1
|
Vejar S, Pizarro IS, Pulgar-Sepúlveda R, Vicencio SC, Polit A, Amador CA, Del Rio R, Varas R, Orellana JA, Ortiz FC. A preclinical mice model of multiple sclerosis based on the toxin-induced double-site demyelination of callosal and cerebellar fibers. Biol Res 2024; 57:48. [PMID: 39034395 PMCID: PMC11265164 DOI: 10.1186/s40659-024-00529-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Accepted: 07/08/2024] [Indexed: 07/23/2024] Open
Abstract
BACKGROUND Multiple sclerosis (MS) is an irreversible progressive CNS pathology characterized by the loss of myelin (i.e. demyelination). The lack of myelin is followed by a progressive neurodegeneration triggering symptoms as diverse as fatigue, motor, locomotor and sensory impairments and/or bladder, cardiac and respiratory dysfunction. Even though there are more than fourteen approved treatments for reducing MS progression, there are still no cure for the disease. Thus, MS research is a very active field and therefore we count with different experimental animal models for studying mechanisms of demyelination and myelin repair, however, we still lack a preclinical MS model assembling demyelination mechanisms with relevant clinical-like signs. RESULTS Here, by inducing the simultaneous demyelination of both callosal and cerebellar white matter fibers by the double-site injection of lysolecithin (LPC), we were able to reproduce CNS demyelination, astrocyte recruitment and increases levels of proinflammatory cytokines levels along with motor, locomotor and urinary impairment, as well as cardiac and respiratory dysfunction, in the same animal model. Single site LPC-injections either in corpus callosum or cerebellum only, fails in to reproduce such a complete range of MS-like signs. CONCLUSION We here report that the double-site LPC injections treatment evoke a complex MS-like mice model. We hope that this experimental approach will help to deepen our knowledge about the mechanisms of demyelinated diseases such as MS.
Collapse
Affiliation(s)
- Sebastián Vejar
- Mechanisms of Myelin Formation and Repair Laboratory, Departamento de Biología, Facultad de Química y Biología, Universidad de Santiago de Chile, Santiago, Chile
| | - Ignacio S Pizarro
- Mechanisms of Myelin Formation and Repair Laboratory, Departamento de Biología, Facultad de Química y Biología, Universidad de Santiago de Chile, Santiago, Chile
| | - Raúl Pulgar-Sepúlveda
- Mechanisms of Myelin Formation and Repair Laboratory, Departamento de Biología, Facultad de Química y Biología, Universidad de Santiago de Chile, Santiago, Chile
| | - Sinay C Vicencio
- Mechanisms of Myelin Formation and Repair Laboratory, Departamento de Biología, Facultad de Química y Biología, Universidad de Santiago de Chile, Santiago, Chile
- Laboratory of Cardiorespiratory Control, Department of Physiology, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Andrés Polit
- Mechanisms of Myelin Formation and Repair Laboratory, Departamento de Biología, Facultad de Química y Biología, Universidad de Santiago de Chile, Santiago, Chile
| | - Cristian A Amador
- Faculty of Medicine and Science, Universidad San Sebastián, Santiago, Chile
| | - Rodrigo Del Rio
- Laboratory of Cardiorespiratory Control, Department of Physiology, Pontificia Universidad Católica de Chile, Santiago, Chile
- Department of Cell Biology and Physiology, School of Medicine, University of Kansas Medical Center, Kansas City, KS, United States
| | - Rodrigo Varas
- Facultad de Ciencias de Salud, Universidad Autónoma de Chile, 8910060, Santiago, Chile
| | - Juan A Orellana
- Departamento de Neurología, Escuela de Medicina and Centro Interdisciplinario de Neurociencias, Facultad de Medicina, Pontificia Universidad Católica de Chile, Marcoleta 391, 8330024, Santiago, Chile.
| | - Fernando C Ortiz
- Mechanisms of Myelin Formation and Repair Laboratory, Departamento de Biología, Facultad de Química y Biología, Universidad de Santiago de Chile, Santiago, Chile.
| |
Collapse
|
2
|
Ramasamy R, Hardy CC, Crocker SJ, Smith PP. Cuprizone-mediated demyelination reversibly degrades voiding behavior in mice while sparing brainstem reflex. J Neurosci Res 2022; 100:1707-1720. [PMID: 35596557 DOI: 10.1002/jnr.25065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Revised: 03/30/2022] [Accepted: 04/22/2022] [Indexed: 11/12/2022]
Abstract
Multiple sclerosis (MS) is a chronic, progressively debilitating demyelinating disease of the central nervous system (CNS). Nearly 80% of MS patients experience lower urinary tract dysfunction early in their diagnosis. This significantly affects the quality of life, and in latter stages of disease is a leading cause of hospitalization. Previously, animal models have shown that inflammatory demyelination in the CNS causes profound bladder dysfunction, but the confounding influence of systemic inflammation limits the potential interpretation of the contribution of CNS demyelination to bladder dysfunction. Since the micturition circuit has myelinated neuronal connections in the cortex, brainstem, and spinal cord, we examined alterations in bladder function in the cuprizone model characterized by demyelinating lesions in the cortex and corpus callosum that are independent of T-cell-mediated autoimmunity. Herein, we report that a 4-week dietary cuprizone treatment in C57Bl/6J mice induced alterations in voiding behavior with increased micturition frequency and reduced volume voided, similar to human MS bladder dysfunction. Subsequently, recovery from cuprizone treatment restored normal bladder function. Demyelination and remyelination were confirmed by Luxol Fast Blue staining of the corpus callosum. Additionally, we also determined that an 8-week cuprizone treatment, resulting in chronic demyelination lacking spontaneous remyelination potential, is associated with an exacerbated voiding phenotype. Interestingly, while cuprizone-induced CNS demyelination severely affected conscious (cortical) urinary behavior, the brainstem and spinal cord reflex remained unchanged, as confirmed by urethane-anesthetized cystometry. This is the first study to show that cortical demyelination independent of inflammation can negatively impact urinary function.
Collapse
Affiliation(s)
- Ramalakshmi Ramasamy
- Department of Neuroscience, University of Connecticut School of Medicine, Farmington, Connecticut, USA.,UConn Center on Aging, University of Connecticut School of Medicine, Farmington, Connecticut, USA
| | - Cara C Hardy
- Department of Neuroscience, University of Connecticut School of Medicine, Farmington, Connecticut, USA.,UConn Center on Aging, University of Connecticut School of Medicine, Farmington, Connecticut, USA
| | - Stephen J Crocker
- Department of Neuroscience, University of Connecticut School of Medicine, Farmington, Connecticut, USA.,UConn Center on Aging, University of Connecticut School of Medicine, Farmington, Connecticut, USA
| | - Phillip P Smith
- Department of Neuroscience, University of Connecticut School of Medicine, Farmington, Connecticut, USA.,UConn Center on Aging, University of Connecticut School of Medicine, Farmington, Connecticut, USA.,Department of Surgery, University of Connecticut School of Medicine, Farmington, Connecticut, USA
| |
Collapse
|
3
|
Hardy CC. The Aged Lower Urinary Tract: Deficits in Neural Control Mechanisms. FRONTIERS IN AGING 2021; 2:791833. [PMID: 35821993 PMCID: PMC9261385 DOI: 10.3389/fragi.2021.791833] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/09/2021] [Accepted: 11/16/2021] [Indexed: 11/13/2022]
Abstract
Bothersome urinary symptoms plague many older adults and disproportionally affect women. Underreporting of symptoms and general stigma/embarrassment associated with incontinence has negatively impacted the availability of treatments, as research cannot be championed if the severity of the problem is not apparent. Available therapeutics have limited efficacy and are often not recommended in aged patients. Lower urinary tract function has a long and rich history in animal studies; while much of the underlying anatomy has been described, including neural control mechanisms, the impact of aging has only just begun to be addressed. Recent work has provided strong evidence that neural control over micturition is significantly impacted by aging processes. This mini review discusses recent findings regarding how aging impacts the neural control mechanisms of micturition.
Collapse
Affiliation(s)
- Cara C. Hardy
- UConn Center on Aging, UConn Health, Farmington, CT, United States
- Department of Surgery, University of Connecticut SOM, UConn Health, Farmington, CT, United States
- CT Institute for the Brain and Cognitive Sciences, University of Connecticut, Storrs, CT, United States
- *Correspondence: Cara C. Hardy,
| |
Collapse
|