1
|
Ying X, Gao Y, Liao L. Brain Responses Difference between Sexes for Strong Desire to Void: A Functional Magnetic Resonance Imaging Study in Adults Based on Graph Theory. J Clin Med 2024; 13:4284. [PMID: 39124552 PMCID: PMC11313296 DOI: 10.3390/jcm13154284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Revised: 07/09/2024] [Accepted: 07/17/2024] [Indexed: 08/12/2024] Open
Abstract
Background: The alternations of brain responses to a strong desire to void were unclear, and the gender differences under the strong desire to void remain controversial. The present study aims to identify the functional brain network's topologic property changes evoked by a strong desire to void in healthy male and female adults with synchronous urodynamics using a graph theory analysis. Methods: The bladders of eleven healthy males and eleven females were filled via a catheter using a specific infusion and withdrawal pattern. A resting-state functional magnetic resonance imaging (fMRI) was performed on the enrolled subjects, scanning under both the empty bladder and strong desire to void states. An automated anatomical labeling (AAL) atlas was used to identify the ninety cortical and subcortical regions. Pearson's correlation calculations were performed to establish a brain connection matrix. A paired t-test (p < 0.05) and Bonferroni correction were applied to identify the significant statistical differences in topological properties between the two states, including small-world network property parameters [gamma (γ) and lambda (λ)], characteristic path length (Lp), clustering coefficient (Cp), global efficiency (Eglob), local efficiency (Eloc), and regional nodal efficiency (Enodal). Results: The final data suggested that females and males had different brain response patterns to a strong desire to void, compared with an empty bladder state. Conclusions: More brain regions involving emotion, cognition, and social work were active in females, and males might obtain a better urinary continence via a compensatory mechanism.
Collapse
Affiliation(s)
- Xiaoqian Ying
- Beijing Tsinghua Changgung Hospital, School of Clinical Medicine, Tsinghua University, Beijing 102218, China;
- Rehabilitation School, Capital Medical University, Beijing Boai Hospital, China Rehabilitation Research Center, Beijing 100068, China
| | - Yi Gao
- Department of Neurourology, Beijing Boai Hospital, China Rehabilitation Research Center, Beijing 100068, China
| | - Limin Liao
- Rehabilitation School, Capital Medical University, Beijing Boai Hospital, China Rehabilitation Research Center, Beijing 100068, China
- Department of Urology, Capital Medical University, Beijing 100068, China
| |
Collapse
|
2
|
Mehnert U, Walter M, Leitner L, Kessler TM, Freund P, Liechti MD, Michels L. Abnormal Resting-State Network Presence in Females with Overactive Bladder. Biomedicines 2023; 11:1640. [PMID: 37371735 DOI: 10.3390/biomedicines11061640] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2023] [Revised: 05/25/2023] [Accepted: 05/31/2023] [Indexed: 06/29/2023] Open
Abstract
Overactive bladder (OAB) is a global problem reducing the quality of life of patients and increasing the costs of any healthcare system. The etiology of OAB is understudied but likely involves supraspinal network alterations. Here, we characterized supraspinal resting-state functional connectivity in 12 OAB patients and 12 healthy controls (HC) who were younger than 60 years. Independent component analysis showed that OAB patients had a weaker presence of the salience (Cohen's d = 0.9) and default mode network (Cohen's d = 1.1) and weaker directed connectivity between the fronto-parietal network and salience network with a longer lag time compared to HC. A region of interest analysis demonstrated weaker connectivity in OAB compared to HC (Cohen's d > 1.6 or < -1.6), particularly within the frontal and prefrontal cortices. In addition, weaker seed (insula, ventrolateral prefrontal cortex) to voxel (anterior cingulate cortex, frontal gyrus, superior parietal lobe, cerebellum) connectivity was found in OAB compared to HC (Cohen's d > 1.9). The degree of deviation in supraspinal connectivity in OAB patients (relative to HC) appears to be an indicator of the severity of the lower urinary tract symptoms and an indication that such symptoms are directly related to functional supraspinal alterations. Thus, future OAB therapy options should also consider supraspinal targets, while neuroimaging techniques should be given more consideration in the quest for better phenotyping of OAB.
Collapse
Affiliation(s)
- Ulrich Mehnert
- Department of Neuro-Urology, Balgrist University Hospital, University of Zürich, 8008 Zürich, Switzerland
| | - Matthias Walter
- Department of Neuro-Urology, Balgrist University Hospital, University of Zürich, 8008 Zürich, Switzerland
- Department of Urology, University Hospital Basel, University of Basel, 4031 Basel, Switzerland
| | - Lorenz Leitner
- Department of Neuro-Urology, Balgrist University Hospital, University of Zürich, 8008 Zürich, Switzerland
| | - Thomas M Kessler
- Department of Neuro-Urology, Balgrist University Hospital, University of Zürich, 8008 Zürich, Switzerland
| | - Patrick Freund
- Spinal Cord Injury Center, Balgrist University Hospital, University of Zürich, 8008 Zürich, Switzerland
- Department of Neurophysics, Max Planck Institute for Human Cognitive and Brain Sciences, 04103 Leipzig, Germany
- Wellcome Trust Centre for Neuroimaging, UCL Institute of Neurology, London WC1N 3AR, UK
- Neuroscience Center Zürich, University of Zürich and Swiss Federal Institute of Technology Zürich, 8057 Zürich, Switzerland
| | - Martina D Liechti
- Department of Neuro-Urology, Balgrist University Hospital, University of Zürich, 8008 Zürich, Switzerland
| | - Lars Michels
- Neuroscience Center Zürich, University of Zürich and Swiss Federal Institute of Technology Zürich, 8057 Zürich, Switzerland
- Department of Neuroradiology, University Hospital Zürich, University of Zürich, 8091 Zürich, Switzerland
- Clinical Neuroscience Center, University Hospital Zürich, 8091 Zürich, Switzerland
| |
Collapse
|
3
|
Supraspinal Neural Changes in Men with Benign Prostatic Hyperplasia Undergoing Bladder Outlet Procedures: a Pilot Functional MRI Study. Urology 2022; 169:173-179. [PMID: 35863497 DOI: 10.1016/j.urology.2022.07.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Revised: 06/19/2022] [Accepted: 07/04/2022] [Indexed: 11/20/2022]
Abstract
OBJECTIVE To explore brain activation patterns on functional MRI (fMRI) in men with BPH and BOO before and after outlet obstruction procedures. METHODS Men age ≥ 45 who failed conservative BPH therapy planning to undergo BOO procedures were recruited. Eligible men underwent a concurrent fMRI/urodynamics testing before and six months after BOO procedure. fMRI images were obtained via 3 Tesla MRI. Significant blood-oxygen-level-dependent (BOLD) signal activated voxels (p<0.05) were identified at strong desire to void and (attempt at) voiding initiation pre and post BOO procedure. RESULTS Eleven men were enrolled, of which seven men completed the baseline scan, and four men completed the six-month follow-up scan. Baseline decreased BOLD activity was observed in right inferior frontal gyrus (IFG), bilateral insula, inferior frontal gyrus (IFG) and thalamus. Significant changes in BOLD signal activity following BOO procedures were observed in the insula, IFG, and cingulate cortices. CONCLUSIONS This represents a pilot study evaluating cortical activity in men with BPH and BOO. Despite limitations we found important changes in supraspinal activity in men with BPH and BOO during filling and emptying phases at baseline and following BOO procedure, with the potential to improve our understanding of neuroplasticity secondary to BPH and BOO. This preliminary data may serve as the foundation for larger future trials.
Collapse
|
4
|
Bou Kheir G, Verbakel I, Hervé F, Bauters W, Abou Karam A, Holm-Larsen T, Van Laecke E, Everaert K. OAB supraspinal control network, transition with age, and effect of treatment: A systematic review. Neurourol Urodyn 2022; 41:1224-1239. [PMID: 35537063 DOI: 10.1002/nau.24953] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Revised: 04/05/2022] [Accepted: 04/21/2022] [Indexed: 11/09/2022]
Abstract
OBJECTIVE In light of a better understanding of supraspinal control of nonneurogenic overactive bladder (OAB), the prevalence of which increases with age, functional imaging has gained significant momentum. The objective of this study was to perform a systematic review on the transition of supraspinal control of OAB with age, the effect of therapeutic modalities, and a coordinate-based meta-analysis of all neuroimaging evidence on supraspinal OAB control in response to bladder filling. METHODOLOGY We performed a systematic literature search of all relevant libraries in November 2021. The coordinates of brain activity were extracted from eligible neuroimaging studies to perform an activation likelihood estimation (ALE) meta-analysis. RESULTS A total of 16 studies out of 241 were selected for our systematic review. Coordinates were extracted from five experiments involving 70 patients. ALE meta-analysis showed activation of the insula, supplementary motor area, dorsolateral prefrontal cortex, anterior cingulate gyrus, and temporal gyrus with a transition of activation patterns with age, using a threshold of uncorrected p < 0.001. Among young patients, neuroplasticity allows the activation of accessory circuits to maintain continence, as in the cerebellum and temporoparietal lobes. Anticholinergics, pelvic floor muscle training, sacral neuromodulation, and hypnotherapy are correlated with supraspinal changes attributed to adaptability and possibly a substratum of an intrinsic supraspinal component. The latter is better demonstrated by a resting-state functional connectivity analysis, a promising tool to phenotype OAB with recent successful models of predicting severity and response to behavioral treatments. CONCLUSION Future neuroimaging studies are necessary to better define an OAB neurosignature to allocate patients to successful treatments.
Collapse
Affiliation(s)
- George Bou Kheir
- Department of Urology, Ghent University Hospital, Ghent, Belgium
| | - Irina Verbakel
- Department of Urology, Ghent University Hospital, Ghent, Belgium
| | - François Hervé
- Department of Urology, Ghent University Hospital, Ghent, Belgium
| | - Wouter Bauters
- Department of Radiology, Ghent University Hospital, Ghent, Belgium
| | - Anthony Abou Karam
- Department of Radiology, Yale New Haven Hospital, Yale, Connecticut, USA
| | - Tove Holm-Larsen
- Department of Urology, Ghent University Hospital, Ghent, Belgium
| | - Erik Van Laecke
- Department of Urology, Ghent University Hospital, Ghent, Belgium
| | - Karel Everaert
- Department of Urology, Ghent University Hospital, Ghent, Belgium
| |
Collapse
|
5
|
Interplay Between Cognitive and Bowel/Bladder Function in Multiple Sclerosis. Int Neurourol J 2021; 25:310-318. [PMID: 33957715 PMCID: PMC8748300 DOI: 10.5213/inj.2040346.173] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Accepted: 11/29/2020] [Indexed: 11/16/2022] Open
Abstract
Purpose The aim of this study was to evaluate the prevalence of bowel/bladder dysfunction in multiple sclerosis (MS) and its associations with cognitive impairment. Methods We prospectively enrolled 150 MS patients. Patients were administered the Symbol Digit Modality Test (SDMT), the Neurogenic Bowel Dysfunction Score (NBDS), and the Actionable Bladder Symptom Screening Tool (ABSST). The associations between bowel/bladder dysfunction and cognitive function were assessed through hierarchical regression models using the SDMT and clinicodemographic features as independent variables and NBDS and ABSST scores as dependent variables. Results The prevalence of bowel/bladder deficits was 44.7%, with 26 patients (17.3%) suffering from bowel deficits and 60 patients (40%) from bladder deficits. The total NBDS and ABSST scores were correlated with the SDMT (β=-0.10, P<0.001 and β=-0.03, P=0.04, respectively) after correction for demographic features and physical disability. Conclusions Bowel/bladder disorders are common in MS and are associated with both physical and cognitive disability burdens. As SDMT is embedded into routine clinical assessments, a lower score may warrant investigating bowel/bladder dysfunction due to the strong interplay of these factors.
Collapse
|
6
|
Walter M, Leitner L, Betschart C, Engeler DS, Freund P, Kessler TM, Kollias S, Liechti MD, Scheiner DA, Michels L, Mehnert U. Considering non-bladder aetiologies of overactive bladder: a functional neuroimaging study. BJU Int 2021; 128:586-597. [PMID: 33547746 DOI: 10.1111/bju.15354] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
OBJECTIVES To better understand the neuropathophysiology of overactive bladder (OAB) in women by characterising supraspinal activity in response to bladder distention and cold stimulation. SUBJECTS/PATIENTS AND METHODS We recruited 24 female participants, 12 with OAB (median [interquartile range, IQR] age 40 [32-42] years) and 12 healthy controls (HCs) without lower urinary tract (LUT) symptoms (median [IQR] age 34 [28-44] years), and assessed LUT and cognitive function through neuro-urological examination, 3-day bladder diary, urodynamic investigation, and questionnaires. Functional magnetic resonance (MR) imaging using a 3-T scanner was performed in all participants during automated, repetitive bladder filling and draining (block design) with 100 mL body temperature (37 °C) saline using a MR-compatible and MR-synchronised infusion-drainage device until strong desire to void (HIGH-FILLING/DRAINING) and bladder filling with cold saline (4 °C, i.e. COLD). Whole-brain and region-of-interest analyses were conducted using Statistical Parametric Mapping, version 12. RESULTS Significant between-group differences were found for 3-day bladder diary variables (i.e. voiding frequency/24 h, P < 0.001; voided volume/void, P = 0.04; and urinary incontinence [UI] episodes/24 h, P = 0.007), questionnaire scores (International Consultation on Incontinence Questionnaire-Female LUT symptoms [overall, filling, and UI scores, all P < 0.001]; the Overactive Bladder Questionnaire short form [symptoms and quality-of-life scores, both P < 0.001]; the Hospital Anxiety and Depression Scale [anxiety P = 0.004 and depression P = 0.003 scores]), as well as urodynamic variables (strong desire to void, P = 0.02; maximum cystometric capacity, P = 0.007; and presence of detrusor overactivity, P = 0.002). Age, weight and cognitive function (i.e. Mini-Mental State Examination, P = 1.0) were similar between groups (P > 0.05). In patients with OAB, the HIGH task elicited activity in the superior temporal gyrus, ventrolateral prefrontal cortex (VLPFC), and mid-cingulate cortex; and the COLD task elicited activity in the VLPFC, cerebellum, and basal ganglia. Compared to HCs, patients with OAB showed significantly stronger cerebellar activity during HIGH-FILLING and significantly less activity in the insula and VLPFC during HIGH-DRAINING. CONCLUSIONS The present findings suggest a sensory processing and modulation deficiency in our OAB group, probably as part of their underlying pathophysiology, as they lacked activity in essential sensory processing areas, such as the insula. Instead, accessory areas, such as the cerebellum, showed significantly stronger activation compared to HCs, presumably supporting pelvic-floor motor activity to prevent UI. The novel findings of the present study provide physiological evidence of the necessity to consider non-bladder aetiologies of bladder symptoms.
Collapse
Affiliation(s)
- Matthias Walter
- Department of Neuro-Urology, Balgrist University Hospital, University of Zürich, Zürich, Switzerland.,Department of Urology, University Hospital Basel, University of Basel, Basel, Switzerland
| | - Lorenz Leitner
- Department of Neuro-Urology, Balgrist University Hospital, University of Zürich, Zürich, Switzerland
| | - Cornelia Betschart
- Department of Gynecology, University Hospital Zürich, University of Zürich, Zürich, Switzerland
| | - Daniel S Engeler
- Department of Urology, Kantonsspital St. Gallen, St. Gallen, Switzerland
| | - Patrick Freund
- Spinal Cord Injury Center, Balgrist University Hospital, University of Zürich, Zürich, Switzerland.,Department of Neurophysics, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany.,Wellcome Trust Centre for Neuroimaging, UCL Institute of Neurology, London, UK.,Department of Neurology, University Hospital Zürich, University of Zürich, Zürich, Switzerland
| | - Thomas M Kessler
- Department of Neuro-Urology, Balgrist University Hospital, University of Zürich, Zürich, Switzerland
| | - Spyros Kollias
- Department of Neuroradiology, University Hospital Zürich, University of Zürich, Zürich, Switzerland
| | - Martina D Liechti
- Department of Neuro-Urology, Balgrist University Hospital, University of Zürich, Zürich, Switzerland
| | - David A Scheiner
- Department of Gynecology, University Hospital Zürich, University of Zürich, Zürich, Switzerland
| | - Lars Michels
- Department of Neuroradiology, University Hospital Zürich, University of Zürich, Zürich, Switzerland
| | - Ulrich Mehnert
- Department of Neuro-Urology, Balgrist University Hospital, University of Zürich, Zürich, Switzerland
| |
Collapse
|
7
|
Groenendijk IM, Mehnert U, Groen J, Clarkson BD, Scheepe JR, Blok BFM. A systematic review and activation likelihood estimation meta-analysis of the central innervation of the lower urinary tract: Pelvic floor motor control and micturition. PLoS One 2021; 16:e0246042. [PMID: 33534812 PMCID: PMC7857581 DOI: 10.1371/journal.pone.0246042] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Accepted: 01/13/2021] [Indexed: 01/23/2023] Open
Abstract
Purpose Functional neuroimaging is a powerful and versatile tool to investigate central lower urinary tract (LUT) control. Despite the increasing body of literature there is a lack of comprehensive overviews on LUT control. Thus, we aimed to execute a coordinate based meta-analysis of all PET and fMRI evidence on descending central LUT control, i.e. pelvic floor muscle contraction (PFMC) and micturition. Materials and methods A systematic literature search of all relevant libraries was performed in August 2020. Coordinates of activity were extracted from eligible studies to perform an activation likelihood estimation (ALE) using a threshold of uncorrected p <0.001. Results 20 of 6858 identified studies, published between 1997 and 2020, were included. Twelve studies investigated PFMC (1xPET, 11xfMRI) and eight micturition (3xPET, 5xfMRI). The PFMC ALE analysis (n = 181, 133 foci) showed clusters in the primary motor cortex, supplementary motor cortex, cingulate gyrus, frontal gyrus, thalamus, supramarginal gyrus, and cerebellum. The micturition ALE analysis (n = 107, 98 foci) showed active clusters in the dorsal pons, including the pontine micturition center, the periaqueductal gray, cingulate gyrus, frontal gyrus, insula and ventral pons. Overlap of PFMC and micturition was found in the cingulate gyrus and thalamus. Conclusions For the first time the involved core brain areas of LUT motor control were determined using ALE. Furthermore, the involved brain areas for PFMC and micturition are partially distinct. Further neuroimaging studies are required to extend this ALE analysis and determine the differences between a healthy and a dysfunctional LUT. This requires standardization of protocols and task-execution.
Collapse
Affiliation(s)
- Ilse M. Groenendijk
- Department of Urology, Erasmus Medical Center, Erasmus University, Rotterdam, The Netherlands
- * E-mail:
| | - Ulrich Mehnert
- Department of Neuro-Urology, Balgrist University Hospital, University of Zürich, Zürich, Switzerland
| | - Jan Groen
- Department of Urology, Erasmus Medical Center, Erasmus University, Rotterdam, The Netherlands
| | - Becky D. Clarkson
- Division of Geriatric Medicine, University of Pittsburgh, Pittsburgh, PA, United States of America
| | - Jeroen R. Scheepe
- Department of Urology, Erasmus Medical Center, Erasmus University, Rotterdam, The Netherlands
| | - Bertil F. M. Blok
- Department of Urology, Erasmus Medical Center, Erasmus University, Rotterdam, The Netherlands
| |
Collapse
|
8
|
Abstract
PURPOSE OF REVIEW In this review, we summarize recent advances in the understanding of the neural control of the bladder, bowel and sexual function, in both men and women. RECENT FINDINGS Evidence of supraspinal areas controlling the storage of urine and micturition in animals, such as the pontine micturition centre, emerged in the early 20th century. Neurological stimulation and lesion studies in humans provided additional indirect evidence for additional bladder-related brain areas. Thereafter, functional neuroimaging in humans with PET and fMRI provided more direct evidence of the involvement of these brain areas. The areas involved in the storage and expulsion of urine also seem to be involved in the central control of storage and expulsion of feces. Furthermore, most knowledge on the brain control of sexual function is obtained from dynamic imaging in human volunteers. Relatively little is known about the dysfunctional central circuits in patients with pelvic organ dysfunction. SUMMARY fMRI has been the most widely used functional neuroimaging technique in the last decade to study the central control of bladder function, anorectal function and sexual function. The studies described in this review show which sensory and motor areas are involved, including cortical and subcortical areas. We propose the existence of a switch-like phenomenon located in the pons controlling micturition, defecation and orgasm.
Collapse
|
9
|
Halani PK, Andy UU, Rao H, Arya LA. Regions of the brain activated in bladder filling vs rectal distention in healthy adults: A meta-analysis of neuroimaging studies. Neurourol Urodyn 2019; 39:58-65. [PMID: 31816125 DOI: 10.1002/nau.24221] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2019] [Accepted: 10/20/2019] [Indexed: 01/23/2023]
Abstract
AIMS Adults with pelvic floor disorders commonly present with overlapping bladder and bowel symptoms; however, the relationship between urinary and defecatory dysfunction is not well understood. Our aim was to compare and determine if overlapping brain regions are activated during bladder filling and rectal distention in healthy adults. METHODS We conducted separate Pubmed searches for neuroimaging studies investigating the effects of rectal distention and bladder filling on brain activation in healthy subjects. Coordinates of activated regions were extracted with cluster-level threshold P < .05 and compared using the activation likelihood estimate approach. Results from the various studies were pooled and a contrast analysis was performed to identify any common areas of activation between bladder filling and rectal distension. RESULTS We identified 96 foci of activation from 14 neuroimaging studies on bladder filling and 182 foci from 17 studies on rectal distension in healthy adults. Regions activated during bladder filling included right insula, right and left thalamus, and right periaqueductal grey. Regions activated during rectal distention included right and left insula, right and left thalamus, left postcentral gyrus, and right inferior parietal lobule. Contrast analysis revealed common activation of the right insula with both rectal distention and bladder filling. CONCLUSION Bladder filling and rectal distention activate several separate areas of the brain involved in sensory processing in healthy adults. The common activation of the insula, the region responsible for interoception, in these two conditions may offer an explanation for the coexistence of bladder and defecatory symptoms in pelvic floor disorders.
Collapse
Affiliation(s)
- Priyanka Kadam Halani
- Division of Urogynecology, Department of Obstetrics and Gynecology, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Uduak U Andy
- Division of Urogynecology, Department of Obstetrics and Gynecology, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Hengyi Rao
- Center for Functional Neuroimaging, Department of Neurology, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Lily A Arya
- Division of Urogynecology, Department of Obstetrics and Gynecology, University of Pennsylvania, Philadelphia, Pennsylvania
| |
Collapse
|
10
|
Seseke S, Leitsmann C, Hijazi S, Trojan L, Dechent P. Functional MRI in patients with detrusor sphincter dyssynergia: Is the neural circuit affected? Neurourol Urodyn 2019; 38:2104-2111. [PMID: 31396992 DOI: 10.1002/nau.24112] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2019] [Accepted: 07/02/2019] [Indexed: 11/05/2022]
Abstract
AIMS In recent years, the human brain-bladder control network has been visualized in different functional magnetic resonance imaging (fMRI) studies. The role of the brainstem and suprapontine regions has been elucidated. Especially the pontine region and the periaqueductal gray, as the central structures of the micturition circuit, were demonstrated. Detrusor sphincter dyssynergia (DSD) is a common problem in patients with neurological diseases. Residual urine and consecutive urinary tract infections with the risk of kidney damage remain a problem. In the present study, we used fMRI of the brain to compare the activation sites of patients with DSD with those of our previously published healthy controls with special emphasis on the brainstem region. METHODS fMRI was performed in 11 patients with DSD who had an urge to void due to a filled bladder. In a nonvoiding model, they were instructed to contract or to relax the pelvic floor muscles repetitively. RESULTS In patients with DSD, we could reproduce the activation sites found in healthy subjects, showing the regions in the brainstem as well as the other micturition-related areas. The activation of the pontine region was more rostral/dorsal compared with the healthy volunteers. CONCLUSION Interestingly, we detected the well-known activation in the pontine region in the patients in the dorsal/rostral part compared with the more ventral activation in the healthy volunteers, suggesting that the L-region of the pontine micturition center is more prominent in cases of DSD.
Collapse
Affiliation(s)
- Sandra Seseke
- Department of Urology, Martha-Maria Hospital, Halle, Germany
| | - Conrad Leitsmann
- Department of Urology, Georg-August-University, Göttingen, Germany
| | - Sameh Hijazi
- Department of Urology, Ibbenbüren Hospital, Ibbenbüren, Germany
| | - Lutz Trojan
- Department of Urology, Georg-August-University, Göttingen, Germany
| | - Peter Dechent
- Department of Cognitive Neurology, MR-Research in Neurology and Psychiatry, Georg-August-University, Göttingen, Germany
| |
Collapse
|
11
|
Walter M, Leitner L, Michels L, Liechti MD, Freund P, Kessler TM, Kollias S, Mehnert U. Reliability of supraspinal correlates to lower urinary tract stimulation in healthy participants - A fMRI study. Neuroimage 2019; 191:481-492. [PMID: 30776530 DOI: 10.1016/j.neuroimage.2019.02.031] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2018] [Revised: 02/02/2019] [Accepted: 02/13/2019] [Indexed: 12/29/2022] Open
Abstract
Previous functional neuroimaging studies provided evidence for a specific supraspinal network involved in lower urinary tract (LUT) control. However, data on the reliability of blood oxygenation level-dependent (BOLD) signal changes during LUT task-related functional magnetic resonance imaging (fMRI) across separate measurements are lacking. Proof of the latter is crucial to evaluate whether fMRI can be used to assess supraspinal responses to LUT treatments. Therefore, we prospectively assessed task-specific supraspinal responses from 20 healthy participants undergoing two fMRI measurements (test-retest) within 5-8 weeks. The fMRI measurements, conducted in a 3T magnetic resonance (MR) scanner, comprised a block design of repetitive bladder filling and drainage using an automated MR-compatible and MR-synchronized infusion-drainage device. Following transurethral catheterization and bladder pre-filling with body warm saline until participants perceived a persistent desire to void (START condition), fMRI was recorded during repetitive blocks (each 15 s) of INFUSION and WITHDRAWAL of 100 mL body warm saline into respectively from the bladder. BOLD signal changes were calculated for INFUSION minus START. In addition to whole brain analysis, we assessed BOLD signal changes within multiple 'a priori' region of interest (ROI), i.e. brain areas known to be involved in the LUT control from previous literature. To evaluate reliability of the fMRI results between visits, we applied different types of analyses: coefficient of variation (CV), intraclass correlation coefficient (ICC), Sørensen-Dice index, Bland-Altman method, and block-wise BOLD signal comparison. All participants completed the study without adverse events. The desire to void was rated significantly higher for INFUSION compared to START or WITHDRAWAL at both measurements without any effect of visit. At whole brain level, significant (p < 0.05, cluster corrected, k ≥ 41 voxels) BOLD signal changes were found for the contrast INFUSION compared to START in several brain areas. Overlap of activation maps from both measurements were observed in the orbitofrontal cortex, insula, ventrolateral prefrontal cortex (VLPFC), and inferior parietal lobe. The two highest ICCs, based on a ROI's mean beta weight, were 0.55 (right insular cortex) and 0.47 (VLPFC). Spatial congruency (Sørensen-Dice index) of all voxels within each ROI between measurements was highest in the insular cortex (left 0.55, right 0.44). In addition, the mean beta weight of the right insula and right VLPFC demonstrated the lowest CV and narrowest Bland and Altman 95% limits of agreement. In conclusion, the right insula and right VLPFC were revealed as the two most reliable task-specific ROIs using our automated, MR-synchronized protocol. Achieving high reliability using a viscero-sensory/interoceptive task such as repetitive bladder filling remains challenging and further endeavour is highly warranted to better understand which factors influence fMRI outcomes and finally to assess LUT treatment effects on the supraspinal level.
Collapse
Affiliation(s)
- Matthias Walter
- Department of Neuro-Urology, Balgrist University Hospital, University of Zürich, Zürich, Switzerland; International Collaboration on Repair Discoveries (ICORD), University of British Columbia, Vancouver, Canada
| | - Lorenz Leitner
- Department of Neuro-Urology, Balgrist University Hospital, University of Zürich, Zürich, Switzerland
| | - Lars Michels
- Institute of Neuroradiology, University Hospital Zürich, University of Zürich, Zürich, Switzerland
| | - Martina D Liechti
- Department of Neuro-Urology, Balgrist University Hospital, University of Zürich, Zürich, Switzerland
| | - Patrick Freund
- Spinal Cord Injury Center, Balgrist University Hospital, University of Zürich, Zürich, Switzerland; Department of Neurophysics, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany; Department of Brain Repair and Rehabilitation, UCL Institute of Neurology, London, UK; Wellcome Trust Centre for Neuroimaging, UCL Institute of Neurology, London, UK
| | - Thomas M Kessler
- Department of Neuro-Urology, Balgrist University Hospital, University of Zürich, Zürich, Switzerland
| | - Spyros Kollias
- Institute of Neuroradiology, University Hospital Zürich, University of Zürich, Zürich, Switzerland
| | - Ulrich Mehnert
- Department of Neuro-Urology, Balgrist University Hospital, University of Zürich, Zürich, Switzerland.
| |
Collapse
|
12
|
Harvie C, Weissbart SJ, Kadam-Halani P, Rao H, Arya LA. Brain activation during the voiding phase of micturition in healthy adults: A meta-analysis of neuroimaging studies. Clin Anat 2018; 32:13-19. [PMID: 30069958 DOI: 10.1002/ca.23244] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2018] [Revised: 07/08/2018] [Accepted: 07/09/2018] [Indexed: 01/06/2023]
Abstract
Several studies have used a variety of neuroimaging techniques to measure brain activity during the voiding phase of micturition. However, there is a lack of consensus on which regions of the brain are activated during voiding. The aim of this meta-analysis is to identify the brain regions that are consistently activated during voiding in healthy adults across different studies. We searched the literature for neuroimaging studies that reported brain co-ordinates that were activated during voiding. We excluded studies that reported co-ordinates only for bladder filling, during pelvic floor contraction only, and studies that focused on abnormal bladder states such as the neurogenic bladder. We used the activation-likelihood estimation (ALE) approach to create a statistical map of the brain and identify the brain co-ordinates that were activated across different studies. We identified nine studies that reported brain activation during the task of voiding in 91 healthy subjects. Together, these studies reported 117 foci for ALE analysis. Our ALE map yielded six clusters of activation in the pons, cerebellum, insula, anterior cingulate cortex (ACC), thalamus, and the inferior frontal gyrus. Regions of the brain involved in executive control (frontal cortex), interoception (ACC, insula), motor control (cerebellum, thalamus), and brainstem (pons) are involved in micturition. This analysis provides insight into the supraspinal control of voiding in healthy adults and provides a framework to understand dysfunctional voiding. Clin. Anat., 2018. © 2018 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Camryn Harvie
- Division of Urogynecology, Department of Obstetrics and Gynecology, Hospital of University of Pennsylvania, Philadelphia, Pennsylvania
| | - Steven J Weissbart
- Department of Urology, Stony Brook School of Medicine, Stony Brook, New York
| | - Priyanka Kadam-Halani
- Division of Urogynecology, Department of Obstetrics and Gynecology, Hospital of University of Pennsylvania, Philadelphia, Pennsylvania
| | - Hengyi Rao
- Center for Functional Neuroimaging, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Lily A Arya
- Division of Urogynecology, Department of Obstetrics and Gynecology, Hospital of University of Pennsylvania, Philadelphia, Pennsylvania
| |
Collapse
|
13
|
Tam J, Cohen T, Kim J, Weissbart S. Insight Into the Central Control of Overactive Bladder Symptoms by Functional Brain Imaging. CURRENT BLADDER DYSFUNCTION REPORTS 2018. [DOI: 10.1007/s11884-018-0464-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
14
|
Weissbart SJ, Bhavsar R, Rao H, Wein AJ, Detre JA, Arya LA, Smith AL. Specific Changes in Brain Activity during Urgency in Women with Overactive Bladder after Successful Sacral Neuromodulation: A Functional Magnetic Resonance Imaging Study. J Urol 2018; 200:382-388. [PMID: 29630979 DOI: 10.1016/j.juro.2018.03.129] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/25/2018] [Indexed: 01/23/2023]
Abstract
PURPOSE The mechanism of sacral neuromodulation is poorly understood. We compared brain activity during urgency before and after sacral neuromodulation in women with overactive bladder and according to the response to treatment. MATERIALS AND METHODS Women with refractory overactive bladder who elected sacral neuromodulation were invited to undergo functional magnetic resonance imaging before and after treatment. During imaging the bladder was filled until urgency was experienced. Regions of interest were identified a priori and brain activity in these regions of interest was compared before and after treatment as well as according to the treatment response. Whole brain exploratory analysis with an uncorrected voxel level threshold of p <0.001 was also performed to identify additional brain regions which changed after sacral neuromodulation. RESULTS Of the 12 women who underwent a pretreatment functional magnetic resonance imaging examination 7 were successfully treated with sacral neuromodulation and underwent a posttreatment examination. After sacral neuromodulation brain activity decreased in the left anterior cingulate cortex, the bilateral insula, the left dorsolateral prefrontal cortex and the bilateral orbitofrontal cortex (each p <0.05). No new brain regions showed increased activity after sacral neuromodulation. Pretreatment brain activity levels in the bilateral anterior cingulate cortex, the right insula, the bilateral dorsolateral prefrontal cortex, the right orbitofrontal cortex, the right supplementary motor area and the right sensorimotor cortex were higher in women who underwent successful treatment (each p <0.05). CONCLUSIONS Brain activity during urgency changes after successful sacral neuromodulation. Sacral neuromodulation may be more effective in women with higher levels of pretreatment brain activity during urgency.
Collapse
Affiliation(s)
- Steven J Weissbart
- Department of Urology, Stony Brook University School of Medicine, Stony Brook, New York.
| | - Rupal Bhavsar
- Department of Neurology, Perelman School of Medicine, Philadelphia, Pennsylvania
| | - Hengyi Rao
- Department of Neurology, Perelman School of Medicine, Philadelphia, Pennsylvania
| | - Alan J Wein
- Division of Urology, Perelman School of Medicine, Philadelphia, Pennsylvania
| | - John A Detre
- Department of Neurology, Perelman School of Medicine, Philadelphia, Pennsylvania
| | - Lily A Arya
- Department of Obstetrics and Gynecology, Perelman School of Medicine, Philadelphia, Pennsylvania
| | - Ariana L Smith
- Division of Urology, Perelman School of Medicine, Philadelphia, Pennsylvania
| |
Collapse
|
15
|
Quantitative Changes in Cerebral Perfusion during Urinary Urgency in Women with Overactive Bladder. BIOMED RESEARCH INTERNATIONAL 2017; 2017:2759035. [PMID: 28904950 PMCID: PMC5585597 DOI: 10.1155/2017/2759035] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/18/2017] [Accepted: 07/16/2017] [Indexed: 11/22/2022]
Abstract
Purpose To quantitatively measure changes in cerebral perfusion in select regions of interest in the brain during urinary urgency in women with overactive bladder (OAB) using arterial spin labeling (ASL). Methods Twelve women with OAB and 10 controls underwent bladder filling and rated urinary urgency (scale 0–10). ASL fMRI scans were performed (1) in the low urgency state after voiding and (2) high urgency state after drinking oral fluids. Absolute regional cerebral blood flow (rCBF) in select regions of interest was compared between the low and high urgency states. Results There were no significant differences in rCBF between the low and high urgency states in the control group. In the OAB group, rCBF (mean ± SE, ml/100 g/min) increased by 10–14% from the low to the high urgency state in the right anterior cingulate cortex (ACC) (44.56 ± 0.59 versus 49.52 ± 1.49, p < 0.05), left ACC (49.29 ± 0.85 versus 54.02 ± 1.46, p < 0.05), and left insula (50.46 ± 1.72 versus 54.99 ± 1.09, p < 0.05). Whole-brain analysis identified additional areas of activation in the right insula, right dorsolateral prefrontal cortex, and pons/midbrain area. Conclusions Urinary urgency is associated with quantitative increase in cerebral perfusion in regions of the brain associated with processing emotional response to discomfort.
Collapse
|