- Department of Anaesthesiology, Intensive Care, and Pain Management, BG University Hospital Bergmannsheil, Ruhr University Bochum, Bochum, Germany
| | - Lara Schlaffke
- Department of Neurology, BG University Hospital Bergmannsheil, Ruhr University Bochum, Bochum, Germany
- Heimer Institute for Muscle Research, BG University Hospital Bergmannsheil, Bochum, Germany
| |
Collapse
|
13
|
Rehmann R, Enax-Krumova E, Meyer-Frießem CH, Schlaffke L. Quantitative muscle MRI displays clinically relevant myostructural abnormalities in long-term ICU-survivors: a case-control study. BMC Med Imaging 2023; 23:38. [PMID: 36934222 PMCID: PMC10024415 DOI: 10.1186/s12880-023-00995-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Accepted: 03/08/2023] [Indexed: 03/20/2023] Open
Abstract
BACKGROUND Long-term data on ICU-survivors reveal persisting sequalae and a reduced quality-of-life even after years. Major complaints are neuromuscular dysfunction due to Intensive care unit acquired weakness (ICUAW). Quantitative MRI (qMRI) protocols can quantify muscle alterations in contrast to standard qualitative MRI-protocols. METHODS Using qMRI, the aim of this study was to analyse persisting myostructural abnormalities in former ICU patients compared to controls and relate them to clinical assessments. The study was conducted as a cohort/case-control study. Nine former ICU-patients and matched controls were recruited (7 males; 54.8y ± 16.9; controls: 54.3y ± 11.1). MRI scans were performed on a 3T-MRI including a mDTI, T2 mapping and a mDixonquant sequence. Water T2 times, fat-fraction and mean values of the eigenvalue (λ1), mean diffusivity (MD), radial diffusivity (RD) and fractional anisotropy (FA) were obtained for six thigh and seven calf muscles bilaterally. Clinical assessment included strength testing, electrophysiologic studies and a questionnaire on quality-of-life (QoL). Study groups were compared using a multivariate general linear model. qMRI parameters were correlated to clinical assessments and QoL questionnaire using Pearson´s correlation. RESULTS qMRI parameters were significantly higher in the patients for fat-fraction (p < 0.001), water T2 time (p < 0.001), FA (p = 0.047), MD (p < 0.001) and RD (p < 0.001). Thighs and calves showed a different pattern with significantly higher water T2 times only in the calves. Correlation analysis showed a significant negative correlation of muscle strength (MRC sum score) with FA and T2-time. The results were related to impairment seen in QoL-questionnaires, clinical testing and electrophysiologic studies. CONCLUSION qMRI parameters show chronic next to active muscle degeneration in ICU survivors even years after ICU therapy with ongoing clinical relevance. Therefore, qMRI opens new doors to characterize and monitor muscle changes of patients with ICUAW. Further, better understanding on the underlying mechanisms of the persisting complaints could contribute the development of personalized rehabilitation programs.
Collapse
Affiliation(s)
- R Rehmann
- Department of Neurology, BG-University Hospital Bergmannsheil gGmbH, Ruhr-University Bochum, Bürkle-de-La-Camp-Platz 1, 44789, Bochum, Germany.
| | - E Enax-Krumova
- Department of Neurology, BG-University Hospital Bergmannsheil gGmbH, Ruhr-University Bochum, Bürkle-de-La-Camp-Platz 1, 44789, Bochum, Germany
| | - C H Meyer-Frießem
- Department of Anaesthesiology, Intensive Care and Pain Medicine, BG-University Hospital Bergmannsheil, Ruhr-University Bochum, Bochum, Germany
| | - L Schlaffke
- Department of Neurology, BG-University Hospital Bergmannsheil gGmbH, Ruhr-University Bochum, Bürkle-de-La-Camp-Platz 1, 44789, Bochum, Germany
| |
Collapse
|
14
|
Wang Z, Destro A, Petersson S, Cenni F, Wang R. In Vivo 3D Muscle Architecture Quantification Based on 3D Freehand Ultrasound and Magnetic Resonance Imaging. J Biomech 2023; 152:111567. [PMID: 37023558 DOI: 10.1016/j.jbiomech.2023.111567] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 03/12/2023] [Accepted: 03/23/2023] [Indexed: 03/30/2023]
Abstract
Muscle architecture parameters, such as the fascicle length, pennation angle, and volume, are important muscle morphology characteristics. Accurate in vivo quantification of these parameters allows to detect changes due to pathologies, interventions, and rehabilitation trainings, which ultimately impact on muscles' force-producing capacity. In this study, we compared three-dimensional (3D) muscle architecture parameters of the tibialis anterior and gastrocnemius medialis, which were quantified by 3D freehand ultrasound (3DfUS) and a magnetic resonance imaging (MRI) technique, diffusion tensor imaging (DTI), respectively. Sixteen able-bodied subjects were recruited where seven of them received both 3DfUS and MRI measurement, while the rest underwent 3DfUS measurements twice. Good to excellent intra-rater reliability and inter-session repeatability were found in 3DfUS measurements (intra-class correlation coefficient > 0.81). Overall, the two imaging modalities yielded consistent measurements of the fascicle length, pennation angle, and volume with mean differences smaller than 2.9 mm, 1.8°, and 5.7 cm3, respectively. The only significant difference was found in the pennation angle of the tibialis anterior, although the discrepancy was small. Our study demonstrated, for the first time, that 3DfUS measurement had high reliability and repeatability for measurement of muscle architecture in vivo and could be regarded as an alternative to MRI for 3D evaluation of muscle morphology.
Collapse
|
15
|
Forsting J, Rohm M, Froeling M, Güttsches AK, Südkamp N, Roos A, Vorgerd M, Schlaffke L, Rehmann R. Quantitative muscle MRI captures early muscle degeneration in calpainopathy. Sci Rep 2022; 12:19676. [PMID: 36385624 PMCID: PMC9669006 DOI: 10.1038/s41598-022-23972-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2022] [Accepted: 11/08/2022] [Indexed: 11/17/2022] Open
Abstract
To evaluate differences in qMRI parameters of muscle diffusion tensor imaging (mDTI), fat-fraction (FF) and water T2 time in leg muscles of calpainopathy patients (LGMD R1/D4) compared to healthy controls, to correlate those findings to clinical parameters and to evaluate if qMRI parameters show muscle degeneration in not-yet fatty infiltrated muscles. We evaluated eight thigh and seven calf muscles of 19 calpainopathy patients and 19 healthy matched controls. MRI scans were performed on a 3T MRI including a mDTI, T2 mapping and mDixonquant sequence. Clinical assessment was done with manual muscle testing, patient questionnaires (ACTIVLIM, NSS) as well as gait analysis. Average FF was significantly different in all muscles compared to controls (p < 0.001). In muscles with less than 8% FF a significant increase of FA (p < 0.005) and decrease of RD (p < 0.004) was found in high-risk muscles of calpainopathy patients. Water T2 times were increased within the low- and intermediate-risk muscles (p ≤ 0.045) but not in high-risk muscles (p = 0.062). Clinical assessments correlated significantly with qMRI values: QMFM vs. FF: r = - 0.881, p < 0.001; QMFM versus FA: r = - 0.747, p < 0.001; QMFM versus MD: r = 0.942, p < 0.001. A good correlation of FF and diffusion metrics to clinical assessments was found. Diffusion metrics and T2 values are promising candidates to serve as sensitive early and non-invasive methods to capture early muscle degeneration in non-fat-infiltrated muscles in calpainopathies.
Collapse
Affiliation(s)
- Johannes Forsting
- Department of Neurology, BG-University Hospital Bergmannsheil, Ruhr-University Bochum, Bürkle-de-la-Camp-Platz 1, 44789, Bochum, Germany
| | - Marlena Rohm
- Department of Neurology, BG-University Hospital Bergmannsheil, Ruhr-University Bochum, Bürkle-de-la-Camp-Platz 1, 44789, Bochum, Germany
- Heimer Institute for Muscle Research, BG-University Hospital Bergmannsheil, Bochum, Germany
| | - Martijn Froeling
- Department of Radiology, University Medical Centre Utrecht, Utrecht, The Netherlands
| | - Anne-Katrin Güttsches
- Department of Neurology, BG-University Hospital Bergmannsheil, Ruhr-University Bochum, Bürkle-de-la-Camp-Platz 1, 44789, Bochum, Germany
- Heimer Institute for Muscle Research, BG-University Hospital Bergmannsheil, Bochum, Germany
| | - Nicolina Südkamp
- Department of Neurology, BG-University Hospital Bergmannsheil, Ruhr-University Bochum, Bürkle-de-la-Camp-Platz 1, 44789, Bochum, Germany
- Heimer Institute for Muscle Research, BG-University Hospital Bergmannsheil, Bochum, Germany
| | - Andreas Roos
- Department of Neurology, BG-University Hospital Bergmannsheil, Ruhr-University Bochum, Bürkle-de-la-Camp-Platz 1, 44789, Bochum, Germany
- Heimer Institute for Muscle Research, BG-University Hospital Bergmannsheil, Bochum, Germany
- Department of Neuropediatrics, University Hospital Essen, Duisburg-Essen University, Essen, Germany
| | - Matthias Vorgerd
- Department of Neurology, BG-University Hospital Bergmannsheil, Ruhr-University Bochum, Bürkle-de-la-Camp-Platz 1, 44789, Bochum, Germany
- Heimer Institute for Muscle Research, BG-University Hospital Bergmannsheil, Bochum, Germany
| | - Lara Schlaffke
- Department of Neurology, BG-University Hospital Bergmannsheil, Ruhr-University Bochum, Bürkle-de-la-Camp-Platz 1, 44789, Bochum, Germany
- Heimer Institute for Muscle Research, BG-University Hospital Bergmannsheil, Bochum, Germany
| | - Robert Rehmann
- Department of Neurology, BG-University Hospital Bergmannsheil, Ruhr-University Bochum, Bürkle-de-la-Camp-Platz 1, 44789, Bochum, Germany.
| |
Collapse
|
16
|
Forsting J, Rehmann R, Rohm M, Güttsches AK, Froeling M, Kan HE, Tegenthoff M, Vorgerd M, Schlaffke L. Robustness and stability of volume-based tractography in a multicenter setting. NMR IN BIOMEDICINE 2022; 35:e4707. [PMID: 35102637 DOI: 10.1002/nbm.4707] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Revised: 01/21/2022] [Accepted: 01/24/2022] [Indexed: 06/14/2023]
Abstract
Muscle diffusion tensor imaging (mDTI)-based tractography is a promising tool with which to detect subclinical changes in muscle injuries and to evaluate pathophysiology in neuromuscular diseases. Classic region of interest (ROI)-based tractography is very time-consuming and requires an examiner with extensive experience. (Semi)automatic approaches such as volume-based tractography (VBT) can diminish this problem but its robustness and stability are unknown. The aim of the current study was to assess the performance of VBT in a multicenter setting and to evaluate semiautomatic segmentation approaches in the analysis of VBT-derived data in terms of the comparability of the outcome measures. Five traveling volunteers underwent 3-T mDTI of seven calf muscles of both legs at six different MR sites. Tract properties and diffusion metrics were calculated using VBT. Within-subject coefficients of variance (wsCVs) and intraclass correlation coefficients (ICCs) were calculated to assess the multicenter reproducibility of tract properties such as tract density (TD), mean tract length, volume and tract propagation angle, and diffusion metrics such as fractional anisotropy, mean diffusivity, axial diffusivity (λ1 ) and radial diffusivity in traveling subjects. Furthermore, 50 individual datasets from five different centers (10 datasets per center) were pooled to assess the feasibility of VBT with manual and semiautomatic segmentation. To assess the differences of tract properties and diffusion metrics between segmentation approaches an ANOVA was performed, and ICC and Bland-Altman plots were analyzed. wsCVs and ICCs showed good reproducibility of the tract properties TD and volume, as well as diffusion metrics. ANOVA showed no significant differences between manual and semiautomatic approaches. ICCs were excellent (≥ 0.992) and Bland-Altman analysis did not reveal any systemic bias between the methods. Tract properties and diffusion metrics derived from VBT showed good comparability among centers. Semiautomatic approaches revealed excellent agreement with gold standard of manual segmentation. These findings suggest that pooling data from different centers to construct a reference database for tractography results is feasible using semiautomatic segmentation approaches.
Collapse
Affiliation(s)
- Johannes Forsting
- Department of Neurology, BG-University Hospital Bergmannsheil, Ruhr-University Bochum, Bochum, Germany
| | - Robert Rehmann
- Department of Neurology, BG-University Hospital Bergmannsheil, Ruhr-University Bochum, Bochum, Germany
- Department of Neurology, Klinikum Dortmund, University Witten-Herdecke, Dortmund, Germany
| | - Marlena Rohm
- Department of Neurology, BG-University Hospital Bergmannsheil, Ruhr-University Bochum, Bochum, Germany
- Heimer Institute for Muscle Research, BG-University Hospital Bergmannsheil, Bochum, Germany
| | - Anne-Katrin Güttsches
- Department of Neurology, BG-University Hospital Bergmannsheil, Ruhr-University Bochum, Bochum, Germany
- Heimer Institute for Muscle Research, BG-University Hospital Bergmannsheil, Bochum, Germany
| | - Martijn Froeling
- Department of Radiology, University Medical Centre Utrecht, Utrecht, The Netherlands
| | - Hermien E Kan
- C. J. Gorter Center for High Field MRI, Department of Radiology, Leiden University Medical Center, Leiden, The Netherlands
- Duchenne Center, Leiden, The Netherlands
| | - Martin Tegenthoff
- Department of Neurology, BG-University Hospital Bergmannsheil, Ruhr-University Bochum, Bochum, Germany
| | - Matthias Vorgerd
- Department of Neurology, BG-University Hospital Bergmannsheil, Ruhr-University Bochum, Bochum, Germany
- Heimer Institute for Muscle Research, BG-University Hospital Bergmannsheil, Bochum, Germany
| | - Lara Schlaffke
- Department of Neurology, BG-University Hospital Bergmannsheil, Ruhr-University Bochum, Bochum, Germany
- Heimer Institute for Muscle Research, BG-University Hospital Bergmannsheil, Bochum, Germany
| |
Collapse
|
17
|
Hooijmans MT, Habets LE, van den Berg‐Faay SAM, Froeling M, Asselman F, Strijkers GJ, Jeneson JAL, Bartels B, Nederveen AJ, van der Pol WL. Multi-parametric quantitative magnetic resonance imaging of the upper arm muscles of patients with spinal muscular atrophy. NMR IN BIOMEDICINE 2022; 35:e4696. [PMID: 35052014 PMCID: PMC9286498 DOI: 10.1002/nbm.4696] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Revised: 12/24/2021] [Accepted: 01/17/2022] [Indexed: 06/09/2023]
Abstract
Quantitative magnetic resonance imaging (qMRI) is frequently used to map the disease state and disease progression in the lower extremity muscles of patients with spinal muscular atrophy (SMA). This is in stark contrast to the almost complete lack of data on the upper extremity muscles, which are essential for carrying out daily activities. The aim of this study was therefore to assess the disease state in the upper arm muscles of patients with SMA in comparison with healthy controls by quantitative assessment of fat fraction, diffusion indices, and water T2 relaxation times, and to relate these measures to muscle force. We evaluated 13 patients with SMA and 15 healthy controls with a 3-T MRI protocol consisting of DIXON, diffusion tensor imaging, and T2 sequences. qMRI measures were compared between groups and related to muscle force measured with quantitative myometry. Fat fraction was significantly increased in all upper arm muscles of the patients with SMA compared with healthy controls and correlated negatively with muscle force. Additionally, fat fraction was heterogeneously distributed within the triceps brachii (TB) and brachialis muscle, but not in the biceps brachii muscle. Diffusion indices and water T2 relaxation times were similar between patients with SMA and healthy controls, but we did find a slightly reduced mean diffusivity (MD), λ1, and λ3 in the TB of patients with SMA. Furthermore, MD was positively correlated with muscle force in the TB of patients with SMA. The variation in fat fraction further substantiates the selective vulnerability of muscles. The reduced diffusion tensor imaging indices, along with the positive correlation of MD with muscle force, point to myofiber atrophy. Our results show the feasibility of qMRI to map the disease state in the upper arm muscles of patients with SMA. Longitudinal data in a larger cohort are needed to further explore qMRI to map disease progression and to capture the possible effects of therapeutic interventions.
Collapse
Affiliation(s)
- Melissa T. Hooijmans
- Department of Radiology and Nuclear Medicine, Amsterdam Movement SciencesAmsterdam University Medical CenterAmsterdamThe Netherlands
| | - Laura E. Habets
- Center for Child Development, Exercise and Physical Literacy, Wilhelmina Children's HospitalUniversity Medical Center UtrechtUtrechtThe Netherlands
| | - Sandra A. M. van den Berg‐Faay
- Department of Radiology and Nuclear Medicine, Amsterdam Movement SciencesAmsterdam University Medical CenterAmsterdamThe Netherlands
| | - Martijn Froeling
- Department of RadiologyUniversity Medical Center UtrechtUtrechtThe Netherlands
| | - Fay‐Lynn Asselman
- UMC Utrecht Brain Center, Department of Neurology and Neurosurgery, University Medical Center UtrechtUtrecht UniversityUtrechtThe Netherlands
| | - Gustav J. Strijkers
- Department of Biomedical Engineering and Physics, Amsterdam Movement SciencesAmsterdam University Medical CenterAmsterdamThe Netherlands
| | - Jeroen A. L. Jeneson
- Center for Child Development, Exercise and Physical Literacy, Wilhelmina Children's HospitalUniversity Medical Center UtrechtUtrechtThe Netherlands
| | - Bart Bartels
- Center for Child Development, Exercise and Physical Literacy, Wilhelmina Children's HospitalUniversity Medical Center UtrechtUtrechtThe Netherlands
| | - Aart J. Nederveen
- Department of Radiology and Nuclear Medicine, Amsterdam Movement SciencesAmsterdam University Medical CenterAmsterdamThe Netherlands
| | - W. Ludo van der Pol
- UMC Utrecht Brain Center, Department of Neurology and Neurosurgery, University Medical Center UtrechtUtrecht UniversityUtrechtThe Netherlands
| |
Collapse
|
18
|
Rohm M, Markmann M, Forsting J, Rehmann R, Froeling M, Schlaffke L. 3D Automated Segmentation of Lower Leg Muscles Using Machine Learning on a Heterogeneous Dataset. Diagnostics (Basel) 2021; 11:1747. [PMID: 34679445 PMCID: PMC8534967 DOI: 10.3390/diagnostics11101747] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 09/16/2021] [Accepted: 09/18/2021] [Indexed: 12/29/2022] Open
Abstract
Quantitative MRI combines non-invasive imaging techniques to reveal alterations in muscle pathophysiology. Creating muscle-specific labels manually is time consuming and requires an experienced examiner. Semi-automatic and fully automatic methods reduce segmentation time significantly. Current machine learning solutions are commonly trained on data from healthy subjects using homogeneous databases with the same image contrast. While yielding high Dice scores (DS), those solutions are not applicable to different image contrasts and acquisitions. Therefore, the aim of our study was to evaluate the feasibility of automatic segmentation of a heterogeneous database. To create a heterogeneous dataset, we pooled lower leg muscle images from different studies with different contrasts and fields-of-view, containing healthy controls and diagnosed patients with various neuromuscular diseases. A second homogenous database with uniform contrasts was created as a subset of the first database. We trained three 3D-convolutional neuronal networks (CNN) on those databases to test performance as compared to manual segmentation. All networks, training on heterogeneous data, were able to predict seven muscles with a minimum average DS of 0.75. U-Net performed best when trained on the heterogeneous dataset (DS: 0.80 ± 0.10, AHD: 0.39 ± 0.35). ResNet and DenseNet yielded higher DS, when trained on a heterogeneous dataset (both DS: 0.86), as compared to a homogeneous dataset (ResNet DS: 0.83, DenseNet DS: 0.76). In conclusion, a CNN trained on a heterogeneous dataset achieves more accurate labels for predicting a heterogeneous database of lower leg muscles than a CNN trained on a homogenous dataset. We propose that a large heterogeneous database is needed, to make automated segmentation feasible for different kinds of image acquisitions.
Collapse
Affiliation(s)
- Marlena Rohm
- Department of Neurology, BG-University Hospital Bergmannsheil gGmbH, Ruhr-University Bochum, 44789 Bochum, Germany; (M.M.); (J.F.); (R.R.); (L.S.)
- Heimer Institute for Muscle Research, BG-University Hospital Bergmannsheil gGmbH, 44789 Bochum, Germany
| | - Marius Markmann
- Department of Neurology, BG-University Hospital Bergmannsheil gGmbH, Ruhr-University Bochum, 44789 Bochum, Germany; (M.M.); (J.F.); (R.R.); (L.S.)
| | - Johannes Forsting
- Department of Neurology, BG-University Hospital Bergmannsheil gGmbH, Ruhr-University Bochum, 44789 Bochum, Germany; (M.M.); (J.F.); (R.R.); (L.S.)
| | - Robert Rehmann
- Department of Neurology, BG-University Hospital Bergmannsheil gGmbH, Ruhr-University Bochum, 44789 Bochum, Germany; (M.M.); (J.F.); (R.R.); (L.S.)
- Department of Neurology, Klinikum Dortmund, University Witten-Herdecke, 44137 Dortmund, Germany
| | - Martijn Froeling
- Department of Radiology, University Medical Centre Utrecht, 3584 Utrecht, The Netherlands;
| | - Lara Schlaffke
- Department of Neurology, BG-University Hospital Bergmannsheil gGmbH, Ruhr-University Bochum, 44789 Bochum, Germany; (M.M.); (J.F.); (R.R.); (L.S.)
- Heimer Institute for Muscle Research, BG-University Hospital Bergmannsheil gGmbH, 44789 Bochum, Germany
| |
Collapse
|
19
|
Sakr HM, Fahmy N, Elsayed NS, Abdulhady H, El-Sobky TA, Saadawy AM, Beroud C, Udd B. Whole-body muscle MRI characteristics of LAMA2-related congenital muscular dystrophy children: An emerging pattern. Neuromuscul Disord 2021; 31:814-823. [PMID: 34481707 DOI: 10.1016/j.nmd.2021.06.012] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Revised: 06/22/2021] [Accepted: 06/23/2021] [Indexed: 11/25/2022]
Abstract
Merosin-deficient or LAMA2-related congenital muscular dystrophy (CMD) belongs to a group of muscle diseases with an overlapping diagnostic spectrum. MRI plays an important role in the diagnosis and disease-tracking of muscle diseases. Whole-body MRI is ideal for describing patterns of muscle involvement. We intended to analyze the pattern of muscle involvement in merosin-deficient CMD children employing whole-body muscle MRI. Ten children with merosin-deficient CMD underwent whole-body muscle MRI. Eight of which were genetically-confirmed. We used a control group of other hereditary muscle diseases, which included 13 children (mean age was 13 SD +/- 5.5 years), (8 boys and 5 girls) for comparative analysis. Overall, 37 muscles were graded for fatty infiltration using Mercuri scale modified by Fischer et al. The results showed a fairly consistent pattern of muscle fatty infiltration in index group, which differs from that in control group. There was a statistically significant difference between the two groups in regard to the fatty infiltration of the neck, serratus anterior, intercostal, rotator cuff, deltoid, triceps, forearm, gluteus maximus, gluteus medius, gastrocnemius and soleus muscles. Additionally, the results showed relative sparing of the brachialis, biceps brachii, gracilis, sartorius, semitendinosus and extensor muscles of the ankle in index group, and specific texture abnormalities in other muscles. There is evidence to suggest that whole-body muscle MRI can become a useful contributor to the differential diagnosis of children with merosin deficient CMD. The presence of a fairly characteristic pattern of involvement was demonstrated. MRI findings should be interpreted in view of the clinical and molecular context to improve diagnostic accuracy.
Collapse
Affiliation(s)
- Hossam M Sakr
- Department of Diagnostic & Interventional Radiology and Molecular Imaging, Faculty of Medicine, Ain Shams University, Cairo, Egypt.
| | - Nagia Fahmy
- Department of Neuropsychiatry, Faculty of Medicine, Ain Shams University, Cairo, Egypt
| | - Nermine S Elsayed
- Centre of Medical Genetics, Faculty of Medicine, Ain Shams University, Cairo, Egypt
| | - Hala Abdulhady
- Department of Physical Medicine and Rehabilitation, Faculty of Medicine, Ain Shams University, Cairo, Egypt
| | - Tamer A El-Sobky
- Division of Pediatric Orthopedics, Department of Orthopedic Surgery, Faculty of Medicine, Ain Shams University, Cairo, Egypt
| | - Amr M Saadawy
- Department of Diagnostic & Interventional Radiology and Molecular Imaging, Faculty of Medicine, Ain Shams University, Cairo, Egypt
| | - Christophe Beroud
- Aix Marseille Université, INSERM, MMG, Bioinformatics & Genetics, Marseille, France
| | - Bjarne Udd
- Neuromuscular Research Center, University of Tampere and Tampere University Hospital, Tampere, Finland
| |
Collapse
|
20
|
High Inter-Rater Reliability of Manual Segmentation and Volume-Based Tractography in Healthy and Dystrophic Human Calf Muscle. Diagnostics (Basel) 2021; 11:diagnostics11091521. [PMID: 34573863 PMCID: PMC8466691 DOI: 10.3390/diagnostics11091521] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Revised: 08/19/2021] [Accepted: 08/20/2021] [Indexed: 12/23/2022] Open
Abstract
BACKGROUND Muscle diffusion tensor imaging (mDTI) is a promising surrogate biomarker in the evaluation of muscular injuries and neuromuscular diseases. Since mDTI metrics are known to vary between different muscles, separation of different muscles is essential to achieve muscle-specific diffusion parameters. The commonly used technique to assess DTI metrics is parameter maps based on manual segmentation (MSB). Other techniques comprise tract-based approaches, which can be performed in a previously defined volume. This so-called volume-based tractography (VBT) may offer a more robust assessment of diffusion metrics and additional information about muscle architecture through tract properties. The purpose of this study was to assess DTI metrics of human calf muscles calculated with two segmentation techniques-MSB and VBT-regarding their inter-rater reliability in healthy and dystrophic calf muscles. METHODS 20 healthy controls and 18 individuals with different neuromuscular diseases underwent an MRI examination in a 3T scanner using a 16-channel Torso XL coil. DTI metrics were assessed in seven calf muscles using MSB and VBT. Coefficients of variation (CV) were calculated for both techniques. MSB and VBT were performed by two independent raters to assess inter-rater reliability by ICC analysis and Bland-Altman plots. Next to analysis of DTI metrics, the same assessments were also performed for tract properties extracted with VBT. RESULTS For both techniques, low CV were found for healthy controls (≤13%) and neuromuscular diseases (≤17%). Significant differences between methods were found for all diffusion metrics except for λ1. High inter-rater reliability was found for both MSB and VBT (ICC ≥ 0.972). Assessment of tract properties revealed high inter-rater reliability (ICC ≥ 0.974). CONCLUSIONS Both segmentation techniques can be used in the evaluation of DTI metrics in healthy controls and different NMD with low rater dependency and high precision but differ significantly from each other. Our findings underline that the same segmentation protocol must be used to ensure comparability of mDTI data.
Collapse
|
21
|
Hobson-Webb LD, Zwelling PJ, Raja SS, Pifer AN, Kishnani PS. Quantitative muscle ultrasound and electrical impedance myography in late onset Pompe disease: A pilot study of reliability, longitudinal change and correlation with function. Mol Genet Metab Rep 2021; 28:100785. [PMID: 34401343 PMCID: PMC8348861 DOI: 10.1016/j.ymgmr.2021.100785] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Accepted: 07/26/2021] [Indexed: 01/23/2023] Open
Abstract
Background/objectives Late-onset Pompe disease (LOPD) is slowly progressive, making it difficult to assess clinical change and response to interventions. In this study, quantitative muscle ultrasonography (QMUS) and electrical impedance myography (EIM) were evaluated as potential biomarkers. Methods 25 patients with confirmed LOPD were recruited from the Duke Pompe Clinic and evaluated with standard clinical measures, QMUS, standard EIM (sEIM) and hand-held EIM (hEIM). Patients were evaluated at baseline, 12 months and 24 months. MUS, sEIM and hEIM were compared with the clinical data. Five patients were given hEIM devices to perform measurements at home. Results QMUS and hEIM had good reliability as measures of muscle structure and conduction properties. Home, patient-performed hEIM measurements did not differ significantly from those performed in the clinic setting. Thirteen patients completed all follow-up measures. Most measures did not change over the study period, however, vastus lateralis echointensity increased 27%, a sign of declining muscle health. Additionally, significant correlations between QMUS, hEIM and measures of muscle strength and function were present. Conclusions QMUS and hEIM may provide useful outcome measures for future studies in LOPD with hEIM providing an opportunity to collect data at home. Larger, multicenter studies are needed to explore these possibilities.
Collapse
Affiliation(s)
- Lisa D Hobson-Webb
- Department of Neurology/Neuromuscular Division, Duke University, Durham, NC, USA
| | - Paul J Zwelling
- Department of Neurology/Neuromuscular Division, Duke University, Durham, NC, USA
| | - Shruti S Raja
- Department of Neurology/Neuromuscular Division, Duke University, Durham, NC, USA
| | - Ashley N Pifer
- Department of Medicine/Infectious Disease, Duke University, Durham, NC, USA
| | - Priya S Kishnani
- Department of Pediatrics, Division of Medical Genetics, Duke University School of Medicine, Durham, NC, USA
| |
Collapse
|
22
|
Rehmann R, Schneider-Gold C, Froeling M, Güttsches AK, Rohm M, Forsting J, Vorgerd M, Schlaffke L. Diffusion Tensor Imaging Shows Differences Between Myotonic Dystrophy Type 1 and Type 2. J Neuromuscul Dis 2021; 8:949-962. [PMID: 34180419 DOI: 10.3233/jnd-210660] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
BACKGROUND Myotonic Dystrophies type 1 and type 2 are hereditary myopathies with dystrophic muscle degeneration in varying degrees. Differences in muscle diffusion between both diseases have not been evaluated yet. OBJECTIVE To evaluate the ability to of muscle diffusion tensor imaging (mDTI) and Dixon fat-quantification to distinguish between Myotonic dystrophy (DM) type 1 and type 2 and if both diseases show distinct muscle involvement patterns. METHODS We evaluated 6 thigh and 7 calf muscles (both legs) of 10 DM 1 and 13 DM 2 and 28 healthy controls (HC) with diffusion tensor imaging, T1w and mDixonquant sequences in a 3T MRI scanner. The quantitative mDTI-values axial diffusivity (λ1), mean diffusivity (MD), radial diffusivity (RD) and fractional anisotropy (FA) as well as fat-fraction were analysed. CTG-Triplett repeat-length of DM 1 patients was correlated to diffusion metrics and fat-fraction. RESULTS mDTI showed significant differences between DM 1 and DM 2 vs. healthy controls in diffusion parameters of the thigh (all p < 0.001) except for FA (p = 0.0521 / 0.8337). In calf muscles mDTI showed significant differences between DM 1 and DM 2 patients (all p < 0.0001) as well as between DM 1 patients and controls (all p = 0.0001). Thigh muscles had a significant higher fat-fraction in both groups vs. controls (p < 0.05). There was no correlation of CTG triplet length with mDTI values and fat-fraction. DISCUSSION mDTI reveals specific changes of the diffusion parameters and fat-fraction in muscles of DM 1 and DM 2 patients. Thus, the quantitative MRI methods presented in this study provide a powerful tool in differential diagnosis and follow-up of DM 1 and DM 2, however, the data must be validated in larger studies.
Collapse
Affiliation(s)
- R Rehmann
- Department of Neurology, Heimer Institute for muscle Research, BG-University Hospital Bergmannsheil, Ruhr-University Bochum, Bochum, Germany
| | - C Schneider-Gold
- Department of Neurology, University Hospital St. Josef, Ruhr-University Bochum, Bochum, Germany
| | - M Froeling
- Department of Radiology, University Medical Centre Utrecht, Utrecht, The Netherlands
| | - A K Güttsches
- Department of Neurology, Heimer Institute for muscle Research, BG-University Hospital Bergmannsheil, Ruhr-University Bochum, Bochum, Germany
| | - M Rohm
- Department of Neurology, Heimer Institute for muscle Research, BG-University Hospital Bergmannsheil, Ruhr-University Bochum, Bochum, Germany
| | - J Forsting
- Department of Neurology, Heimer Institute for muscle Research, BG-University Hospital Bergmannsheil, Ruhr-University Bochum, Bochum, Germany
| | - M Vorgerd
- Department of Neurology, Heimer Institute for muscle Research, BG-University Hospital Bergmannsheil, Ruhr-University Bochum, Bochum, Germany
| | - L Schlaffke
- Department of Neurology, Heimer Institute for muscle Research, BG-University Hospital Bergmannsheil, Ruhr-University Bochum, Bochum, Germany
| |
Collapse
|
23
|
Vaeggemose M, Mencagli RA, Hansen JS, Dräger B, Ringgaard S, Vissing J, Andersen H. Function, structure and quality of striated muscles in the lower extremities in patients with late onset Pompe Disease-an MRI study. PeerJ 2021; 9:e10928. [PMID: 33996274 PMCID: PMC8106912 DOI: 10.7717/peerj.10928] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Accepted: 01/20/2021] [Indexed: 11/20/2022] Open
Abstract
Background Pompe Disease (PD) is a rare inherited metabolic myopathy, caused by lysosomal-α-glucosidase (GAA) deficiency, which leads to glycogen accumulation within the lysosomes, resulting in cellular and tissue damage. Due to the emergence of a disease modifying treatment with recombinant GAA there has been a large increase in studies of late onset Pompe Disease (LOPD) during the last decade. Methods The present study evaluates muscle quality in 10 patients with LOPD receiving treatment with enzyme replacement therapy and in 10 age and gender matched healthy controls applying T1-weighted Dixon MR imaging and isokinetic dynamometry. Muscle quality was determined by muscle strength in relation to muscle size (contractile cross-sectional area, CSA) and to muscle quality (fat fraction). A follow-up evaluation of the patients was performed after 8–12 months. Patient evaluations also included: six-minute walking test (6MWT), forced vital capacity, manual muscle testing and SF-36 questionnaire. Results Fat fraction of knee flexors (0.15 vs 0.07, p < 0.05) and hip muscles (0.11 vs 0.07, p < 0.05) were higher in patients than controls. In patients, contractile CSA correlated with muscle strength (knee flexors: r = 0.86, knee extensors: r = 0.88, hip extensors: r = 0.83, p < 0.05). No correlation was found between fat fraction and muscle strength. The fat fraction of thigh muscles did not correlate with scores from the clinical tests nor did it correlate with the 6MWT. During follow-up, the contractile CSA of the knee extensors increased by 2%. No other statistically significant change was observed. Quantitative MRI reflects muscle function in patients with LOPD, but larger long-term studies are needed to evaluate its utility in detecting changes over time.
Collapse
Affiliation(s)
| | | | | | - Bianca Dräger
- Department of Sleep Medicine and Neuromuscular Disorders, University Hospital Muenster, Münster, Germany
| | | | - John Vissing
- Copenhagen Neuromuscular Center, Department of Neurology, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | - Henning Andersen
- Department of Neurology, Aarhus University Hospital, Aarhus N, Denmark
| |
Collapse
|
24
|
Güttsches AK, Rehmann R, Schreiner A, Rohm M, Forsting J, Froeling M, Tegenthoff M, Vorgerd M, Schlaffke L. Quantitative Muscle-MRI Correlates with Histopathology in Skeletal Muscle Biopsies. J Neuromuscul Dis 2021; 8:669-678. [PMID: 33814461 DOI: 10.3233/jnd-210641] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
BACKGROUND Skeletal muscle biopsy is one of the gold standards in the diagnostic workup of muscle disorders. By histopathologic analysis, characteristic features like inflammatory cellular infiltrations, fat and collagen replacement of muscle tissue or structural defects of the myofibers can be detected. In the past years, novel quantitative MRI (qMRI) techniques have been developed to quantify tissue parameters, thus providing a non-invasive diagnostic tool in several myopathies. OBJECTIVE This proof-of-principle study was performed to validate the qMRI-techniques to skeletal muscle biopsy results. METHODS Ten patients who underwent skeletal muscle biopsy for diagnostic purposes were examined by qMRI. Fat fraction, water T2-time and diffusion parameters were measured in the muscle from which the biopsy was taken. The proportion of fat tissue, the severity of degenerative and inflammatory parameters and the amount of type 1- and type 2- muscle fibers were determined in all biopsy samples. The qMRI-data were then correlated to the histopathological findings. RESULTS The amount of fat tissue in skeletal muscle biopsy correlated significantly with the fat fraction derived from the Dixon sequence. The water T2-time, a parameter for tissue edema, correlated with the amount of vacuolar changes of myofibers and endomysial macrophages in the histopathologic analysis. No significant correlations were found for diffusion parameters. CONCLUSION In this proof-of-principle study, qMRI techniques were related to characteristic histopathologic features in neuromuscular disorders. The study provides the basis for further development of qMRI methods in the follow-up of patients with neuromuscular disorders, especially in the context of emerging treatment strategies.
Collapse
Affiliation(s)
- Anne-Katrin Güttsches
- Department of Neurology, Heimer Institute for Muscle Research, University Hospital Bergmannsheil, Ruhr University Bochum, Bochum, Germany
| | - Robert Rehmann
- Department of Neurology, Heimer Institute for Muscle Research, University Hospital Bergmannsheil, Ruhr University Bochum, Bochum, Germany
| | - Anja Schreiner
- Department of Neurology, Heimer Institute for Muscle Research, University Hospital Bergmannsheil, Ruhr University Bochum, Bochum, Germany
| | - Marlena Rohm
- Department of Neurology, Heimer Institute for Muscle Research, University Hospital Bergmannsheil, Ruhr University Bochum, Bochum, Germany
| | - Johannes Forsting
- Department of Neurology, Heimer Institute for Muscle Research, University Hospital Bergmannsheil, Ruhr University Bochum, Bochum, Germany
| | - Martijn Froeling
- Department of Radiology, University Medical Centre Utrecht, Utrecht, The Netherlands
| | - Martin Tegenthoff
- Department of Neurology, Heimer Institute for Muscle Research, University Hospital Bergmannsheil, Ruhr University Bochum, Bochum, Germany
| | - Matthias Vorgerd
- Department of Neurology, Heimer Institute for Muscle Research, University Hospital Bergmannsheil, Ruhr University Bochum, Bochum, Germany
| | - Lara Schlaffke
- Department of Neurology, Heimer Institute for Muscle Research, University Hospital Bergmannsheil, Ruhr University Bochum, Bochum, Germany
| |
Collapse
|
25
|
Díaz-Manera J, Walter G, Straub V. Skeletal muscle magnetic resonance imaging in Pompe disease. Muscle Nerve 2020; 63:640-650. [PMID: 33155691 DOI: 10.1002/mus.27099] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Revised: 10/11/2020] [Accepted: 10/18/2020] [Indexed: 12/12/2022]
Abstract
Pompe disease is characterized by a deficiency of acid alpha-glucosidase that results in muscle weakness and a variable degree of disability. There is an approved therapy based on enzymatic replacement that has modified disease progression. Several reports describing muscle magnetic resonance imaging (MRI) features of Pompe patients have been published. Most of the studies have focused on late-onset Pompe disease (LOPD) and identified a characteristic pattern of muscle involvement useful for the diagnosis. In addition, quantitative MRI studies have shown a progressive increase in fat in skeletal muscles of LOPD over time and they are increasingly considered a good tool to monitor progression of the disease. The studies performed in infantile-onset Pompe disease patients have shown less consistent changes. Other more sophisticated muscle MRI sequences, such as diffusion tensor imaging or glycogen spectroscopy, have also been used in Pompe patients and have shown promising results.
Collapse
Affiliation(s)
- Jordi Díaz-Manera
- John Walton Muscular Dystrophy Research Center, Newcastle University Translational and Clinical Research Institute, Newcastle upon Tyne, UK.,Neuromuscular Disorders Unit, Department of Neurology, Hospital de la Santa Creu i Sant Pau, Barcelona, Spain.,Centro de Investigación Biomédica en Enfermedades Raras, Barcelona, Spain
| | - Glenn Walter
- Department of Physiology and Functional Genomics, University of Florida, Gainesville, Florida, USA
| | - Volker Straub
- John Walton Muscular Dystrophy Research Center, Newcastle University Translational and Clinical Research Institute, Newcastle upon Tyne, UK
| |
Collapse
|