1
|
Maki T, Kajioka S, Itsumi M, Kareman E, Lee K, Shiota M, Eto M. Mirabegron induces relaxant effects via cAMP signaling-dependent and -independent pathways in detrusor smooth muscle. Low Urin Tract Symptoms 2019; 11:O209-O217. [PMID: 30632283 DOI: 10.1111/luts.12247] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2018] [Revised: 10/31/2018] [Accepted: 11/05/2018] [Indexed: 01/22/2023]
Abstract
OBJECTIVE We previously found that mirabegron exerts a relaxant effect in the presence of the β3 -adrenoceptor antagonist SR58894A during carbachol-induced contraction in human and pig detrusor. The aim of this study was to explore the possible mechanism underlying the relaxant effects of mirabegron using detrusor smooth muscle. METHODS Human tissue was obtained from urinary bladders of patients undergoing radical cystectomy at Kyushu University and Harasanshin Hospital. Pig tissue was obtained from an abattoir. Tension force (organ bath experiments) was measured in intact or permeabilised (α-toxin or β-escin) detrusor smooth muscle strips. The contribution of cAMP-dependent signaling and the inhibition of Ca2+ sensitization to the relaxant effects of mirabegron were characterized using 1 μM SR58894A, 100 μM SQ22536 (an adenylyl cyclase inhibitor), 10 μM H-89 (a protein kinase [PK] A inhibitor), 10 μM Y-27632 (a selective Rho kinase inhibitor), and 10 μM GF-109203X (a selective PKC inhibitor). RESULTS 30 μM Mirabegron impaired carbachol (0.03-1 μM)-induced contraction in human detrusor smooth muscle. SR58894A only partially attenuated the relaxant effects of mirabegron in human and pig detrusor strips precontracted with 1 μM carbachol. In α-toxin-permeabilized detrusor strips, tension force at 1 μM [Ca2+ ]i was decreased by mirabegron in a concentration-dependent manner. The relaxant effect of mirabegron was only slightly attenuated by H-89 and not significantly affected by SQ22536. Y-27632 potentiated the relaxation response to mirabegron, but attenuated responses to cAMP; GF-109203X had little effect. Mirabegron but not cAMP had a notable relaxant effect in the pig detrusor smooth muscle permeabilized with β-escin. CONCLUSIONS Mirabegron-induced relaxation of pig and human detrusor smooth muscle occurs via both a β3 -adrenoceptor/cAMP-dependent and -independent pathway.
Collapse
Affiliation(s)
- Tomoko Maki
- Department of Urology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Shunichi Kajioka
- Department of Clinical Pharmacology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Momoe Itsumi
- Department of Molecular Virology, Graduate School of Medicine, Tokyo Medical and Dental University, Tokyo, Japan
| | - Eljamal Kareman
- Department of Clinical Pharmacology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Ken Lee
- Department of Physiology and Cell Biology, University of Nevada, Reno, Nevada
| | - Masaki Shiota
- Department of Urology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Masatoshi Eto
- Department of Urology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| |
Collapse
|
2
|
Kitta T, Kanno Y, Chiba H, Higuchi M, Ouchi M, Togo M, Moriya K, Shinohara N. Benefits and limitations of animal models in partial bladder outlet obstruction for translational research. Int J Urol 2017; 25:36-44. [PMID: 28965358 DOI: 10.1111/iju.13471] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2017] [Accepted: 08/28/2017] [Indexed: 11/26/2022]
Abstract
The functions of the lower urinary tract have been investigated for more than a century. Lower urinary tract symptoms, such as incomplete bladder emptying, weak urine stream, daytime urinary frequency, urgency, urge incontinence and nocturia after partial bladder outlet obstruction, is a frequent cause of benign prostatic hyperplasia in aging men. However, the pathophysiological mechanisms have not been fully elucidated. The use of animal models is absolutely imperative for understanding the pathophysiological processes involved in bladder dysfunction. Surgical induction has been used to study lower urinary tract functions of numerous animal species, such as pig, dog, rabbit, guinea pig, rat and mouse, of both sexes. Several morphological and functional modifications under partial bladder outlet obstruction have not only been observed in the bladder, but also in the central nervous system. Understanding the changes of the lower urinary tract functions induced by partial bladder outlet obstruction would also contribute to appropriate drug development for treating these pathophysiological conditions. In the present review, we discuss techniques for creating partial bladder outlet obstruction, the characteristics of several species, as well as issues of each model, and their translational value.
Collapse
Affiliation(s)
- Takeya Kitta
- Department of Renal and Genitourinary Surgery, Graduate School of Medicine, Hokkaido University, Sapporo, Hokkaido, Japan
| | - Yukiko Kanno
- Department of Renal and Genitourinary Surgery, Graduate School of Medicine, Hokkaido University, Sapporo, Hokkaido, Japan
| | - Hiroki Chiba
- Department of Renal and Genitourinary Surgery, Graduate School of Medicine, Hokkaido University, Sapporo, Hokkaido, Japan
| | - Madoka Higuchi
- Department of Renal and Genitourinary Surgery, Graduate School of Medicine, Hokkaido University, Sapporo, Hokkaido, Japan
| | - Mifuka Ouchi
- Department of Renal and Genitourinary Surgery, Graduate School of Medicine, Hokkaido University, Sapporo, Hokkaido, Japan
| | - Mio Togo
- Department of Renal and Genitourinary Surgery, Graduate School of Medicine, Hokkaido University, Sapporo, Hokkaido, Japan
| | - Kimihiko Moriya
- Department of Renal and Genitourinary Surgery, Graduate School of Medicine, Hokkaido University, Sapporo, Hokkaido, Japan
| | - Nobuo Shinohara
- Department of Renal and Genitourinary Surgery, Graduate School of Medicine, Hokkaido University, Sapporo, Hokkaido, Japan
| |
Collapse
|
3
|
Iguchi N, Dönmez Mİ, Malykhina AP, Carrasco A, Wilcox DT. Preventative effects of a HIF inhibitor, 17-DMAG, on partial bladder outlet obstruction-induced bladder dysfunction. Am J Physiol Renal Physiol 2017; 313:F1149-F1160. [PMID: 28768664 DOI: 10.1152/ajprenal.00240.2017] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2017] [Revised: 07/11/2017] [Accepted: 07/24/2017] [Indexed: 01/11/2023] Open
Abstract
Posterior urethral valves are the most common cause of partial bladder outlet obstruction (PBOO) in the pediatric population. Pathological changes in the bladder developed during PBOO are responsible for long-lasting voiding dysfunction in this population despite early surgical interventions. Increasing evidence showed PBOO induces an upregulation of hypoxia-inducible factors (HIFs) and their transcriptional target genes, and they play a role in pathophysiological changes in the obstructed bladders. We hypothesized that blocking HIF pathways can prevent PBOO-induced bladder dysfunction. PBOO was surgically created by ligation of the bladder neck in male C57BL/6J mice for 2 wk. PBOO mice received intraperitoneal injection of either saline or 17-DMAG (alvespimycin, 3 mg/kg) every 48 h starting from day 1 postsurgery. Sham-operated animals received injection of saline on the same schedule as PBOO mice and served as controls. The bladders were harvested after 2 wk, and basal activity and evoked contractility of the detrusor smooth muscle (DSM) were evaluated in vitro. Bladder function was assessed in vivo by void spot assay and cystometry in conscious, unrestrained mice. Results indicated the 17-DMAG treatment preserved DSM contractility and partially prevented the development of detrusor over activity in obstructed bladders. In addition, PBOO caused a significant increase in the frequency of micturition, which was significantly reduced by 17-DMAG treatment. The 17-DMAG treatment improved urodynamic parameters, including increases in the bladder pressure at micturition and nonvoid contractions observed in PBOO mice. These results demonstrate that treatment with 17-DMAG, a HIF inhibitor, significantly alleviated PBOO-induced bladder pathology in vivo.
Collapse
Affiliation(s)
- Nao Iguchi
- Division of Urology, Department of Surgery, University of Colorado Denver School of Medicine, Aurora, Colorado; and
| | - M İrfan Dönmez
- Division of Urology, Department of Surgery, University of Colorado Denver School of Medicine, Aurora, Colorado; and
| | - Anna P Malykhina
- Division of Urology, Department of Surgery, University of Colorado Denver School of Medicine, Aurora, Colorado; and
| | | | - Duncan T Wilcox
- Division of Urology, Department of Surgery, University of Colorado Denver School of Medicine, Aurora, Colorado; and .,Children's Hospital Colorado, Aurora, Colorado
| |
Collapse
|
4
|
Calmasini FB, Silva FH, Alexandre EC, Rodrigues RL, Barbosa APL, Ferrucci DL, Carvalho HF, Anhê GF, Pupo AS, Antunes E. Implication of Rho-kinase and soluble guanylyl cyclase enzymes in prostate smooth muscle dysfunction in middle-aged rats. Neurourol Urodyn 2016; 36:589-596. [DOI: 10.1002/nau.22990] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2016] [Accepted: 02/28/2016] [Indexed: 01/31/2023]
Affiliation(s)
- Fabiano B. Calmasini
- Faculty of Medical Sciences, Department of Pharmacology; University of Campinas (UNICAMP); Campinas São Paulo Brazil
| | - Fabio H. Silva
- Faculty of Medical Sciences, Department of Pharmacology; University of Campinas (UNICAMP); Campinas São Paulo Brazil
| | - Eduardo C. Alexandre
- Faculty of Medical Sciences, Department of Pharmacology; University of Campinas (UNICAMP); Campinas São Paulo Brazil
| | - Renata L. Rodrigues
- Faculty of Medical Sciences, Department of Pharmacology; University of Campinas (UNICAMP); Campinas São Paulo Brazil
| | - Ana Paula L. Barbosa
- Faculty of Medical Sciences, Department of Pharmacology; University of Campinas (UNICAMP); Campinas São Paulo Brazil
| | - Danilo L. Ferrucci
- Department of Structural and Functional Biology; University of Campinas-UNICAMP; Campinas São Paulo Brazil
| | - Hernandes F. Carvalho
- Department of Structural and Functional Biology; University of Campinas-UNICAMP; Campinas São Paulo Brazil
| | - Gabriel F. Anhê
- Department of Structural and Functional Biology; University of Campinas-UNICAMP; Campinas São Paulo Brazil
| | - Andre S. Pupo
- Department of Pharmacology, Institute of Biosciences; University of São Paulo State (UNESP); Botucatu São Paulo Brazil
| | - Edson Antunes
- Faculty of Medical Sciences, Department of Pharmacology; University of Campinas (UNICAMP); Campinas São Paulo Brazil
| |
Collapse
|
5
|
Hypolite JA, Malykhina AP. Regulation of urinary bladder function by protein kinase C in physiology and pathophysiology. BMC Urol 2015; 15:110. [PMID: 26538012 PMCID: PMC4634593 DOI: 10.1186/s12894-015-0106-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2015] [Accepted: 10/22/2015] [Indexed: 01/10/2023] Open
Abstract
BACKGROUND Protein kinase C (PKC) is expressed in many tissues and organs including the urinary bladder, however, its role in bladder physiology and pathophysiology is still evolving. The aim of this review was to evaluate available evidence on the involvement of PKC in regulation of detrusor contractility, muscle tone of the bladder wall, spontaneous contractile activity and bladder function under physiological and pathophysiological conditions. METHODS This is a non-systematic review of the published literature which summarizes the available animal and human data on the role of PKC signaling in the urinary bladder under different physiological and pathophysiological conditions. A wide PubMed search was performed including the combination of the following keywords: "urinary bladder", "PKC", "detrusor contractility", "bladder smooth muscle", "detrusor relaxation", "peak force", "detrusor underactivity", "partial bladder outlet obstruction", "voltage-gated channels", "bladder nerves", "PKC inhibitors", "PKC activators". Retrieved articles were individually screened for the relevance to the topic of this review with 91 citations being selected and included in the data analysis. DISCUSSION Urinary bladder function includes the ability to store urine at low intravesical pressure followed by a subsequent release of bladder contents due to a rapid phasic contraction that is maintained long enough to ensure complete emptying. This review summarizes the current concepts regarding the potential contribution of PKC to contractility, physiological voiding, and related signaling mechanisms involved in the control of both the storage and emptying phases of the micturition cycle, and in dysfunctional voiding. Previous studies linked PKC activation exclusively with an increase in generation of the peak force of smooth muscle contraction, and maximum force generation in the lower urinary tract. More recent data suggests that PKC presents a broader range of effects on urinary bladder function including regulation of storage, emptying, excitability of the detrusor, and bladder innervation. In this review, we evaluated the mechanisms of peripheral and local regulation of PKC signaling in the urinary bladder, and their impact on different phases of the micturition cycle under physiological and pathophysiological conditions.
Collapse
Affiliation(s)
- Joseph A Hypolite
- Division of Urology, Department of Surgery, University of Colorado Denver, Anschutz Medical Campus, 12700 E 19th Ave. Mail Stop C317, Aurora, CO, 80045, USA.
| | - Anna P Malykhina
- Division of Urology, Department of Surgery, University of Colorado Denver, Anschutz Medical Campus, 12700 E 19th Ave. Mail Stop C317, Aurora, CO, 80045, USA.
| |
Collapse
|
6
|
Hayashi M, Kajioka S, Itsumi M, Takahashi R, Shahab N, Ishigami T, Takeda M, Masuda N, Yamaguchi A, Naito S. Actions of cAMP on calcium sensitization in human detrusor smooth muscle contraction. BJU Int 2015; 117:179-91. [PMID: 25981809 DOI: 10.1111/bju.13180] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
OBJECTIVES To clarify the effect of cAMP on the Ca(2+) -sensitized smooth muscle contraction in human detrusor, as well as the role of novel exchange protein directly activated by cAMP (Epac) in cAMP-mediated relaxation. MATERIALS AND METHODS All experimental protocols to record isometric tension force were performed using α-toxin-permeabilized human detrusor smooth muscle strips. The mechanisms of cAMP-mediated suppression of Ca(2+) sensitization activated by 10 μm carbachol (CCh) and 100 μm GTP were studied using a selective rho kinase (ROK) inhibitor, Y-27632, and a selective protein kinase C (PKC) inhibitor, GF-109203X. The relaxation mechanisms were further probed using a selective protein kinase A (PKA) activator, 6-Bnz-cAMP and a selective Epac activator, 8-pCPT-2'-O-Me-cAMP. RESULTS We observed that CCh-induced Ca(2+) sensitization was inhibited by cAMP in a concentration-dependent manner. GF-109203X (10 μm) but not Y-27632 (10 μm) significantly enhanced the relaxation effect induced by cAMP (100 μm). 6-Bnz-cAMP (100 μm) predominantly decreased the tension force in comparison with 8-pCPT-2'-O-Me-cAMP (100 μm). CONCLUSIONS We showed that cAMP predominantly inhibited the ROK pathway but not the PKC pathway. The PKA-dependent pathway is dominant, while Epac plays a minor role in human detrusor smooth muscle Ca(2+) sensitization.
Collapse
Affiliation(s)
- Maya Hayashi
- Department of Urology, Graduate School of Medical Sciences, Kyushu University, Fukuoka City, Japan
| | - Shunichi Kajioka
- Department of Urology, Graduate School of Medical Sciences, Kyushu University, Fukuoka City, Japan
| | - Momoe Itsumi
- Department of Urology, Graduate School of Medical Sciences, Kyushu University, Fukuoka City, Japan
| | - Ryosuke Takahashi
- Department of Urology, Graduate School of Medical Sciences, Kyushu University, Fukuoka City, Japan
| | - Nouval Shahab
- Department of Urology, Faculty of Medicine and Health Sciences, Syarif Hidayaullah Jakarta State Islamic University, Jakarta, Indonesia
| | - Takao Ishigami
- Urology Research Unit, Drug Discovery Research, Astellas Pharma Inc., Tsukuba, Japan
| | - Masahiro Takeda
- Urology Research Unit, Drug Discovery Research, Astellas Pharma Inc., Tsukuba, Japan
| | - Noriyuki Masuda
- Innovation and Research Portfolio Planning, Drug Discovery Research, Astellas Pharma Inc., Tsukuba, Japan
| | | | - Seiji Naito
- Department of Urology, Graduate School of Medical Sciences, Kyushu University, Fukuoka City, Japan
| |
Collapse
|
7
|
Patra PB, Patra S. Research Findings on Overactive Bladder. Curr Urol 2015; 8:1-21. [PMID: 26195957 PMCID: PMC4483299 DOI: 10.1159/000365682] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2013] [Accepted: 01/09/2014] [Indexed: 12/19/2022] Open
Abstract
Several physiopathologic conditions lead to the manifestation of overactive bladder (OAB). These conditions include ageing, diabetes mellitus, bladder outlet obstruction, spinal cord injury, stroke and brain injury, Parkinson's disease, multiple sclerosis, interstitial cystitis, stress and depression. This review has discussed research findings in human and animal studies conducted on the above conditions. Several structural and functional changes under these conditions have not only been observed in the lower urinary tract, but also in the brain and spinal cord. Significant changes were observed in the following areas: neurotransmitters, prostaglandins, nerve growth factor, Rho-kinase, interstitial cells of Cajal, and ion and transient receptor potential channels. Interestingly, alterations in these areas showed great variation in each of the conditions of the OAB, suggesting that the pathophysiology of the OAB might be different in each condition of the disease. It is anticipated that this review will be helpful for further research on new and specific drug development against OAB.
Collapse
Affiliation(s)
- Phani B. Patra
- King of Prussia, Drexel University College of Medicine, Philadelphia, Pa., USA
| | - Sayani Patra
- Department of Pharmacology and Physiology, Drexel University College of Medicine, Philadelphia, Pa., USA
| |
Collapse
|
8
|
Marx JO, Basha ME, Mohanan S, Hypolite JA, Chang S, Wein AJ, Zderic SA, Laping NJ, Chacko S. Effects of Rho-kinase inhibition on myosin light chain phosphorylation and obstruction-induced detrusor overactivity. Int J Urol 2013; 21:319-24. [PMID: 24033563 DOI: 10.1111/iju.12247] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2012] [Accepted: 07/09/2013] [Indexed: 12/30/2022]
Abstract
OBJECTIVES To study the relationship between myosin light chain phosphorylation of the detrusor muscle and spontaneous smooth muscle contractions in a rabbit model of partial outlet obstruction. METHODS New Zealand white rabbit urinary bladders were partially obstructed for 2 weeks. Rabbits were euthanized, detrusor muscle strips were hung on a force transducer and spontaneous activity was measured at varying concentrations (0-0.03 μM/L) of the Rho-kinase inhibitors GSK 576371 or 0.01 μM/L Y27632. Basal myosin light chain phosphorylation was measured by 2-D gel electrophoresis in control and GSK 576371-treated strips. RESULTS Both drugs suppressed the force of spontaneous contractions, whereas GSK 576371 had a more profound effect on the frequency of the contractions. The IC₅₀ values for the inhibition of frequency and force of spontaneous contractions were 0.17 μM/L and 0.023 μM/L for GSK 576371, respectively. The compound significantly decreased the basal myosin light chain phosphorylation from 28.0 ± 3.9% to 13.5 ± 1.9% (P < 0.05). At 0.01 μM/L, GSK 576371 inhibited spontaneous bladder overactivity by 50%, but inhibited carbachol-elicited contractions force by just 25%. CONCLUSIONS These data suggest that Rho-kinase regulation of myosin light chain phosphorylation contributes to the spontaneous detrusor activity induced by obstruction. This finding could have therapeutic implications by providing another therapeutic option for myogenic, overactive bladder.
Collapse
Affiliation(s)
- James O Marx
- School of Veterinary Medicine, University of Pennsylvania, Philadelphia, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Novel effect of 2-aminoethoxydiphenylborate through inhibition of calcium sensitization induced by Rho kinase activation in human detrusor smooth muscle. Eur J Pharmacol 2013; 708:14-20. [DOI: 10.1016/j.ejphar.2013.03.006] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2012] [Revised: 03/12/2013] [Accepted: 03/12/2013] [Indexed: 01/06/2023]
|