Wu X, Liang Y, Zhang Z, Cao M, Liang W. Downregulation of TWIK-related arachidonic acid-activated K+ channel in the spinal cord of rats after complete bladder outlet obstruction.
Int J Urol 2012;
19:944-50. [PMID:
22709279 DOI:
10.1111/j.1442-2042.2012.03072.x]
[Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
OBJECTIVES
To study the altered expression of TWIK-related arachidonic acid-activated K(+) channel in the L6-S1 spinal cord of rats after complete bladder outlet obstruction, and to investigate the role of TWIK-related arachidonic acid-activated K(+) channel in the neurogenic mechanism of bladder dysfunction.
METHODS
Female Sprague-Dawley rats were randomly divided into a complete bladder outlet obstruction group and a sham-operated control group. Cystometry was carried out and tissues of L6-S1 spinal cord were obtained for detection of TWIK-related arachidonic acid-activated K(+) channel mRNA and protein by real-time polymerase chain reaction, western blot and immunohistochemistry.
RESULTS
The bladder outlet obstruction rat model was established. Real-time polymerase chain reaction, western blot and immunohistochemistry showed that the expression of TWIK-related arachidonic acid-activated K(+) channel was lower in the L6-S1 spinal cord of the bladder outlet obstruction rats, compared with the control rats.
CONCLUSIONS
Downregulation of TWIK-related arachidonic acid-activated K(+) channel might enhance the excitability of the neurons and increase the sensitivity of the bladder, probably providing a new study model of overactive bladder secondary to bladder outlet obstruction.
Collapse