1
|
Wang HHS, Thaker H, Bigger-Allen A, Nagy JA, Rutkove SB. Novel phenotype characterization utilizing electrical impedance myography signatures in murine spinal cord injury neurogenic bladder models. Sci Rep 2023; 13:19520. [PMID: 37945675 PMCID: PMC10636012 DOI: 10.1038/s41598-023-46740-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Accepted: 11/04/2023] [Indexed: 11/12/2023] Open
Abstract
Neurogenic bladder (NB) affects people of all ages. Electric impedance myography (EIM) assesses localized muscle abnormalities. Here, we sought to investigate whether unique detrusor EIM signatures are present in NB due to spinal cord injury (SCI). Twenty-eight, 8-10 weeks old, C57BL/6J female mice were studied. Twenty underwent spinal cord transection; 8 served as controls. Cohorts were euthanized at 4 and 6 weeks after spinal cord transection. Each bladder was measured in-situ with EIM with applied frequencies of 1 kHz to 10 MHz, and then processed for molecular and histologic study. SCI mice had greater bladder-to-body weight ratio (p < 0.0001), greater collagen deposition (p = 0.009), and greater smooth-muscle-myosin-heavy-chain isoform A/B ratio (p < 0.0001). Compared with the control group, the SCI group was associated with lower phase, reactance, and resistance values (p < 0.01). Significant correlations (p < 0.001) between bladder-to-body weight ratios and EIM measurements were observed across the entire frequency spectrum. A severely hypertrophied phenotype was characterized by even greater bladder-to-body weight ratios and more depressed EIM values. Our study demonstrated distinct EIM alterations in the detrusor muscle of mice with NB due to SCI. With further refinement, EIM may offer a potential point-of-care tool for the assessment of NB and its response to treatment.
Collapse
Affiliation(s)
- Hsin-Hsiao Scott Wang
- Department of Urology, Boston Children's Hospital, 300 Longwood Ave, HU390, Boston, MA, USA.
- Harvard Medical School, Boston, MA, 02215, USA.
| | - Hatim Thaker
- Department of Urology, Boston Children's Hospital, 300 Longwood Ave, HU390, Boston, MA, USA
- Harvard Medical School, Boston, MA, 02215, USA
| | - Alex Bigger-Allen
- Department of Urology, Boston Children's Hospital, 300 Longwood Ave, HU390, Boston, MA, USA
| | - Janice A Nagy
- Harvard Medical School, Boston, MA, 02215, USA
- Department of Neurology, Beth Israel Deaconess Medical Center, Boston, MA, USA
| | - Seward B Rutkove
- Harvard Medical School, Boston, MA, 02215, USA
- Department of Neurology, Beth Israel Deaconess Medical Center, Boston, MA, USA
| |
Collapse
|
2
|
von Siebenthal M, Akshay A, Besic M, Schneider MP, Hashemi Gheinani A, Burkhard FC, Monastyrskaya K. Molecular Characterization of Non-Neurogenic and Neurogenic Lower Urinary Tract Dysfunction (LUTD) in SCI-Induced and Partial Bladder Outlet Obstruction Mouse Models. Int J Mol Sci 2023; 24:ijms24032451. [PMID: 36768773 PMCID: PMC9916488 DOI: 10.3390/ijms24032451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 01/19/2023] [Accepted: 01/20/2023] [Indexed: 01/28/2023] Open
Abstract
We examined bladder function following spinal cord injury (SCI) by repeated urodynamic investigation (UDI), including external urethral sphincter (EUS) electromyography (EMG) in awake restrained mice and correlated micturition parameters to gene expression and morphological changes in the bladder. A partial bladder outlet obstruction (pBOO) model was used for comparison to elucidate both the common and specific features of obstructive and neurogenic lower urinary tract dysfunction (LUTD). Thirty female C57Bl/6J mice in each group received an implanted bladder catheter with additional electrodes placed next to the EUS in the SCI group. UDI assessments were performed weekly for 7 weeks (pBOO group) or 8 weeks (SCI group), after which bladders were harvested for histological and transcriptome analysis. SCI mice developed detrusor sphincter dyssynergia (DSD) one week after injury with high-pressure oscillations and a significantly increased maximal bladder pressure Pmax and were unable to void spontaneously during the whole observation period. They showed an increased bladder-to-bodyweight ratio, bladder fibrosis, and transcriptome changes indicative of extracellular matrix remodeling and alterations of neuronal signaling and muscle contraction. In contrast, pBOO led to a significantly increased Pmax after one week, which normalized at later time points. Increased bladder-to-bodyweight ratio and pronounced gene expression changes involving immune and inflammatory pathways were observed 7 weeks after pBOO. Comparative transcriptome analysis of SCI and pBOO bladders revealed the activation of Wnt and TGF-beta signaling in both the neurogenic and obstructive LUTD and highlighted FGF2 as a major upregulated transcription factor during organ remodeling. We conclude that SCI-induced DSD in mice leads to profound changes in neuronal signaling and muscle contractility, leading to bladder fibrosis. In a similar time frame, significant bladder remodeling following pBOO allowed for functional compensation, preserving normal micturition parameters.
Collapse
Affiliation(s)
- Michelle von Siebenthal
- Functional Urology Research Laboratory, Department for BioMedical Research DBMR, University of Bern, 3008 Bern, Switzerland
| | - Akshay Akshay
- Functional Urology Research Laboratory, Department for BioMedical Research DBMR, University of Bern, 3008 Bern, Switzerland
- Graduate School for Cellular and Biomedical Sciences, University of Bern, 3012 Bern, Switzerland
| | - Mustafa Besic
- Functional Urology Research Laboratory, Department for BioMedical Research DBMR, University of Bern, 3008 Bern, Switzerland
| | - Marc P. Schneider
- Functional Urology Research Laboratory, Department for BioMedical Research DBMR, University of Bern, 3008 Bern, Switzerland
| | - Ali Hashemi Gheinani
- Functional Urology Research Laboratory, Department for BioMedical Research DBMR, University of Bern, 3008 Bern, Switzerland
| | - Fiona C. Burkhard
- Functional Urology Research Laboratory, Department for BioMedical Research DBMR, University of Bern, 3008 Bern, Switzerland
- Department of Urology, Inselspital University Hospital, University of Bern, 3010 Bern, Switzerland
| | - Katia Monastyrskaya
- Functional Urology Research Laboratory, Department for BioMedical Research DBMR, University of Bern, 3008 Bern, Switzerland
- Department of Urology, Inselspital University Hospital, University of Bern, 3010 Bern, Switzerland
- Correspondence: ; Tel.: +41-316328776
| |
Collapse
|
3
|
Holmes GM, Hubscher CH, Krassioukov A, Jakeman LB, Kleitman N. Recommendations for evaluation of bladder and bowel function in pre-clinical spinal cord injury research. J Spinal Cord Med 2019; 43:165-176. [PMID: 31556844 PMCID: PMC7054945 DOI: 10.1080/10790268.2019.1661697] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Objective: In order to encourage the inclusion of bladder and bowel outcome measures in preclinical spinal cord injury (SCI) research, this paper identifies and categorizes 1) fundamental, 2) recommended, 3) supplemental and 4) exploratory sets of outcome measures for pre-clinical assessment of bladder and bowel function with broad applicability to animal models of SCI.Methods: Drawing upon the collective research experience of autonomic physiologists and informed in consultation with clinical experts, a critical assessment of currently available bladder and bowel outcome measures (histological, biochemical, in vivo functional, ex vivo physiological and electrophysiological tests) was made to identify the strengths, deficiencies and ease of inclusion for future studies of experimental SCI.Results: Based upon pre-established criteria generated by the Neurogenic Bladder and Bowel Working Group that included history of use in experimental settings, citations in the literature by multiple independent groups, ease of general use, reproducibility and sensitivity to change, three fundamental measures each for bladder and bowel assessments were identified. Briefly defined, these assessments centered upon tissue morphology, voiding efficiency/volume and smooth muscle-mediated pressure studies. Additional assessment measures were categorized as recommended, supplemental or exploratory based upon the balance between technical requirements and potential mechanistic insights to be gained by the study.Conclusion: Several fundamental assessments share reasonable levels of technical and material investment, including some that could assess bladder and bowel function non-invasively and simultaneously. Such measures used more inclusively across SCI studies would advance progress in this high priority area. When complemented with a few additional investigator-selected study-relevant supplemental measures, they are highly recommended for research programs investigating the efficacy of therapeutic interventions in preclinical animal models of SCI that have a bladder and/or bowel focus.
Collapse
Affiliation(s)
- Gregory M. Holmes
- Neural and Behavioral Sciences, Pennsylvania State University College of Medicine, Hershey, Pennsylvania, USA,Correspondence to: Gregory M. Holmes, Neural and Behavioral Sciences, Pennsylvania State University College of Medicine, 500 University Dr., Hershey, PA 17036, USA. ;
| | - Charles H. Hubscher
- Department of Anatomical Sciences and Neurobiology, University of Louisville, Louisville, Kentucky, USA,Kentucky Spinal Cord Injury Research Center, University of Louisville, Louisville, Kentucky, USA
| | - Andrei Krassioukov
- ICORD, University of British Columbia, GF Strong Rehabilitation Centre, Vancouver, Canada
| | - Lyn B. Jakeman
- National Institute of Neurological Disorders and Stroke, Bethesda, Maryland, USA
| | | |
Collapse
|
4
|
Xiang Z, Li Y, Bian T, He M, Xu Y, Wang G, Guo J, Wang H. An optimized transurethral catheterization cystometry in mice and comparison with classic suprapubic catheterization cystometry. Neurourol Urodyn 2017; 36:1965-1971. [PMID: 28169451 DOI: 10.1002/nau.23223] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2016] [Revised: 01/09/2017] [Accepted: 01/10/2017] [Indexed: 11/06/2022]
Affiliation(s)
- Zhuoyi Xiang
- Department of Urology; Zhongshan Hospital, Fudan University; Shanghai China
| | - Yaohui Li
- Department of Urology; Zhongshan Hospital, Fudan University; Shanghai China
| | - Tingchang Bian
- Department of Urology; Zhongshan Hospital, Fudan University; Shanghai China
| | - Minke He
- Department of Urology; Zhongshan Hospital, Fudan University; Shanghai China
| | - Yeqing Xu
- Department of Urology; Zhongshan Hospital, Fudan University; Shanghai China
| | - Guomin Wang
- Department of Urology; Zhongshan Hospital, Fudan University; Shanghai China
| | - Jianming Guo
- Department of Urology; Zhongshan Hospital, Fudan University; Shanghai China
| | - Hang Wang
- Department of Urology; Zhongshan Hospital, Fudan University; Shanghai China
| |
Collapse
|
5
|
Ito H, Pickering AE, Igawa Y, Kanai AJ, Fry CH, Drake MJ. Muro-Neuro-Urodynamics; a Review of the Functional Assessment of Mouse Lower Urinary Tract Function. Front Physiol 2017; 8:49. [PMID: 28220079 PMCID: PMC5292568 DOI: 10.3389/fphys.2017.00049] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2016] [Accepted: 01/18/2017] [Indexed: 12/17/2022] Open
Abstract
Background: Mouse urodynamic tests are fundamental to understanding normal lower urinary tract (LUT) function. These experiments also contribute to our understanding of neurological dysfunction, pathophysiological processes, and potential mechanisms of therapy. Objectives: Systematic assessment of published evidence on urodynamics, advantages and limitations of different urodynamic measurements in mice, and consideration of potential implications for the clinical field. Methods: A search using specific search-terms for urodynamic studies and mice was conducted on PubMed (from inception to 1 July 2016). Results: We identified 55 studies examining or describing mouse neuro-urodynamics. We summarize reported features of mouse urodynamic function deriving from frequency-volume chart (FVC) measurements, voiding spot assays, filling cystometry, and pressure-flow studies. Similarly, an influence of the diurnal cycle on voiding is observed in mice and should be considered when interpreting rodent urodynamic studies, especially FVC measurements and voiding spot assays. Anaesthesia, restraint conditions, or filling rate influence mouse neuro-urodynamics. Mouse cystometric studies have observed intravesical pressure oscillations that accompany urine flow, attributed to high frequency opening and closing of the urethra. This characterization is not seen in other species, except rats. In contrast to human clinical urodynamics, the terminology of these examinations has not been standardized although many rodent urodynamic studies have been described. Conclusion: Mice have many anatomical and physiological similarities to humans and they are generally cost effective, and allow investigation of the effects of aging because of their short lifespan. There are some differences between mouse and human urodynamics. These must be considered when interpreting LUT function in mice, and translational value of murine disease models.
Collapse
Affiliation(s)
- Hiroki Ito
- Department of Physiology, Pharmacology and Neuroscience, University of Bristol Bristol, UK
| | - Anthony E Pickering
- Department of Physiology, Pharmacology and Neuroscience, University of Bristol Bristol, UK
| | - Yasuhiko Igawa
- Department of Continence Medicine, University of Tokyo Graduate School of Medicine Tokyo, Japan
| | - Anthony J Kanai
- Department of Pharmacology and Chemical Biology, University of Pittsburgh Pennsylvania, PA, USA
| | - Christopher H Fry
- Department of Physiology, Pharmacology and Neuroscience, University of Bristol Bristol, UK
| | - Marcus J Drake
- Department of Physiology, Pharmacology and Neuroscience, University of Bristol Bristol, UK
| |
Collapse
|
6
|
Wada N, Shimizu T, Takai S, Shimizu N, Kanai AJ, Tyagi P, Kakizaki H, Yoshimura N. Post-injury bladder management strategy influences lower urinary tract dysfunction in the mouse model of spinal cord injury. Neurourol Urodyn 2016; 36:1301-1305. [PMID: 27778376 DOI: 10.1002/nau.23120] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2016] [Accepted: 08/24/2016] [Indexed: 12/27/2022]
Abstract
AIMS To examine the effects of a different number of daily bladder squeezes on bladder dysfunction in mice with spinal cord injury (SCI). METHODS Spinal cord was transected at the Th8/9 in female C57BL/6N mice. Their bladders were manually squeezed to eliminate urine inside every day for 4 weeks. The mice were divided into three groups depending on the number of bladder squeezes; A: once daily, B: twice daily, C: three times daily. Four weeks after transection, single-filling cystometry were performed under an awake condition. NGF in the bladder mucosa and mRNA expression of P2X receptors and TRP channels in L6/S1 dorsal root ganglia (DRG) were measured. RESULTS Bladder weight in group C was less than that of group A. Bladder capacity, post-void residual, and the number of non-voiding contractions during the storage phase were significantly larger in group A compared to group B or C. The level of NGF in groups C were lower compared to group A or B. The expression of P2X3 and TRPA1 in groups B and C was decreased compared to group A. The expression of P2X2 was decreased in groups B compared to group A. CONCLUSION The post-injury bladder management after SCI with an increased number of daily bladder emptying improves the storage and voiding bladder dysfunction associated with the reduction of NGF in the bladder as well as P2X and TRP transcripts in lumbosacral DRG.
Collapse
Affiliation(s)
- Naoki Wada
- Department of Urology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania.,Department of Renal and Urologic Surgery, Asahikawa Medical University, Asahikawa, Japan
| | - Takahiro Shimizu
- Department of Urology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Shun Takai
- Department of Urology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Nobutaka Shimizu
- Department of Urology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Anthony J Kanai
- Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Pradeep Tyagi
- Department of Urology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Hidehiro Kakizaki
- Department of Renal and Urologic Surgery, Asahikawa Medical University, Asahikawa, Japan
| | - Naoki Yoshimura
- Department of Urology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| |
Collapse
|
7
|
Xue R, Jia Z, Kong X, Pi G, Ma S, Yang J. Effects of PGE2 EP3/EP4 receptors on bladder dysfunction in mice with experimental autoimmune encephalomyelitis. Am J Physiol Renal Physiol 2013; 305:F1656-62. [PMID: 24154697 DOI: 10.1152/ajprenal.00271.2013] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
To investigate the expression of four subtypes of PGE2 E-prostanoid (EP) receptors (EP1-EP4) and the effects of EP3/EP4 on bladder dysfunction in a new neurogenic bladder model induced by experimental autoimmune encephalomyelitis (EAE), the mouse model of EAE was induced using a previously established method, and bladder function in mice with different defined levels of neurological impairment was then examined, including micturition frequencies and voiding weight. Bladders were then harvested for analysis of EP receptor expression by Western blot. Activities of agonists/antagonists of EP3 and EP4 receptors as well as PGE2 were also evaluated at different stages of EAE. The results showed that EAE mice developed profound bladder dysfunction characterized by significantly increased micturition and significantly decreased urine output per micturition. EAE-induced upregulation of EP3 and EP4 receptors in the bladder was accompanied by bladder dysfunction. However, EAE had no significant effect on EP1 and EP2 receptors. Moreover, PGE2 and agonists/antagonists of EP3 and EP4 receptors significantly affected bladder dysfunction in EAE mice. Thus, we believe that EAE mice are useful for investigations of the neurogenic bladder. In addition, EP3 and EP4 receptors play a role in EAE-induced bladder dysfunction, providing us with a new target for the treatment of neurogenic bladders.
Collapse
Affiliation(s)
- Rui Xue
- Dept. of Urology, The First Affiliated Hospital of Zhengzhou Univ., No.1 Jian She Dong Ave., Zhengzhou 450002, People's Republic of China.
| | | | | | | | | | | |
Collapse
|
8
|
Tseng LH, Chen I, Lin YH, Liang CC, Lloyd LK. Genome-based expression profiling study following spinal cord injury in the rat: An array of 48-gene model. Neurourol Urodyn 2009; 29:1439-43. [PMID: 19618445 DOI: 10.1002/nau.20769] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
AIM To explore the potential molecular mechanisms underlying experimental neurogenic bladder dysfunction. METHODS With the aid of Affymetrix GeneChip Rat Genome U34A arrays, we examined microarray gene expression profiles in bladder wall tissue from female Sprague-Dawley rats within the first 3 weeks following spinal cord injury. Gene transcripts expressed in rat bladder wall tissue at 3 days, 7 days, and 3 weeks following spinal cord injury were compared to normal rat bladder wall tissue. RESULTS The Mahalanobis distance in hierarchical cluster analysis revealed a 48-gene model, which contained high expressions in rat bladder wall tissue at 3 days, 7 days, and 3 weeks following spinal cord injury. According to gene ontology, plausible molecular alterations in rat bladder wall tissue following spinal cord injury include: (1) the release of nerve growth factor (NGF) and transforming growth factor beta 1 (Tgfb1) (2) the secretion of histamine from mast cells, (3) the occurrence of blood coagulation, (4) the occurrence of N-terminal protein myristoylation, and (5) Axon guidance mediated by Ena/Vasodilator-stimulated phosphoprotein (Ena/VASP) promotes reestablishment of the bladder reflex following spinal cord injury. Such changes, jointly termed "bladder remodeling," can constitute an important long-term consequence of neurogenic bladder dysfunction. CONCLUSION The success of this innovation has supported the use of microarray-based expression profiling as a commonplace platform for the pathogenesis and therapeutic interventions of experimental neurogenic bladder dysfunction. dysfunction.
Collapse
Affiliation(s)
- Ling-Hong Tseng
- Department of Obstetrics and Gynecology, Chang Gung Memorial Hospital and University of Chang Gung Memorial Hospital, Linkou Medical Center, Tao-Yuan, Taiwan
| | | | | | | | | |
Collapse
|
9
|
Inskip JA, Ramer LM, Ramer MS, Krassioukov AV. Autonomic assessment of animals with spinal cord injury: tools, techniques and translation. Spinal Cord 2008; 47:2-35. [DOI: 10.1038/sc.2008.61] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
10
|
de Jong BWD, Wolffenbuttel KP, Arentshorst ME, Lodder P, Kok DJ. Detrusor glycogen reflects the functional history of bladders with partial outlet obstruction. BJU Int 2007; 100:846-52. [PMID: 17662080 DOI: 10.1111/j.1464-410x.2007.07046.x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
OBJECTIVE To assess the relationship between glycogen content in bladder detrusor tissue and historical bladder function in a guinea-pig model of partial bladder outlet obstruction (PBOO). MATERIALS AND METHODS In male immature guinea pigs PBOO was created with a silver ring around the proximal urethra; a control group had a sham operation for comparison. Longitudinal individual urodynamic data were obtained weekly, so that guinea pigs were killed at different levels of bladder dysfunction. Bladder sections were stained with periodic acid-Schiff (PAS) to assess overall morphology and glycogen granule density, scored from 0 (no glycogen) to 3. Glycogen scores were related to both the end-stage and historical extremes of bladder function values. RESULTS Glycogen granules were seen only in the detrusor; as their number increased their location expanded from only close to the serosa (glycogen score 1), through the detrusor (score 2) up to the urothelium (score 3). A glycogen score of 0 correlated with normal values for all urodynamic variables. Compared with a glycogen score of 0 a score of 1 correlated with significant (P < 0.05) changes in end-stage compliance (decrease) and contractility (increase) and significantly higher historical values for contractility, pressure and number of unstable contractions (NUC). In the group with a glycogen score of 2 there were significant changes in both the end-stage values and historical extremes for compliance, pressure, contractility and NUC (all P < 0.05). In the group with a glycogen score of 3 all these changes were even more dramatic, except for the end-stage contractility, for which the increase was not significant. From glycogen score 0 to score 3 all changes increased in magnitude. CONCLUSION A high glycogen content reflects a history of abnormal urodynamic function. This finding exemplifies the added value of structural analysis to urodynamic studies. Further studies are needed to relate bladder structure to the potential for functional recovery.
Collapse
Affiliation(s)
- Bas W D de Jong
- Department of Paediatric Urology, Erasmus MC, Rotterdam, The Netherlands
| | | | | | | | | |
Collapse
|
11
|
Byun Y, Lee G. Changes in the Expression of Smooth Muscle Myosin Heavy Chain mRNA following Partial Bladder Obstruction or Spinal Cord Injury in Rat: A Preliminary Study. Korean J Urol 2007. [DOI: 10.4111/kju.2007.48.5.522] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Affiliation(s)
- Youngmin Byun
- Department of Urology, Dankook University College of Medicine, Cheonan, Korea
| | - Gilho Lee
- Department of Urology, Dankook University College of Medicine, Cheonan, Korea
| |
Collapse
|
12
|
Masunaga K, Yoshida M, Inadome A, Iwashita H, Miyamae K, Ueda S. Prostaglandin E2 release from isolated bladder strips in rats with spinal cord injury. Int J Urol 2006; 13:271-6. [PMID: 16643622 DOI: 10.1111/j.1442-2042.2006.01274.x] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
AIM Recent studies have shown that various factors contribute to the increased excitability into the bladder afferent nerves in spinal cord injury (SCI) rats. It has been reported that prostaglandins (PG) act as local modulators of reflex micturition in pathological conditions. In the present study, we measured the amount of PGE2 release from the bladder of chronic SCI rats. METHODS Spinal cord was transected at the level of T8-9 in adult female Sprague-Dawley rats. After 10 weeks, specimens of the urinary bladder were obtained from SCI rats and sham-injured control rats, and bladder strips were dissected from the bladder. Using an muscle-bath technique and a microdialysis procedure, the dialysate, containing substance released from bladder strips, was collected. Then the amount of PGE2 in the dialysate was measured by radioimmunoassay. RESULTS Excretion of urinary PGE2 was significantly higher in SCI rats than in control rats. PGE2 release from bladder strips was significantly higher in SCI rats than in control rats. Removal of urothelium caused significant decreases in PGE2 release in both control and SCI rats. Stretches of the bladder strips caused significant resting tension-dependent increases in PGE2 release from the strips with urothelium. CONCLUSIONS The present data suggest that bladder urothelium partly contributes to the increase in PGE2 release from the bladder, and that bladder distension may cause increases in PGE2 release in SCI rats.
Collapse
Affiliation(s)
- Koichi Masunaga
- Department of Urology, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
| | | | | | | | | | | |
Collapse
|