1
|
Xu Y, Huang L, Qiu Z, Zhang J, Xue X, Lin J. Overexpressed miR-486 in bone marrow mesenchymal stem cells represses urethral fibrosis and targets Col13a1 in urethral stricture rats. J Cell Commun Signal 2024; 18:e12028. [PMID: 38946723 PMCID: PMC11208119 DOI: 10.1002/ccs3.12028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 04/01/2024] [Accepted: 04/01/2024] [Indexed: 07/02/2024] Open
Abstract
Urethral stricture (US) is a challenging problem in urology and its pathogenesis of US is closely related to the fibrotic process. Previous evidence has indicated the downregulation of microRNA (miR)-486 in injured urethral specimens of rats. This study aimed to explore the effects of miR-486-overexpressed bone marrow mesenchymal stem cells (BMSCs) on US. BMSCs were identified by detecting their multipotency and surface antigens. Lentivirus virus expressing miR-486 was transduced into rat BMSCs to overexpress miR-486. Transforming growth factor (TGF)-β1 induced fibrotic phenotypes in urethral fibroblasts (UFs) and rat models. Western blotting showed protein levels of collagen I/III and collagen type XIII alpha 1 chain (Col13a1). Real time quantitative polymerase chain reaction was utilized for messenger RNA level evaluation. Hematoxylin-eosin, Masson's trichrome, and Von Willebrand Factor staining were conducted for histopathological analysis. Immunofluorescence staining was employed for detecting alpha smooth muscle actin (α-SMA) expression. Luciferase reporter assay verified the interaction between miR-486 and Col13a1. The results showed that miR-486-overexpressed BMSCs suppressed collagen I/III and α-SMA expression in TGF-β1-stimulated UFs. miR-486-overexpressed BMSCs alleviated urethral fibrosis, collagen deposition, and epithelial injury in the urethral tissue of US rats. miR-486 targeted and negatively regulated Col13a1 in US rats. In conclusion, overexpression of miR-486 in BMSCs targets Col13a1 and attenuates urethral fibrosis in TGF-β1-triggered UFs and US rats.
Collapse
Affiliation(s)
- Yali Xu
- Department of Pediatric Surgery The First Affiliated Hospital Fujian Medical University Fuzhou China
| | - Lihong Huang
- The First Clinical Medical School Fujian Medical University Fuzhou China
| | - Zhixin Qiu
- Department of Pediatric Surgery The First Affiliated Hospital Fujian Medical University Fuzhou China
| | - Jiaqi Zhang
- The First Clinical Medical School Fujian Medical University Fuzhou China
| | - Xueyi Xue
- Department of Urology The First Affiliated Hospital Fujian Medical University Fuzhou China
| | - Junshan Lin
- Department of Pediatric Surgery The First Affiliated Hospital Fujian Medical University Fuzhou China
| |
Collapse
|
2
|
Wu Z, Tang Z, Zheng Z, Tan S. A novel trauma induced urethral stricture in rat model. Sci Rep 2024; 14:6325. [PMID: 38491041 PMCID: PMC10943079 DOI: 10.1038/s41598-024-55408-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Accepted: 02/22/2024] [Indexed: 03/18/2024] Open
Abstract
Urethral stricture (US) is a longstanding disease, while there has not existed a suitable animal model to mimic the condition. We aimed to establish a trauma-induced US animal model to simulate this clinical scenario. A total of 30 rats were equally distributed into two groups, sham and US group. All rats were anesthetized with isoflurane and undergone cystostomy. In the US group, a 2 mm incision was made in the urethra and sutured to induce US. The sham group only make a skin incision on the ventral side of the anterior urethra. 4 weeks later, ultrasound and cystourethrography were performed to evaluate the degree of urethral stricture, pathological examinations were carried out to evaluate the degree of fibrosis. Urodynamic evaluation and mechanical tissue testing were performed to evaluate the bladder function and urethral tissue stiffness. The results showed that the urethral mucosa was disrupted and urethral lumen was stenosed in the US group. Additionally, the US group showed elevated bladder pressure, prolonged micturition intervals and increased tissue stiffness. In conclusion, the rat urethral stricture model induced by trauma provides a closer representation of the real clinical scenario. This model will significantly contribute to advancing research on the mechanisms underlying traumatic urethral stricture.
Collapse
Affiliation(s)
- Ziqiang Wu
- Department of Urology, Xiangya Hospital of Central South University, Changsha, People's Republic of China
- Provincial Laboratory for Diagnosis and Treatment of Genitourinary System Disease, Changsha, People's Republic of China
| | - Zhengyan Tang
- Department of Urology, Xiangya Hospital of Central South University, Changsha, People's Republic of China
- Provincial Laboratory for Diagnosis and Treatment of Genitourinary System Disease, Changsha, People's Republic of China
| | - Zhihuan Zheng
- Department of Urology, Xiangya Hospital of Central South University, Changsha, People's Republic of China.
- Provincial Laboratory for Diagnosis and Treatment of Genitourinary System Disease, Changsha, People's Republic of China.
| | - Shuo Tan
- Department of Urology, Third Xiangya Hospital of Central South University, Changsha, People's Republic of China.
- Provincial Laboratory for Diagnosis and Treatment of Genitourinary System Disease, Changsha, People's Republic of China.
| |
Collapse
|
3
|
Long J, Yang Y, Yang J, Chen L, Wang S, Zhou X, Su Y, Liu C. Targeting Thbs1 reduces bladder remodeling caused by partial bladder outlet obstruction via the FGFR3/p-FGFR3 pathway. Neurourol Urodyn 2024; 43:516-526. [PMID: 38108523 DOI: 10.1002/nau.25366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2023] [Revised: 11/29/2023] [Accepted: 12/06/2023] [Indexed: 12/19/2023]
Abstract
BACKGROUND Partial bladder outlet obstruction (pBOO) may lead to bladder remodeling, including fibrosis and extracellular matrix (ECM) deposition. Despite the extensive research on the mechanisms underlying pBOO, potential therapeutic targets for the treatment of pBOO require further research. Dysregulated expression of thrombospondin-1 (Thbs1) has been reported in various human fibrotic diseases; however, its relationship with pBOO remains unclear. AIMS Investigate the effects of Thbs1 on bladder remodeling caused by pBOO. METHODS We established a pBOO model in Sprague-Dawley rats and performed urodynamic analyses to estimate functional changes in the bladder, validated the histopathological changes in the bladder by using haematoxylin-eosin and Masson's trichrome staining, identified key target genes by integrating RNA sequencing (RNA-seq) and bioinformatics analyses, validated the expression of related factors using Western blot analysis and RT-qPCR, and used immunofluorescence staining to probe the potential interaction factors of Thbs1. RESULTS Urodynamic results showed that pressure-related parameters were significantly increased in rats with pBOO. Compared with the sham group, the pBOO group demonstrated significant increases in bladder morphology, bladder weight, and collagen deposition. Thbs1 was significantly upregulated in the bladder tissues of rats with pBOO, consistent with the RNA-seq data. Thbs1 upregulation led to increased expression of matrix metalloproteinase (MMP) 2, MMP9, and fibronectin (Fn) in normal human urinary tract epithelial cells (SV-HUC-1), whereas anti-Thbs1 treatment inhibited the production of these cytokines in TGF-β1-treated SV-HUC-1. Further experiments indicated that Thbs1 affected bladder remodeling in pBOO via the fibroblast growth factor receptor 3 (FGFR3) pathway. CONCLUSIONS Thbs1 plays a crucial role in bladder remodeling caused by pBOO. Targeting Thbs1 might alleviate ECM damage. Mechanistically, Thbs1 may function via the FGFR signaling pathway by regulating the FGFR3 receptor, identified as the most relevant disease target of pBOO, and FGF2 may be a mediator. These findings suggest that Thbs1 plays a role in BOO development and is a therapeutic target for this condition.
Collapse
Affiliation(s)
- Jun Long
- Clinical Medical College & Affiliated Hospital of Chengdu University, Chengdu, China
- Graduate School, Zunyi Medical University, Zunyi, Guizhou, China
| | - Yafei Yang
- Department of Urology, The Eighth Affiliated Hospital of Sun Yat-sen University, Shenzhen, China
| | - Jin Yang
- Clinical Medical College & Affiliated Hospital of Chengdu University, Chengdu, China
| | - Lin Chen
- Clinical Medical College & Affiliated Hospital of Chengdu University, Chengdu, China
| | - Song Wang
- Clinical Medical College & Affiliated Hospital of Chengdu University, Chengdu, China
- Graduate School, Zunyi Medical University, Zunyi, Guizhou, China
| | - Xin Zhou
- Clinical Medical College & Affiliated Hospital of Chengdu University, Chengdu, China
- Graduate School, Zunyi Medical University, Zunyi, Guizhou, China
| | - Yao Su
- College of Pharmacy, Chengdu University, Chengdu, China
| | - Chenhuan Liu
- Clinical Medical College & Affiliated Hospital of Chengdu University, Chengdu, China
- Graduate School, Zunyi Medical University, Zunyi, Guizhou, China
| |
Collapse
|
4
|
Meng W, Jiang Z, Wang J, Chen X, Chen B, Cai B, Zhou Y, Ma L, Guan Y. Inhibition of urethral stricture by a catheter loaded with nanoparticle/ pirfenidone complexes. Front Bioeng Biotechnol 2023; 11:1254621. [PMID: 37954024 PMCID: PMC10639154 DOI: 10.3389/fbioe.2023.1254621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Accepted: 10/13/2023] [Indexed: 11/14/2023] Open
Abstract
Background: Urethral strictures are common injurious conditions of the urinary system. Reducing and preventing urethral strictures has become a hot and challenging topic for urological surgeons and related researchers. In this study, we developed a catheter loaded with nanoparticle/pirfenidone (NP/PFD) complexes and evaluated its effectiveness at inhibiting urethral stricture in rabbits, providing more references for the clinical prevention and reduction of urethral stenosis. Methods: Twelve adult male New Zealand rabbits were selected and divided into the following four groups in a ratio of 1:1:1:1 using the random number table method: Group A, sham; Group B, urethral stricture (US); Group C, US + unmodified catheter; and Group D, US + NP/PFD catheter. On the 30th day after modelling, retrograde urethrography was performed to evaluate urethral stricture formation, and histopathological examination was performed on the tissues of the corresponding surgical site. Meanwhile, changes in the expression level of Transforming growth factor β1 (TGF-β1) in the tissues were detected by immunohistochemistry. Results: The NP/PFD complexes adhered uniformly to the catheter surface. They remained on the surface of the catheter after insertion into the urethra. In addition, the NP/PFD complexes spread into the urethral epithelium 2 weeks after surgery. Ultimately, urethral strictures were significantly reduced with the placement of the NP/PFD complex catheter. Conclusion: Our catheter loaded with NP/PFD complexes effectively delivered PFD to the urethral epithelium through continuous local delivery, thereby reducing fibrosis and stricture after urethral injury, which may be associated with the inhibition of TGF-β1 expression.
Collapse
Affiliation(s)
- Wei Meng
- Department of Urology, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong, China
| | - Zhaosheng Jiang
- Department of Urology, Nantong TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Nantong, China
| | - Jiahao Wang
- Department of Urology, Wuxi Hospital Affiliated to the Nanjing University of Chinese Medicine, Wuxi, China
| | - Xiaohua Chen
- Department of Imaging, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong, China
| | - Bo Chen
- Department of Urology, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong, China
| | - Bo Cai
- Department of Urology, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong, China
| | - Youlang Zhou
- Research Central of Clinical Medicine, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong, China
| | - Limin Ma
- Department of Urology, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong, China
| | - Yangbo Guan
- Department of Urology, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong, China
| |
Collapse
|
5
|
Yang Y, Long J, Yang J, Zheng H, Lai Y, Chen C, Tang F, Gao Y, Chen L, He Z. METTL3-dependent m6A modification mediates bladder remodeling after partial bladder outlet obstruction through CCN2 activation. Neurourol Urodyn 2023; 42:1506-1521. [PMID: 37455557 DOI: 10.1002/nau.25233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 06/08/2023] [Accepted: 06/16/2023] [Indexed: 07/18/2023]
Abstract
AIMS N6-methyladenosine (m6A) modification is a critical posttranscriptional event in gene regulation. Thus, identifying methyltransferase, demethylase, or m6A binding protein-mediated m6A modifications in cancer or noncancer transcriptomes has become a promising novel strategy for disease therapy development. However, novel insights into m6A modification in partial bladder outlet obstruction (pBOO) and detailed information about the drivers of bladder remodeling remain to be elucidated. Here, we first characterized the m6A modification landscape in pBOO and investigated potential actionable pharmaceutical targets for future therapies. METHODS We generated an improved animal model of pBOO in SD rats with urethral meatus stricture induced by suturing. Urodynamic investigations and cystometry were carried out to evaluate the physiologic changes elicited by pBOO. Whole-transcriptome sequencing (RNA-seq) and m6A-modified RNA immunoprecipitation sequencing (MeRIP-seq) were subsequently performed to analyze the expression pattern associated with bladder remodeling in pBOO. RESULTS The cystometric evaluation of bladder function demonstrated obvious increases in pressure-related parameters in the pBOO group. Hematoxylin and eosin staining and Masson's trichrome staining validated the occurrence of bladder remodeling. A global elevation in m6A RNA methylation levels was observed in parallel to a increased expression of METTL3 in the pBOO group. High-throughput sequencing revealed the differences in expression patterns between the pBOO and sham-operated groups. Furthermore, potential m6A-modified genes, including CCN2, may serve as new pharmaceutical targets to reverse bladder remodeling. CONCLUSIONS Exploring the roles of m6A-modified genes identified as associated with bladder remodeling by integrating RNA-seq and MeRIP-seq data can offer new insights for developing promising treatments for pBOO patients.
Collapse
Affiliation(s)
- Yafei Yang
- Department of Urology, The Eighth Affiliated Hospital, Sun Yat-sen University, Shenzhen, China
| | - Jun Long
- Department of Urology, Affiliated Hospital of Chengdu University, Chengdu, Sichuan, China
- Graduate School, Zunyi Medical University, Zunyi, Guizhou, China
| | - Jin Yang
- Department of Urology, Affiliated Hospital of Chengdu University, Chengdu, Sichuan, China
| | - Hanxiong Zheng
- Department of Urology, The Eighth Affiliated Hospital, Sun Yat-sen University, Shenzhen, China
| | - Yongchang Lai
- Department of Urology, The Eighth Affiliated Hospital, Sun Yat-sen University, Shenzhen, China
| | - Chiheng Chen
- Department of Urology, The Eighth Affiliated Hospital, Sun Yat-sen University, Shenzhen, China
| | - Fucai Tang
- Department of Urology, The Eighth Affiliated Hospital, Sun Yat-sen University, Shenzhen, China
| | - Yibo Gao
- Department of Urology, The Eighth Affiliated Hospital, Sun Yat-sen University, Shenzhen, China
| | - Lin Chen
- Department of Urology, Affiliated Hospital of Chengdu University, Chengdu, Sichuan, China
| | - Zhaohui He
- Department of Urology, The Eighth Affiliated Hospital, Sun Yat-sen University, Shenzhen, China
| |
Collapse
|
6
|
Kai W, Lin C, Jin Y, Ping-Lin H, Xun L, Bastian A, Arnulf S, Sha-Sha X, Xu L, Shu C. Urethral meatus stricture BOO stimulates bladder smooth muscle cell proliferation and pyroptosis via IL‑1β and the SGK1‑NFAT2 signaling pathway. Mol Med Rep 2020; 22:219-226. [PMID: 32468047 PMCID: PMC7248470 DOI: 10.3892/mmr.2020.11092] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2019] [Accepted: 03/25/2020] [Indexed: 11/29/2022] Open
Abstract
Bladder outlet obstruction (BOO), which is primarily caused by benign prostatic hyperplasia, is a common chronic disease. However, previous studies have most commonly investigated BOO using the acute obstruction model. In the present study, a chronic obstruction model was established to investigate the different pathological alterations in the bladder between acute and chronic obstruction. Compared with chronic obstruction, acute obstruction led to increased expression of proliferating cell nuclear antigen and interleukin-1β, which are markers of proliferation and inflammation, respectively. Furthermore, increased fibrosis in the bladder at week 2 was observed. Low pressure promoted mice bladder smooth muscle cell (MBSMC) proliferation, and pressure overload inhibited cell proliferation and increased the proportion of dead MBSMCs. Further investigation using serum/glucocorticoid regulated kinase 1 (SGK1) small interfering RNAs indicated that low pressure may promote MBSMC proliferation by upregulating SGK1 and nuclear factor of activated T-cell expression levels. Therefore, the present study suggested that acute obstruction led to faster decompensation of bladder function and chronic bladder obstruction displayed an enhanced ability to progress to BOO.
Collapse
Affiliation(s)
- Wang Kai
- Department of Urology, Affiliated Hospital of Chengdu University, Chengdu, Sichuan 610041, P.R. China
| | - Chen Lin
- Department of Urology, Affiliated Hospital of Chengdu University, Chengdu, Sichuan 610041, P.R. China
| | - Yang Jin
- Department of Urology, Affiliated Hospital of Chengdu University, Chengdu, Sichuan 610041, P.R. China
| | - He Ping-Lin
- Department of Urology, Affiliated Hospital of Chengdu University, Chengdu, Sichuan 610041, P.R. China
| | - Liu Xun
- Department of Urology, Affiliated Hospital of Chengdu University, Chengdu, Sichuan 610041, P.R. China
| | - Amend Bastian
- Department of Urology, University of Tübingen, D‑72070 Tübingen, Baden‑Württemberg, Germany
| | - Stenzl Arnulf
- Department of Urology, University of Tübingen, D‑72070 Tübingen, Baden‑Württemberg, Germany
| | - Xing Sha-Sha
- Central Laboratory, Affiliated Hospital of Chengdu University, Chengdu, Sichuan 610000, P.R. China
| | - Luo Xu
- Department of Urology, Zunyi Medical University, Guiyang, Guizhou 563000, P.R. China
| | - Cui Shu
- Department of Urology, Affiliated Hospital of North Sichuan Medical College, Nanchong, Sichuan 637000, P.R. China
| |
Collapse
|