1
|
Li T, Bandari VK, Schmidt OG. Molecular Electronics: Creating and Bridging Molecular Junctions and Promoting Its Commercialization. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2209088. [PMID: 36512432 DOI: 10.1002/adma.202209088] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2022] [Revised: 11/28/2022] [Indexed: 06/02/2023]
Abstract
Molecular electronics is driven by the dream of expanding Moore's law to the molecular level for next-generation electronics through incorporating individual or ensemble molecules into electronic circuits. For nearly 50 years, numerous efforts have been made to explore the intrinsic properties of molecules and develop diverse fascinating molecular electronic devices with the desired functionalities. The flourishing of molecular electronics is inseparable from the development of various elegant methodologies for creating nanogap electrodes and bridging the nanogap with molecules. This review first focuses on the techniques for making lateral and vertical nanogap electrodes by breaking, narrowing, and fixed modes, and highlights their capabilities, applications, merits, and shortcomings. After summarizing the approaches of growing single molecules or molecular layers on the electrodes, the methods of constructing a complete molecular circuit are comprehensively grouped into three categories: 1) directly bridging one-molecule-electrode component with another electrode, 2) physically bridging two-molecule-electrode components, and 3) chemically bridging two-molecule-electrode components. Finally, the current state of molecular circuit integration and commercialization is discussed and perspectives are provided, hoping to encourage the community to accelerate the realization of fully scalable molecular electronics for a new era of integrated microsystems and applications.
Collapse
Affiliation(s)
- Tianming Li
- Research Center for Materials, Architectures and Integration of Nanomembranes (MAIN), Chemnitz University of Technology, 09126, Chemnitz, Germany
- Material Systems for Nanoelectronics, Chemnitz University of Technology, 09111, Chemnitz, Germany
| | - Vineeth Kumar Bandari
- Research Center for Materials, Architectures and Integration of Nanomembranes (MAIN), Chemnitz University of Technology, 09126, Chemnitz, Germany
- Material Systems for Nanoelectronics, Chemnitz University of Technology, 09111, Chemnitz, Germany
| | - Oliver G Schmidt
- Research Center for Materials, Architectures and Integration of Nanomembranes (MAIN), Chemnitz University of Technology, 09126, Chemnitz, Germany
- Material Systems for Nanoelectronics, Chemnitz University of Technology, 09111, Chemnitz, Germany
- Nanophysics, Dresden University of Technology, 01069, Dresden, Germany
| |
Collapse
|
2
|
Li S, Chen L, Gui X, He D, Hu J, Huang Z, Lin S, Tu Y, Dong Y. Molecular Dynamics Simulation for Thiolated Poly(ethylene glycol) at Low‐Temperature Based on the Density Functional Tight‐Binding Method. ADVANCED THEORY AND SIMULATIONS 2022. [DOI: 10.1002/adts.202200281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Shi Li
- Guangzhou Institute of Chemistry Chinese Academy of Sciences Guangzhou 510650 P. R. China
- School of Chemical and Environmental Engineering Anhui Polytechnic University Wuhu 241000 P. R. China
- University of Chinese Academy of Sciences Beijing 100049 P. R. China
| | - Lei Chen
- Guangzhou Institute of Chemistry Chinese Academy of Sciences Guangzhou 510650 P. R. China
- University of Chinese Academy of Sciences Beijing 100049 P. R. China
| | - Xuefeng Gui
- Guangzhou Institute of Chemistry Chinese Academy of Sciences Guangzhou 510650 P. R. China
- University of Chinese Academy of Sciences Beijing 100049 P. R. China
- Guangdong Provincial Key Laboratory of Organic Polymer Materials for Electronics Guangzhou 510650 P. R. China
- CAS Engineering Laboratory for Special Fine Chemicals Guangzhou 510650 P. R. China
- Incubator of Nanxiong CAS Co. Ltd. Nanxiong 512400 P. R. China
| | - Daguang He
- Guangzhou Institute of Chemistry Chinese Academy of Sciences Guangzhou 510650 P. R. China
- University of Chinese Academy of Sciences Beijing 100049 P. R. China
| | - Jiwen Hu
- Guangzhou Institute of Chemistry Chinese Academy of Sciences Guangzhou 510650 P. R. China
- University of Chinese Academy of Sciences Beijing 100049 P. R. China
- Guangdong Provincial Key Laboratory of Organic Polymer Materials for Electronics Guangzhou 510650 P. R. China
- CAS Engineering Laboratory for Special Fine Chemicals Guangzhou 510650 P. R. China
- Incubator of Nanxiong CAS Co. Ltd. Nanxiong 512400 P. R. China
| | - Zhenzhu Huang
- Guangzhou Institute of Chemistry Chinese Academy of Sciences Guangzhou 510650 P. R. China
- University of Chinese Academy of Sciences Beijing 100049 P. R. China
- Guangdong Provincial Key Laboratory of Organic Polymer Materials for Electronics Guangzhou 510650 P. R. China
- CAS Engineering Laboratory for Special Fine Chemicals Guangzhou 510650 P. R. China
- Incubator of Nanxiong CAS Co. Ltd. Nanxiong 512400 P. R. China
| | - Shudong Lin
- Guangzhou Institute of Chemistry Chinese Academy of Sciences Guangzhou 510650 P. R. China
- University of Chinese Academy of Sciences Beijing 100049 P. R. China
- Guangdong Provincial Key Laboratory of Organic Polymer Materials for Electronics Guangzhou 510650 P. R. China
- CAS Engineering Laboratory for Special Fine Chemicals Guangzhou 510650 P. R. China
- Incubator of Nanxiong CAS Co. Ltd. Nanxiong 512400 P. R. China
| | - Yuanyuan Tu
- Guangzhou Institute of Chemistry Chinese Academy of Sciences Guangzhou 510650 P. R. China
- University of Chinese Academy of Sciences Beijing 100049 P. R. China
- Guangdong Provincial Key Laboratory of Organic Polymer Materials for Electronics Guangzhou 510650 P. R. China
- CAS Engineering Laboratory for Special Fine Chemicals Guangzhou 510650 P. R. China
- Incubator of Nanxiong CAS Co. Ltd. Nanxiong 512400 P. R. China
| | - Yonglu Dong
- Guangzhou Institute of Chemistry Chinese Academy of Sciences Guangzhou 510650 P. R. China
- Incubator of Nanxiong CAS Co. Ltd. Nanxiong 512400 P. R. China
- Management Committee of Shaoguan NanXiong Hi‐Tech Industry Development Zone Nanxiong 512400 P. R. China
| |
Collapse
|
3
|
Rahman M, Islam KR, Islam MR, Islam MJ, Kaysir MR, Akter M, Rahman MA, Alam SMM. A Critical Review on the Sensing, Control, and Manipulation of Single Molecules on Optofluidic Devices. MICROMACHINES 2022; 13:968. [PMID: 35744582 PMCID: PMC9229244 DOI: 10.3390/mi13060968] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/24/2022] [Revised: 05/19/2022] [Accepted: 05/23/2022] [Indexed: 02/06/2023]
Abstract
Single-molecule techniques have shifted the paradigm of biological measurements from ensemble measurements to probing individual molecules and propelled a rapid revolution in related fields. Compared to ensemble measurements of biomolecules, single-molecule techniques provide a breadth of information with a high spatial and temporal resolution at the molecular level. Usually, optical and electrical methods are two commonly employed methods for probing single molecules, and some platforms even offer the integration of these two methods such as optofluidics. The recent spark in technological advancement and the tremendous leap in fabrication techniques, microfluidics, and integrated optofluidics are paving the way toward low cost, chip-scale, portable, and point-of-care diagnostic and single-molecule analysis tools. This review provides the fundamentals and overview of commonly employed single-molecule methods including optical methods, electrical methods, force-based methods, combinatorial integrated methods, etc. In most single-molecule experiments, the ability to manipulate and exercise precise control over individual molecules plays a vital role, which sometimes defines the capabilities and limits of the operation. This review discusses different manipulation techniques including sorting and trapping individual particles. An insight into the control of single molecules is provided that mainly discusses the recent development of electrical control over single molecules. Overall, this review is designed to provide the fundamentals and recent advancements in different single-molecule techniques and their applications, with a special focus on the detection, manipulation, and control of single molecules on chip-scale devices.
Collapse
Affiliation(s)
- Mahmudur Rahman
- Department of Electrical and Electronic Engineering, Dhaka University of Engineering & Technology, Gazipur 1707, Bangladesh; (M.R.); (K.R.I.); (M.R.I.); (M.A.); (M.A.R.)
| | - Kazi Rafiqul Islam
- Department of Electrical and Electronic Engineering, Dhaka University of Engineering & Technology, Gazipur 1707, Bangladesh; (M.R.); (K.R.I.); (M.R.I.); (M.A.); (M.A.R.)
| | - Md. Rashedul Islam
- Department of Electrical and Electronic Engineering, Dhaka University of Engineering & Technology, Gazipur 1707, Bangladesh; (M.R.); (K.R.I.); (M.R.I.); (M.A.); (M.A.R.)
| | - Md. Jahirul Islam
- Department of Electrical and Electronic Engineering, Khulna University of Engineering & Technology, Khulna 9203, Bangladesh;
| | - Md. Rejvi Kaysir
- Department of Electrical and Computer Engineering, University of Waterloo, 200 University Ave. W, Waterloo, ON N2L 3G1, Canada;
- Waterloo Institute for Nanotechnology, University of Waterloo, 200 University Ave. W, Waterloo, ON N2L 3G1, Canada
| | - Masuma Akter
- Department of Electrical and Electronic Engineering, Dhaka University of Engineering & Technology, Gazipur 1707, Bangladesh; (M.R.); (K.R.I.); (M.R.I.); (M.A.); (M.A.R.)
| | - Md. Arifur Rahman
- Department of Electrical and Electronic Engineering, Dhaka University of Engineering & Technology, Gazipur 1707, Bangladesh; (M.R.); (K.R.I.); (M.R.I.); (M.A.); (M.A.R.)
| | - S. M. Mahfuz Alam
- Department of Electrical and Electronic Engineering, Dhaka University of Engineering & Technology, Gazipur 1707, Bangladesh; (M.R.); (K.R.I.); (M.R.I.); (M.A.); (M.A.R.)
| |
Collapse
|
4
|
Li S, Li Z, Wang X, Zhan P, Gui X, Hu J, Lin S, Tu Y. Terraced and Three-dimensional Pyramid-shaped Polymer Single Crystal via low temperature-Assisted Microfluidic Technology. Macromol Rapid Commun 2021; 43:e2100747. [PMID: 34967476 DOI: 10.1002/marc.202100747] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2021] [Revised: 12/18/2021] [Indexed: 11/11/2022]
Abstract
Three-dimensional pyramidal polymer single crystals provide spatial gradient variations within the crystal molecules, and these variations facilitate the study of the relationship between structure and properties within the molecules of various complexes with anisotropic structures. As described herein, we propose a low-temperature-assisted microfluidic pore channeling approach to prepare structurally ordered polymer single crystals. A mixture of dichloromethane and dimethyl sulfoxide was used as a prepolymer, and a liquid microfluidic technique was employed to grow the end-functionalized polymers into three-dimensional polymer single crystals. Through the ordered growth of single crystals, a personalized pyramidal pattern with a homogeneous structure was formed. To evaluate the mesh node density, low-temperature growth time and substrate type were also investigated. Rectangular, pyramidal, and dendritic patterns were synthesized via low-temperature single crystal growth. This work shows that low temperature-assisted microfluidics provides a novel means to tune the three-dimensional structure of polymer single crystals. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Shi Li
- Guangzhou Institute of Chemistry, Chinese Academy of Sciences, Guangzhou, 510650, P.R. China.,University of Chinese Academy of Sciences, Beijing, 100049, P.R. China
| | - Zhihua Li
- Guangzhou Institute of Chemistry, Chinese Academy of Sciences, Guangzhou, 510650, P.R. China.,University of Chinese Academy of Sciences, Beijing, 100049, P.R. China
| | - Xiao Wang
- Guangzhou Institute of Chemistry, Chinese Academy of Sciences, Guangzhou, 510650, P.R. China.,University of Chinese Academy of Sciences, Beijing, 100049, P.R. China
| | - Pei Zhan
- Guangzhou Institute of Chemistry, Chinese Academy of Sciences, Guangzhou, 510650, P.R. China.,University of Chinese Academy of Sciences, Beijing, 100049, P.R. China
| | - Xuefeng Gui
- Guangzhou Institute of Chemistry, Chinese Academy of Sciences, Guangzhou, 510650, P.R. China.,University of Chinese Academy of Sciences, Beijing, 100049, P.R. China.,CAS Engineering Laboratory for Special Fine Chemicals, Guangzhou, 510650, P.R. China.,Incubator of Nanxiong CAS Co., Ltd., Nanxiong, 512400, P.R. China.,Guangdong Provincial Key Laboratory of Organic Polymer Materials for Electronics, Guangzhou, 510650, P.R. China
| | - Jiwen Hu
- Guangzhou Institute of Chemistry, Chinese Academy of Sciences, Guangzhou, 510650, P.R. China.,University of Chinese Academy of Sciences, Beijing, 100049, P.R. China.,CAS Engineering Laboratory for Special Fine Chemicals, Guangzhou, 510650, P.R. China.,Incubator of Nanxiong CAS Co., Ltd., Nanxiong, 512400, P.R. China.,Guangdong Provincial Key Laboratory of Organic Polymer Materials for Electronics, Guangzhou, 510650, P.R. China
| | - Shudong Lin
- Guangzhou Institute of Chemistry, Chinese Academy of Sciences, Guangzhou, 510650, P.R. China.,University of Chinese Academy of Sciences, Beijing, 100049, P.R. China.,CAS Engineering Laboratory for Special Fine Chemicals, Guangzhou, 510650, P.R. China.,Incubator of Nanxiong CAS Co., Ltd., Nanxiong, 512400, P.R. China.,Guangdong Provincial Key Laboratory of Organic Polymer Materials for Electronics, Guangzhou, 510650, P.R. China
| | - Yuanyuan Tu
- Guangzhou Institute of Chemistry, Chinese Academy of Sciences, Guangzhou, 510650, P.R. China.,University of Chinese Academy of Sciences, Beijing, 100049, P.R. China.,CAS Engineering Laboratory for Special Fine Chemicals, Guangzhou, 510650, P.R. China.,Incubator of Nanxiong CAS Co., Ltd., Nanxiong, 512400, P.R. China.,Guangdong Provincial Key Laboratory of Organic Polymer Materials for Electronics, Guangzhou, 510650, P.R. China
| |
Collapse
|
5
|
Cheng Y, Zhang Y, You H. Characterization of G-Quadruplexes Folding/Unfolding Dynamics and Interactions with Proteins from Single-Molecule Force Spectroscopy. Biomolecules 2021; 11:1579. [PMID: 34827577 PMCID: PMC8615981 DOI: 10.3390/biom11111579] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Revised: 10/16/2021] [Accepted: 10/19/2021] [Indexed: 12/19/2022] Open
Abstract
G-quadruplexes (G4s) are stable secondary nucleic acid structures that play crucial roles in many fundamental biological processes. The folding/unfolding dynamics of G4 structures are associated with the replication and transcription regulation functions of G4s. However, many DNA G4 sequences can adopt a variety of topologies and have complex folding/unfolding dynamics. Determining the dynamics of G4s and their regulation by proteins remains challenging due to the coexistence of multiple structures in a heterogeneous sample. Here, in this mini-review, we introduce the application of single-molecule force-spectroscopy methods, such as magnetic tweezers, optical tweezers, and atomic force microscopy, to characterize the polymorphism and folding/unfolding dynamics of G4s. We also briefly introduce recent studies using single-molecule force spectroscopy to study the molecular mechanisms of G4-interacting proteins.
Collapse
Affiliation(s)
| | | | - Huijuan You
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; (Y.C.); (Y.Z.)
| |
Collapse
|