1
|
Fortanier E, Hostin MA, Michel C, Delmont E, Bellemare ME, Guye M, Bendahan D, Attarian S. One-Year Longitudinal Assessment of Patients With CMT1A Using Quantitative MRI. Neurology 2024; 102:e209277. [PMID: 38630962 DOI: 10.1212/wnl.0000000000209277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/19/2024] Open
Abstract
BACKGROUND AND OBJECTIVES Intramuscular fat fraction (FF) assessed using quantitative MRI (qMRI) has emerged as one of the few responsive outcome measures in CMT1A suitable for future clinical trials. This study aimed to identify the relevance of multiple qMRI biomarkers for tracking longitudinal changes in CMT1A and to assess correlations between MRI metrics and clinical parameters. METHODS qMRI was performed in CMT1A patients at 2 time points, a year apart, and various metrics were extracted from 3-dimensional volumes of interest at thigh and leg levels. A semiautomated segmentation technique was used, enabling the analysis of central slices and a larger 3D muscle volume. Metrics included proton density (PD), magnetization transfer ratio (MTR), and intramuscular FF. The sciatic and tibial nerves were also assessed. Disease severity was gauged using Charcot Marie Tooth Neurologic Score (CMTNSv2), Charcot Marie Tooth Examination Score, Overall Neuropathy Limitation Scale scores, and Medical Research Council (MRC) muscle strength. RESULTS Twenty-four patients were included. FF significantly rose in the 3D volume at both thigh (+1.04% ± 2.19%, p = 0.041) and leg (+1.36% ± 1.87%, p = 0.045) levels. The 3D analyses unveiled a length-dependent gradient in FF, ranging from 22.61% ± 10.17% to 26.17% ± 10.79% at the leg level. There was noticeable variance in longitudinal changes between muscles: +3.17% ± 6.86% (p = 0.028) in the tibialis anterior compared with 0.37% ± 4.97% (p = 0.893) in the gastrocnemius medialis. MTR across the entire thigh volume showed a significant decline between the 2 time points -2.75 ± 6.58 (p = 0.049), whereas no significant differences were noted for the 3D muscle volume and PD. No longitudinal changes were observed in any nerve metric. Potent correlations were identified between FF and primary clinical measures: CMTNSv2 (ρ = 0.656; p = 0.001) and MRC in the lower limbs (ρ = -0.877; p < 0.001). DISCUSSION Our results further support that qMRI is a promising tool for following up longitudinal changes in CMT1A patients, FF being the paramount MRI metric for both thigh and leg regions. It is crucial to scrutinize the postimaging data extraction methods considering that annual changes are minimal (around +1.5%). Given the varied FF distribution, the existence of a length-dependent gradient, and the differential fatty involution across muscles, 3D volume analysis appeared more suitable than single slice analysis.
Collapse
Affiliation(s)
- Etienne Fortanier
- From the Reference Center for Neuromuscular Diseases and ALS (E.F., E.D., S.A.), La Timone University Hospital, Center for Magnetic Resonance in Biology and Medicine (M.A.H., C.M., M.G., D.B.), UMR CNRS 7339, UMR 7286 (E.D.), Medicine Faculty, CNRS, LIS (M.A.H.,M.-E.B.), and Inserm (S.A.), GMGF, Aix-Marseille University, France
| | - Marc Adrien Hostin
- From the Reference Center for Neuromuscular Diseases and ALS (E.F., E.D., S.A.), La Timone University Hospital, Center for Magnetic Resonance in Biology and Medicine (M.A.H., C.M., M.G., D.B.), UMR CNRS 7339, UMR 7286 (E.D.), Medicine Faculty, CNRS, LIS (M.A.H.,M.-E.B.), and Inserm (S.A.), GMGF, Aix-Marseille University, France
| | - Constance Michel
- From the Reference Center for Neuromuscular Diseases and ALS (E.F., E.D., S.A.), La Timone University Hospital, Center for Magnetic Resonance in Biology and Medicine (M.A.H., C.M., M.G., D.B.), UMR CNRS 7339, UMR 7286 (E.D.), Medicine Faculty, CNRS, LIS (M.A.H.,M.-E.B.), and Inserm (S.A.), GMGF, Aix-Marseille University, France
| | - Emilien Delmont
- From the Reference Center for Neuromuscular Diseases and ALS (E.F., E.D., S.A.), La Timone University Hospital, Center for Magnetic Resonance in Biology and Medicine (M.A.H., C.M., M.G., D.B.), UMR CNRS 7339, UMR 7286 (E.D.), Medicine Faculty, CNRS, LIS (M.A.H.,M.-E.B.), and Inserm (S.A.), GMGF, Aix-Marseille University, France
| | - Marc-Emmanuel Bellemare
- From the Reference Center for Neuromuscular Diseases and ALS (E.F., E.D., S.A.), La Timone University Hospital, Center for Magnetic Resonance in Biology and Medicine (M.A.H., C.M., M.G., D.B.), UMR CNRS 7339, UMR 7286 (E.D.), Medicine Faculty, CNRS, LIS (M.A.H.,M.-E.B.), and Inserm (S.A.), GMGF, Aix-Marseille University, France
| | - Maxime Guye
- From the Reference Center for Neuromuscular Diseases and ALS (E.F., E.D., S.A.), La Timone University Hospital, Center for Magnetic Resonance in Biology and Medicine (M.A.H., C.M., M.G., D.B.), UMR CNRS 7339, UMR 7286 (E.D.), Medicine Faculty, CNRS, LIS (M.A.H.,M.-E.B.), and Inserm (S.A.), GMGF, Aix-Marseille University, France
| | - David Bendahan
- From the Reference Center for Neuromuscular Diseases and ALS (E.F., E.D., S.A.), La Timone University Hospital, Center for Magnetic Resonance in Biology and Medicine (M.A.H., C.M., M.G., D.B.), UMR CNRS 7339, UMR 7286 (E.D.), Medicine Faculty, CNRS, LIS (M.A.H.,M.-E.B.), and Inserm (S.A.), GMGF, Aix-Marseille University, France
| | - Shahram Attarian
- From the Reference Center for Neuromuscular Diseases and ALS (E.F., E.D., S.A.), La Timone University Hospital, Center for Magnetic Resonance in Biology and Medicine (M.A.H., C.M., M.G., D.B.), UMR CNRS 7339, UMR 7286 (E.D.), Medicine Faculty, CNRS, LIS (M.A.H.,M.-E.B.), and Inserm (S.A.), GMGF, Aix-Marseille University, France
| |
Collapse
|
2
|
Durelle C, Delmont E, Michel C, Trabelsi A, Hostin MA, Ogier A, Bendahan D, Attarian S. Quantification of muscle involvement in familial amyloid polyneuropathy using MRI. Eur J Neurol 2023; 30:3286-3295. [PMID: 37422895 DOI: 10.1111/ene.15970] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 06/09/2023] [Accepted: 07/04/2023] [Indexed: 07/11/2023]
Abstract
BACKGROUND AND PURPOSE Transthyretin familial amyloid polyneuropathy (TTR-FAP) is a rare genetic disease with autosomal-dominant inheritance. In this study, we aimed to quantify fatty infiltration (fat fraction [FF]) and magnetization transfer ratio (MTR) in individual muscles of patients with symptomatic and asymptomatic TTR-FAP using magnetic resonance imaging. Secondarily, we aimed to assess correlations with clinical and electrophysiological variables. METHODS A total of 39 patients with a confirmed mutation in the TTR gene (25 symptomatic and 14 asymptomatic) and 14 healthy volunteers were included. A total of 16 muscles were manually delineated in the nondominant lower limb from T1-weighted anatomical images. The corresponding masks were propagated on the MTR and FF maps. Detailed neurological and electrophysiological examinations were conducted in each group. RESULTS The MTR was decreased (42.6 AU; p = 0.001) and FF was elevated (14%; p = 0.003) in the lower limbs of the symptomatic group, with preferential posterior and lateral involvement. In the asymptomatic group, elevated FF was quantified in the gastrocnemius lateralis muscle (11%; p = 0.021). FF was significantly correlated with disease duration (r = 0.49, p = 0.015), neuropathy impairment score for the lower limb (r = 0.42, p = 0.041), Overall Neuropathy Limitations Scale score (r = 0.49, p = 0.013), polyneuropathy disability score (r = 0.57, p = 0.03) and the sum of compound muscle action potential (r = 0.52, p = 0.009). MTR was strongly correlated to FF (r = 0.78, p < 0.0001), and a few muscles with an FF within the normal range had a reduced MTR. CONCLUSION These observations suggest that FF and MTR could be interesting biomarkers in TTR-FAP. In asymptomatic patients, FF in the gastrocnemius lateralis muscle could be a good indicator of the transition from an asymptomatic to a symptomatic form of the disease. MTR could be an early biomarker of muscle alterations.
Collapse
Affiliation(s)
- Clémence Durelle
- Centre de référence des maladies neuromusculaires et de la SLA, hôpitaux universitaires de Marseille, Marseille, France
| | - Emilien Delmont
- Centre de référence des maladies neuromusculaires et de la SLA, hôpitaux universitaires de Marseille, Marseille, France
| | - Constance Michel
- Centre de résonance magnétique biologique et médicale (Crmbm), Marseille, France
| | - Amira Trabelsi
- Aix-Marseille Univ, CNRS, Centrale Marseille, Institute Fresnel, Marseille, France
| | - Marc-Adrien Hostin
- Centre de résonance magnétique biologique et médicale (Crmbm), Marseille, France
| | - Augustin Ogier
- Department of Radiology, Lausanne University Hospital (CHUV) and University of Lausanne (UNIL), Lausanne, Switzerland
| | - David Bendahan
- Centre de résonance magnétique biologique et médicale (Crmbm), Marseille, France
| | - Shahram Attarian
- Centre de référence des maladies neuromusculaires et de la SLA, hôpitaux universitaires de Marseille, Marseille, France
| |
Collapse
|
3
|
Stephenson MC, Krishna L, Pannir Selvan RM, Tai YK, Kit Wong CJ, Yin JN, Toh SJ, Torta F, Triebl A, Fröhlich J, Beyer C, Li JZ, Tan SS, Wong CK, Chinnasamy D, Pakkiri LS, Lee Drum C, Wenk MR, Totman JJ, Franco-Obregón A. Magnetic field therapy enhances muscle mitochondrial bioenergetics and attenuates systemic ceramide levels following ACL reconstruction: Southeast Asian randomized-controlled pilot trial. J Orthop Translat 2022; 35:99-112. [PMID: 36262374 PMCID: PMC9574347 DOI: 10.1016/j.jot.2022.09.011] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 09/23/2022] [Accepted: 09/24/2022] [Indexed: 11/06/2022] Open
Abstract
Background Metabolic disruption commonly follows Anterior Cruciate Ligament Reconstruction (ACLR) surgery. Brief exposure to low amplitude and frequency pulsed electromagnetic fields (PEMFs) has been shown to promote in vitro and in vivo murine myogeneses via the activation of a calcium–mitochondrial axis conferring systemic metabolic adaptations. This randomized-controlled pilot trial sought to detect local changes in muscle structure and function using MRI, and systemic changes in metabolism using plasma biomarker analyses resulting from ACLR, with or without accompanying PEMF therapy. Methods 20 patients requiring ACLR were randomized into two groups either undergoing PEMF or sham exposure for 16 weeks following surgery. The operated thighs of 10 patients were exposed weekly to PEMFs (1 mT for 10 min) for 4 months following surgery. Another 10 patients were subjected to sham exposure and served as controls to allow assessment of the metabolic repercussions of ACLR and PEMF therapy. Blood samples were collected prior to surgery and at 16 weeks for plasma analyses. Magnetic resonance data were acquired at 1 and 16 weeks post-surgery using a Siemens 3T Tim Trio system. Phosphorus (31P) Magnetic Resonance Spectroscopy (MRS) was utilized to monitor changes in high-energy phosphate metabolism (inorganic phosphate (Pi), adenosine triphosphate (ATP) and phosphocreatine (PCr)) as well as markers of membrane synthesis and breakdown (phosphomonoesters (PME) and phosphodiester (PDE)). Quantitative Magnetization Transfer (qMT) imaging was used to elucidate changes in the underlying tissue structure, with T1-weighted and 2-point Dixon imaging used to calculate muscle volumes and muscle fat content. Results Improvements in markers of high-energy phosphate metabolism including reductions in ΔPi/ATP, Pi/PCr and (Pi + PCr)/ATP, and membrane kinetics, including reductions in PDE/ATP were detected in the PEMF-treated cohort relative to the control cohort at study termination. These were associated with reductions in the plasma levels of certain ceramides and lysophosphatidylcholine species. The plasma levels of biomarkers predictive of muscle regeneration and degeneration, including osteopontin and TNNT1, respectively, were improved, whilst changes in follistatin failed to achieve statistical significance. Liquid chromatography with tandem mass spectrometry revealed reductions in small molecule biomarkers of metabolic disruption, including cysteine, homocysteine, and methionine in the PEMF-treated cohort relative to the control cohort at study termination. Differences in measurements of force, muscle and fat volumes did not achieve statistical significance between the cohorts after 16 weeks post-ACLR. Conclusion The detected changes suggest improvements in systemic metabolism in the post-surgical PEMF-treated cohort that accords with previous preclinical murine studies. PEMF-based therapies may potentially serve as a manner to ameliorate post-surgery metabolic disruptions and warrant future examination in more adequately powered clinical trials. The Translational Potential of this Article Some degree of physical immobilisation must inevitably follow orthopaedic surgical intervention. The clinical paradox of such a scenario is that the regenerative potential of the muscle mitochondrial pool is silenced. The unmet need was hence a manner to maintain mitochondrial activation when movement is restricted and without producing potentially damaging mechanical stress. PEMF-based therapies may satisfy the requirement of non-invasively activating the requisite mitochondrial respiration when mobility is restricted for improved metabolic and regenerative recovery.
Collapse
Affiliation(s)
- Mary C. Stephenson
- Centre for Translational MR Research, Yong Loo Lin School of Medicine, National University of Singapore, Singapore,Corresponding author. Centre for Translational MR Research, Yong Loo Lin School of Medicine, Tahir Foundation Building, 13-03, MD1, National University of Singapore, Singapore, 117549.
| | - Lingaraj Krishna
- Division of Sports Medicine and Surgery, Department of Orthopaedic Surgery, National University Hospital, National University Health System, Singapore
| | - Rina Malathi Pannir Selvan
- Department of Surgery, Yong Loo Lin School of Medicine, National University of Singapore, Singapore,BioIonic Currents Electromagnetic Pulsing Systems Laboratory, BICEPS, National University of Singapore, Singapore
| | - Yee Kit Tai
- Department of Surgery, Yong Loo Lin School of Medicine, National University of Singapore, Singapore,BioIonic Currents Electromagnetic Pulsing Systems Laboratory, BICEPS, National University of Singapore, Singapore,Corresponding author. Department of Surgery, Yong Loo Lin School of Medicine, National University of Singapore, NUHS Tower Block Level 8, 1E Kent Ridge Road, Singapore, 119228.
| | - Craig Jun Kit Wong
- Department of Surgery, Yong Loo Lin School of Medicine, National University of Singapore, Singapore,BioIonic Currents Electromagnetic Pulsing Systems Laboratory, BICEPS, National University of Singapore, Singapore
| | - Jocelyn Naixin Yin
- Department of Surgery, Yong Loo Lin School of Medicine, National University of Singapore, Singapore,BioIonic Currents Electromagnetic Pulsing Systems Laboratory, BICEPS, National University of Singapore, Singapore
| | - Shi-Jie Toh
- Department of Surgery, Yong Loo Lin School of Medicine, National University of Singapore, Singapore,BioIonic Currents Electromagnetic Pulsing Systems Laboratory, BICEPS, National University of Singapore, Singapore
| | - Federico Torta
- Singapore Lipidomics Incubator, Life Sciences Institute, National University of Singapore, Singapore,Precision Medicine Translational Research Program, Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Alexander Triebl
- Singapore Lipidomics Incubator, Life Sciences Institute, National University of Singapore, Singapore
| | | | - Christian Beyer
- Centre Suisse d'électronique et de Microtechnique, CSEM SA, Neuchatel, Switzerland
| | - Jing Ze Li
- Department of Surgery, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Sara S. Tan
- Division of Sports Medicine and Surgery, Department of Orthopaedic Surgery, National University Hospital, National University Health System, Singapore
| | - Chun-Kit Wong
- Centre for Translational MR Research, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Duraimurugan Chinnasamy
- National University Hospital, Department of Rehabilitation Centre, National University Health System, Singapore
| | - Leroy Sivappiragasam Pakkiri
- Cardiovascular Research Institute (CVRI), National University Heart Centre Singapore (NUHCS), Singapore,Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Chester Lee Drum
- Department of Surgery, Yong Loo Lin School of Medicine, National University of Singapore, Singapore,Cardiovascular Research Institute (CVRI), National University Heart Centre Singapore (NUHCS), Singapore,Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Markus R. Wenk
- Singapore Lipidomics Incubator, Life Sciences Institute, National University of Singapore, Singapore,Precision Medicine Translational Research Program, Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - John J. Totman
- Centre for Translational MR Research, Yong Loo Lin School of Medicine, National University of Singapore, Singapore,Academic Radiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Alfredo Franco-Obregón
- Department of Surgery, Yong Loo Lin School of Medicine, National University of Singapore, Singapore,BioIonic Currents Electromagnetic Pulsing Systems Laboratory, BICEPS, National University of Singapore, Singapore,Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore,Institute for Health Innovation & Technology, iHealthtech, National University of Singapore, Singapore,NUS Centre for Cancer Research, Yong Loo Lin School of Medicine, National University of Singapore,Competence Center for Applied Biotechnology and Molecular Medicine, University of Zürich, Zürich, Switzerland,Corresponding author. Department of Surgery, Yong Loo Lin School of Medicine, National University of Singapore, NUHS Tower Block Level 8, 1E Kent Ridge Road, Singapore, 119228.
| |
Collapse
|
4
|
Preisner F, Behnisch R, Foesleitner O, Schwarz D, Wehrstein M, Meredig H, Friedmann-Bette B, Heiland S, Bendszus M, Kronlage M. Reliability and reproducibility of sciatic nerve magnetization transfer imaging and T2 relaxometry. Eur Radiol 2021; 31:9120-9130. [PMID: 34104997 PMCID: PMC8589742 DOI: 10.1007/s00330-021-08072-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Revised: 04/08/2021] [Accepted: 05/11/2021] [Indexed: 12/19/2022]
Abstract
Objectives To assess the interreader and test-retest reliability of magnetization transfer imaging (MTI) and T2 relaxometry in sciatic nerve MR neurography (MRN). Materials and methods In this prospective study, 21 healthy volunteers were examined three times on separate days by a standardized MRN protocol at 3 Tesla, consisting of an MTI sequence, a multi-echo T2 relaxometry sequence, and a high-resolution T2-weighted sequence. Magnetization transfer ratio (MTR), T2 relaxation time, and proton spin density (PSD) of the sciatic nerve were assessed by two independent observers, and both interreader and test-retest reliability for all readout parameters were reported by intraclass correlation coefficients (ICCs) and standard error of measurement (SEM). Results For the sciatic nerve, overall mean ± standard deviation MTR was 26.75 ± 3.5%, T2 was 64.54 ± 8.2 ms, and PSD was 340.93 ± 78.8. ICCs ranged between 0.81 (MTR) and 0.94 (PSD) for interreader reliability and between 0.75 (MTR) and 0.94 (PSD) for test-retest reliability. SEM for interreader reliability was 1.7% for MTR, 2.67 ms for T2, and 21.3 for PSD. SEM for test-retest reliability was 1.7% for MTR, 2.66 ms for T2, and 20.1 for PSD. Conclusions MTI and T2 relaxometry of the sciatic nerve are reliable and reproducible. The values of measurement imprecision reported here may serve as a guide for correct interpretation of quantitative MRN biomarkers in future studies. Key Points • Magnetization transfer imaging (MTI) and T2 relaxometry of the sciatic nerve are reliable and reproducible. • The imprecision that is unavoidably associated with different scans or different readers can be estimated by the here presented SEM values for the biomarkers T2, PSD, and MTR. • These values may serve as a guide for correct interpretation of quantitative MRN biomarkers in future studies and possible clinical applications. Supplementary Information The online version contains supplementary material available at 10.1007/s00330-021-08072-9.
Collapse
Affiliation(s)
- Fabian Preisner
- Department of Neuroradiology, Heidelberg University Hospital, Im Neuenheimer Feld 400, 69120, Heidelberg, Germany
| | - Rouven Behnisch
- Institute of Medical Biometry and Informatics, University of Heidelberg, Im Neuenheimer Feld 130.3, 69120, Heidelberg, Germany
| | - Olivia Foesleitner
- Department of Neuroradiology, Heidelberg University Hospital, Im Neuenheimer Feld 400, 69120, Heidelberg, Germany
| | - Daniel Schwarz
- Department of Neuroradiology, Heidelberg University Hospital, Im Neuenheimer Feld 400, 69120, Heidelberg, Germany
| | - Michaela Wehrstein
- Department of Sports Medicine (Internal Medicine VII), Medical Clinic, Heidelberg University Hospital, Im Neuenheimer Feld 410, 69120, Heidelberg, Germany
| | - Hagen Meredig
- Department of Neuroradiology, Heidelberg University Hospital, Im Neuenheimer Feld 400, 69120, Heidelberg, Germany
| | - Birgit Friedmann-Bette
- Department of Sports Medicine (Internal Medicine VII), Medical Clinic, Heidelberg University Hospital, Im Neuenheimer Feld 410, 69120, Heidelberg, Germany
| | - Sabine Heiland
- Department of Neuroradiology, Heidelberg University Hospital, Im Neuenheimer Feld 400, 69120, Heidelberg, Germany
| | - Martin Bendszus
- Department of Neuroradiology, Heidelberg University Hospital, Im Neuenheimer Feld 400, 69120, Heidelberg, Germany
| | - Moritz Kronlage
- Department of Neuroradiology, Heidelberg University Hospital, Im Neuenheimer Feld 400, 69120, Heidelberg, Germany.
| |
Collapse
|
5
|
Strijkers GJ, Araujo EC, Azzabou N, Bendahan D, Blamire A, Burakiewicz J, Carlier PG, Damon B, Deligianni X, Froeling M, Heerschap A, Hollingsworth KG, Hooijmans MT, Karampinos DC, Loudos G, Madelin G, Marty B, Nagel AM, Nederveen AJ, Nelissen JL, Santini F, Scheidegger O, Schick F, Sinclair C, Sinkus R, de Sousa PL, Straub V, Walter G, Kan HE. Exploration of New Contrasts, Targets, and MR Imaging and Spectroscopy Techniques for Neuromuscular Disease - A Workshop Report of Working Group 3 of the Biomedicine and Molecular Biosciences COST Action BM1304 MYO-MRI. J Neuromuscul Dis 2020; 6:1-30. [PMID: 30714967 PMCID: PMC6398566 DOI: 10.3233/jnd-180333] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Neuromuscular diseases are characterized by progressive muscle degeneration and muscle weakness resulting in functional disabilities. While each of these diseases is individually rare, they are common as a group, and a large majority lacks effective treatment with fully market approved drugs. Magnetic resonance imaging and spectroscopy techniques (MRI and MRS) are showing increasing promise as an outcome measure in clinical trials for these diseases. In 2013, the European Union funded the COST (co-operation in science and technology) action BM1304 called MYO-MRI (www.myo-mri.eu), with the overall aim to advance novel MRI and MRS techniques for both diagnosis and quantitative monitoring of neuromuscular diseases through sharing of expertise and data, joint development of protocols, opportunities for young researchers and creation of an online atlas of muscle MRI and MRS. In this report, the topics that were discussed in the framework of working group 3, which had the objective to: Explore new contrasts, new targets and new imaging techniques for NMD are described. The report is written by the scientists who attended the meetings and presented their data. An overview is given on the different contrasts that MRI can generate and their application, clinical needs and desired readouts, and emerging methods.
Collapse
Affiliation(s)
| | - Ericky C.A. Araujo
- NMR Laboratory, Neuromuscular Investigation Center, Institute of Myology & NMR Laboratory, CEA/DRF/IBFJ/MIRCen, Paris, France
| | - Noura Azzabou
- NMR Laboratory, Neuromuscular Investigation Center, Institute of Myology & NMR Laboratory, CEA/DRF/IBFJ/MIRCen, Paris, France
| | | | - Andrew Blamire
- Institute of Cellular Medicine, Newcastle University, Newcastle-upon-Tyne, UK
| | - Jedrek Burakiewicz
- Department of Radiology, Leiden University Medical Center, Leiden, the Netherlands
| | - Pierre G. Carlier
- NMR Laboratory, Neuromuscular Investigation Center, Institute of Myology & NMR Laboratory, CEA/DRF/IBFJ/MIRCen, Paris, France
| | - Bruce Damon
- Vanderbilt University Medical Center, Nashville, USA
| | - Xeni Deligianni
- Department of Radiology, Division of Radiological Physics, University Hospital Basel, Basel, Switzerland & Department of Biomedical Engineering, University of Basel, Basel, Switzerland
| | | | - Arend Heerschap
- Radboud University Medical Center, Nijmegen, the Netherlands
| | | | | | | | | | | | - Benjamin Marty
- NMR Laboratory, Neuromuscular Investigation Center, Institute of Myology & NMR Laboratory, CEA/DRF/IBFJ/MIRCen, Paris, France
| | - Armin M. Nagel
- Institute of Radiology, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany & Division of Medical Physics in Radiology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | | | | | - Francesco Santini
- Department of Radiology, Division of Radiological Physics, University Hospital Basel, Basel, Switzerland & Department of Biomedical Engineering, University of Basel, Basel, Switzerland
| | - Olivier Scheidegger
- Department of Neurology, Inselspital, Bern University Hospital, University of Bern, Switzerland
| | - Fritz Schick
- University of Tübingen, Section on Experimental Radiology, Tübingen, Germany
| | | | | | | | - Volker Straub
- Institute of Cellular Medicine, Newcastle University, Newcastle-upon-Tyne, UK
| | | | - Hermien E. Kan
- Department of Radiology, Leiden University Medical Center, Leiden, the Netherlands
| |
Collapse
|
6
|
Abstract
Magnetic resonance imaging (MRI) has been used extensively in revealing pathological changes in the central nervous system. However, to date, MRI is very much underutilized in evaluating the peripheral nervous system (PNS). This underutilization is generally due to two perceived weaknesses in MRI: first, the need for very high resolution to image the small structures within the peripheral nerves to visualize morphological changes; second, the lack of normative data in MRI of the PNS and this makes reliable interpretation of the data difficult. This article reviews current state-of-the-art capabilities in
in vivo MRI of human peripheral nerves. It aims to identify areas where progress has been made and those that still require further improvement. In particular, with many new therapies on the horizon, this review addresses how MRI can be used to provide non-invasive and objective biomarkers in the evaluation of peripheral neuropathies. Although a number of techniques are available in diagnosing and tracking pathologies in the PNS, those techniques typically target the distal peripheral nerves, and distal nerves may be completely degenerated during the patient’s first clinic visit. These techniques may also not be able to access the proximal nerves deeply embedded in the tissue. Peripheral nerve MRI would be an alternative to circumvent these problems. In order to address the pressing clinical needs, this review closes with a clinical protocol at 3T that will allow high-resolution, high-contrast, quantitative MRI of the proximal peripheral nerves.
Collapse
Affiliation(s)
- Yongsheng Chen
- Department of Neurology, Wayne State University School of Medicine, Detroit, MI, 48201, USA
| | - E Mark Haacke
- Department of Radiology, Wayne State University School of Medicine, Detroit, MI, 48201, USA
| | - Jun Li
- Department of Neurology, Wayne State University School of Medicine, Detroit, MI, 48201, USA.,Center for Molecular Medicine & Genetics, Wayne State University School of Medicine, Detroit, MI, 48201, USA.,Department of Biochemistry, Microbiology and Immunology, Wayne State University School of Medicine, Detroit, MI, 48201, USA.,John D. Dingell VA Medical Center, Detroit, MI, 48201, USA
| |
Collapse
|
7
|
Sinclair CD, Morrow JM, Janiczek RL, Evans MR, Rawah E, Shah S, Hanna MG, Reilly MM, Yousry TA, Thornton JS. Stability and sensitivity of water T 2 obtained with IDEAL-CPMG in healthy and fat-infiltrated skeletal muscle. NMR IN BIOMEDICINE 2016; 29:1800-1812. [PMID: 27809381 PMCID: PMC5132140 DOI: 10.1002/nbm.3654] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2016] [Revised: 08/05/2016] [Accepted: 08/29/2016] [Indexed: 05/15/2023]
Abstract
Quantifying muscle water T2 (T2 -water) independently of intramuscular fat content is essential in establishing T2 -water as an outcome measure for imminent new therapy trials in neuromuscular diseases. IDEAL-CPMG combines chemical shift fat-water separation with T2 relaxometry to obtain such a measure. Here we evaluate the reproducibility and B1 sensitivity of IDEAL-CPMG T2 -water and fat fraction (f.f.) values in healthy subjects, and demonstrate the potential of the method to quantify T2 -water variation in diseased muscle displaying varying degrees of fatty infiltration. The calf muscles of 11 healthy individuals (40.5 ± 10.2 years) were scanned twice at 3 T with an inter-scan interval of 4 weeks using IDEAL-CPMG, and 12 patients with hypokalemic periodic paralysis (HypoPP) (42.3 ± 11.5 years) were also imaged. An exponential was fitted to the signal decay of the separated water and fat components to determine T2 -water and the fat signal amplitude muscle regions manually segmented. Overall mean calf-level muscle T2 -water in healthy subjects was 31.2 ± 2.0 ms, without significant inter-muscle differences (p = 0.37). Inter-subject and inter-scan coefficients of variation were 5.7% and 3.2% respectively for T2 -water and 41.1% and 15.4% for f.f. Bland-Altman mean bias and ±95% coefficients of repeatability were for T2 -water (0.15, -2.65, 2.95) ms and f.f. (-0.02, -1.99, 2.03)%. There was no relationship between T2 -water (ρ = 0.16, p = 0.07) or f.f. (ρ = 0.03, p = 0.7761) and B1 error or any correlation between T2 -water and f.f. in the healthy subjects (ρ = 0.07, p = 0.40). In HypoPP there was a measurable relationship between T2 -water and f.f. (ρ = 0.59, p < 0.001). IDEAL-CPMG provides a feasible way to quantify T2 -water in muscle that is reproducible and sensitive to meaningful physiological changes without post hoc modeling of the fat contribution. In patients, IDEAL-CPMG measured elevations in T2 -water and f.f. while showing a weak relationship between these parameters, thus showing promise as a practical means of quantifying muscle water in patient populations.
Collapse
Affiliation(s)
- Christopher D.J. Sinclair
- UCL Institute of Neurology, MRC Centre for Neuromuscular DiseasesLondonWC1N 3BGUK
- UCL Institute of Neurology, Neuroradiological Academic UnitLondonWC1N 3BGUK
| | - Jasper M. Morrow
- UCL Institute of Neurology, MRC Centre for Neuromuscular DiseasesLondonWC1N 3BGUK
| | | | - Matthew R.B. Evans
- UCL Institute of Neurology, MRC Centre for Neuromuscular DiseasesLondonWC1N 3BGUK
| | - Elham Rawah
- UCL Institute of Neurology, Neuroradiological Academic UnitLondonWC1N 3BGUK
| | - Sachit Shah
- UCL Institute of Neurology, Neuroradiological Academic UnitLondonWC1N 3BGUK
| | - Michael G. Hanna
- UCL Institute of Neurology, MRC Centre for Neuromuscular DiseasesLondonWC1N 3BGUK
| | - Mary M. Reilly
- UCL Institute of Neurology, MRC Centre for Neuromuscular DiseasesLondonWC1N 3BGUK
| | - Tarek A. Yousry
- UCL Institute of Neurology, MRC Centre for Neuromuscular DiseasesLondonWC1N 3BGUK
- UCL Institute of Neurology, Neuroradiological Academic UnitLondonWC1N 3BGUK
| | - John S. Thornton
- UCL Institute of Neurology, MRC Centre for Neuromuscular DiseasesLondonWC1N 3BGUK
- UCL Institute of Neurology, Neuroradiological Academic UnitLondonWC1N 3BGUK
| |
Collapse
|
8
|
Li W, Wang X, Miller FH, Larson AC. Chemical Shift magnetization transfer magnetic resonance imaging. Magn Reson Med 2016; 78:656-663. [PMID: 27579856 DOI: 10.1002/mrm.26383] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2015] [Revised: 07/22/2016] [Accepted: 07/23/2016] [Indexed: 01/19/2023]
Abstract
PURPOSE The purpose of this work was to develop a chemical shift magnetization transfer (CSMT) magnetic resonance imaging (MRI) method to provide accurate magnetization transfer ratio (MTR) measurements in the presence of fat. METHODS Numerical simulations were performed to compare MTR measurements at different echo times (TEs) for voxels with varying fat/water content. The CSMT approach was developed using water fraction estimates to correct for the impact of fat signal upon observed MTR measurements. The CSMT method was validated with oil/agarose phantom and animal studies. RESULTS Simulations demonstrated that the observed MTRs vary with water fraction as well as with the TE-dependent phase difference between fat and water signals; simulations also showed that a linear relationship exists between MTR and water fraction when fat and water signals are in phase. For phantom studies, observed MTR decreased with increasing oil fraction: 42.41 ± 0.54, 38.12 ± 0.33, 32.93 ± 0.56, and 26.08 ± 0.87 for 5% to 40% oil fractions, respectively, compared to 42.63 ± 1.04 for phantom containing 4% agarose only. These offsets were readily corrected with the additional acquisition of a water fraction map. CONCLUSION Fat fraction and TE can significantly impact observed MTR measurements. The new CSMT approach offers the potential to eliminate the effects of fat upon MTR measurements. Magn Reson Med 78:656-663, 2017. © 2016 International Society for Magnetic Resonance in Medicine.
Collapse
Affiliation(s)
- Weiguo Li
- Department of Radiology, Northwestern University, Chicago, Illinois, USA
| | - Xifu Wang
- Department of Radiology, Northwestern University, Chicago, Illinois, USA
| | - Frank H Miller
- Department of Radiology, Northwestern University, Chicago, Illinois, USA
| | - Andrew C Larson
- Department of Radiology, Northwestern University, Chicago, Illinois, USA
| |
Collapse
|
9
|
Morrow JM, Sinclair CDJ, Fischmann A, Machado PM, Reilly MM, Yousry TA, Thornton JS, Hanna MG. MRI biomarker assessment of neuromuscular disease progression: a prospective observational cohort study. Lancet Neurol 2015; 15:65-77. [PMID: 26549782 PMCID: PMC4672173 DOI: 10.1016/s1474-4422(15)00242-2] [Citation(s) in RCA: 251] [Impact Index Per Article: 25.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2014] [Revised: 08/10/2015] [Accepted: 09/04/2015] [Indexed: 12/17/2022]
Abstract
BACKGROUND A substantial impediment to progress in trials of new therapies in neuromuscular disorders is the absence of responsive outcome measures that correlate with patient functional deficits and are sensitive to early disease processes. Irrespective of the primary molecular defect, neuromuscular disorder pathological processes include disturbance of intramuscular water distribution followed by intramuscular fat accumulation, both quantifiable by MRI. In pathologically distinct neuromuscular disorders, we aimed to determine the comparative responsiveness of MRI outcome measures over 1 year, the validity of MRI outcome measures by cross-sectional correlation against functionally relevant clinical measures, and the sensitivity of specific MRI indices to early muscle water changes before intramuscular fat accumulation beyond the healthy control range. METHODS We did a prospective observational cohort study of patients with either Charcot-Marie-Tooth disease 1A or inclusion body myositis who were attending the inherited neuropathy or muscle clinics at the Medical Research Council (MRC) Centre for Neuromuscular Diseases, National Hospital for Neurology and Neurosurgery, London, UK. Genetic confirmation of the chromosome 17p11.2 duplication was required for Charcot-Marie-Tooth disease 1A, and classification as pathologically or clinically definite by MRC criteria was required for inclusion body myositis. Exclusion criteria were concomitant diseases and safety-related MRI contraindications. Healthy age-matched and sex-matched controls were also recruited. Assessments were done at baseline and 1 year. The MRI outcomes-fat fraction, transverse relaxation time (T2), and magnetisation transfer ratio (MTR)-were analysed during the 12-month follow-up, by measuring correlation with functionally relevant clinical measures, and for T2 and MTR, sensitivity in muscles with fat fraction less than the 95th percentile of the control group. FINDINGS Between Jan 19, 2010, and July 7, 2011, we recruited 20 patients with Charcot-Marie-Tooth disease 1A, 20 patients with inclusion body myositis, and 29 healthy controls (allocated to one or both of the 20-participant matched-control subgroups). Whole muscle fat fraction increased significantly during the 12-month follow-up at calf level (mean absolute change 1.2%, 95% CI 0.5-1.9, p=0.002) but not thigh level (0.2%, -0.2 to 0.6, p=0.38) in patients with Charcot-Marie-Tooth disease 1A, and at calf level (2.6%, 1.3-4.0, p=0.002) and thigh level (3.3%, 1.8-4.9, p=0.0007) in patients with inclusion body myositis. Fat fraction correlated with the lower limb components of the inclusion body myositis functional rating score (ρ=-0.64, p=0.002) and the Charcot-Marie-Tooth examination score (ρ=0.63, p=0.003). Longitudinal T2 and MTR changed consistently with fat fraction but more variably. In muscles with a fat fraction lower than the control group 95th percentile, T2 was increased in patients compared with controls (regression coefficients: inclusion body myositis thigh 4.0 ms [SE 0.5], calf 3.5 ms [0.6]; Charcot-Marie-Tooth 1A thigh 1.0 ms [0.3], calf 2.0 ms [0.3]) and MTR reduced compared with controls (inclusion body myositis thigh -1.5 percentage units [pu; 0.2], calf -1.1 pu [0.2]; Charcot-Marie-Tooth 1A thigh -0.3 pu [0.1], calf -0.7 pu [0.1]). INTERPRETATION MRI outcome measures can monitor intramuscular fat accumulation with high responsiveness, show validity by correlation with conventional functional measures, and detect muscle water changes preceding marked intramuscular fat accumulation. Confirmation of our results in further cohorts with these and other muscle-wasting disorders would suggest that MRI biomarkers might prove valuable in experimental trials. FUNDING Medical Research Council UK.
Collapse
Affiliation(s)
- Jasper M Morrow
- MRC Centre for Neuromuscular Diseases, UCL Institute of Neurology, London, UK
| | - Christopher D J Sinclair
- MRC Centre for Neuromuscular Diseases, UCL Institute of Neurology, London, UK; Neuroradiological Academic Unit, UCL Institute of Neurology, London, UK
| | - Arne Fischmann
- Neuroradiological Academic Unit, UCL Institute of Neurology, London, UK; Department of Radiology, University of Basel Hospital, Basel, Switzerland
| | - Pedro M Machado
- MRC Centre for Neuromuscular Diseases, UCL Institute of Neurology, London, UK
| | - Mary M Reilly
- MRC Centre for Neuromuscular Diseases, UCL Institute of Neurology, London, UK
| | - Tarek A Yousry
- MRC Centre for Neuromuscular Diseases, UCL Institute of Neurology, London, UK; Neuroradiological Academic Unit, UCL Institute of Neurology, London, UK; Lysholm Department of Neuroradiology, National Hospital for Neurology and Neurosurgery, London, UK.
| | - John S Thornton
- MRC Centre for Neuromuscular Diseases, UCL Institute of Neurology, London, UK; Neuroradiological Academic Unit, UCL Institute of Neurology, London, UK; Lysholm Department of Neuroradiology, National Hospital for Neurology and Neurosurgery, London, UK
| | - Michael G Hanna
- MRC Centre for Neuromuscular Diseases, UCL Institute of Neurology, London, UK
| |
Collapse
|
10
|
Dortch RD, Dethrage LM, Gore JC, Smith SA, Li J. Proximal nerve magnetization transfer MRI relates to disability in Charcot-Marie-Tooth diseases. Neurology 2014; 83:1545-53. [PMID: 25253751 DOI: 10.1212/wnl.0000000000000919] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
OBJECTIVE The objectives of this study were (1) to develop a novel magnetization transfer ratio (MTR) MRI assay of the proximal sciatic nerve (SN), which is inaccessible via current tools for assessing peripheral nerves, and (2) to evaluate the resulting MTR values as a potential biomarker of myelin content changes in patients with Charcot-Marie-Tooth (CMT) diseases. METHODS MTR was measured in the SN of patients with CMT type 1A (CMT1A, n = 10), CMT type 2A (CMT2A, n = 3), hereditary neuropathy with liability to pressure palsies (n = 3), and healthy controls (n = 21). Additional patients without a genetically confirmed subtype (n = 4), but whose family histories and electrophysiologic tests were consistent with CMT, were also included. The relationship between MTR and clinical neuropathy scores was assessed, and the interscan and inter-rater reliability of MTR was estimated. RESULTS Mean volumetric MTR values were significantly decreased in the SN of patients with CMT1A (33.8 ± 3.3 percent units) and CMT2A (31.5 ± 1.9 percent units) relative to controls (37.2 ± 2.3 percent units). A significant relationship between MTR and disability scores was also detected (p = 0.01 for genetically confirmed patients only, p = 0.04 for all patients). From interscan and inter-rater reliability analyses, proximal nerve MTR values were repeatable at the slicewise and mean volumetric levels. CONCLUSIONS MTR measurements may be a viable biomarker of proximal nerve pathology in patients with CMT.
Collapse
Affiliation(s)
- Richard D Dortch
- From the Department of Radiology and Radiological Sciences (R.D.D., J.C.G., S.A.S.), Vanderbilt University Institute of Imaging Science (R.D.D., L.M.D., J.C.G., S.A.S.), and the Departments of Biomedical Engineering (R.D.D., J.C.G., S.A.S.), Physics and Astronomy (J.C.G., S.A.S.), Molecular Physiology and Biophysics (J.C.G.), and Neurology (J.L.), Vanderbilt University, Nashville, TN.
| | - Lindsey M Dethrage
- From the Department of Radiology and Radiological Sciences (R.D.D., J.C.G., S.A.S.), Vanderbilt University Institute of Imaging Science (R.D.D., L.M.D., J.C.G., S.A.S.), and the Departments of Biomedical Engineering (R.D.D., J.C.G., S.A.S.), Physics and Astronomy (J.C.G., S.A.S.), Molecular Physiology and Biophysics (J.C.G.), and Neurology (J.L.), Vanderbilt University, Nashville, TN
| | - John C Gore
- From the Department of Radiology and Radiological Sciences (R.D.D., J.C.G., S.A.S.), Vanderbilt University Institute of Imaging Science (R.D.D., L.M.D., J.C.G., S.A.S.), and the Departments of Biomedical Engineering (R.D.D., J.C.G., S.A.S.), Physics and Astronomy (J.C.G., S.A.S.), Molecular Physiology and Biophysics (J.C.G.), and Neurology (J.L.), Vanderbilt University, Nashville, TN
| | - Seth A Smith
- From the Department of Radiology and Radiological Sciences (R.D.D., J.C.G., S.A.S.), Vanderbilt University Institute of Imaging Science (R.D.D., L.M.D., J.C.G., S.A.S.), and the Departments of Biomedical Engineering (R.D.D., J.C.G., S.A.S.), Physics and Astronomy (J.C.G., S.A.S.), Molecular Physiology and Biophysics (J.C.G.), and Neurology (J.L.), Vanderbilt University, Nashville, TN
| | - Jun Li
- From the Department of Radiology and Radiological Sciences (R.D.D., J.C.G., S.A.S.), Vanderbilt University Institute of Imaging Science (R.D.D., L.M.D., J.C.G., S.A.S.), and the Departments of Biomedical Engineering (R.D.D., J.C.G., S.A.S.), Physics and Astronomy (J.C.G., S.A.S.), Molecular Physiology and Biophysics (J.C.G.), and Neurology (J.L.), Vanderbilt University, Nashville, TN
| |
Collapse
|
11
|
Morrow JM, Sinclair CDJ, Fischmann A, Reilly MM, Hanna MG, Yousry TA, Thornton JS. Reproducibility, and age, body-weight and gender dependency of candidate skeletal muscle MRI outcome measures in healthy volunteers. Eur Radiol 2014; 24:1610-20. [PMID: 24748539 PMCID: PMC4046083 DOI: 10.1007/s00330-014-3145-6] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2013] [Revised: 02/12/2014] [Accepted: 03/05/2014] [Indexed: 12/27/2022]
Abstract
Objectives Quantitative magnetic resonance imaging (MRI) can potentially meet the pressing need for objective, sensitive, reproducible outcome measures in neuromuscular disease trials. We tested, in healthy volunteers, the consistency, reliability and sensitivity to normal inter-subject variation of MRI methods targeted to lower limb muscle pathology to inform the design of practical but comprehensive MRI outcome measure protocols for use in imminent patient studies. Methods Forty-seven healthy volunteers, age 21-81 years, were subject at 3T to three-point Dixon fat-fraction measurement, T1-relaxometry, T2-relaxometry and magnetisation transfer ratio (MTR) imaging at mid-thigh and mid-calf level bilaterally. Fifteen subjects underwent repeat imaging at 2 weeks. Results Mean between-muscle fat fraction and T2 differences were small, but significant (p < 0.001). Fat fraction and T2 correlated positively, and MTR negatively with subject age in both the thigh and calf, with similar significant correlations with weight at thigh level only (p < 0.001 to p < 0.05). Scan-rescan and inter-observer intra-class correlation coefficients ranged between 0.62-0.84 and 0.79-0.99 respectively. Conclusions Quantitative lower-limb muscle MRI using readily implementable methods was sensitive enough to demonstrate inter-muscle differences (small in health), and correlations with subject age and weight. In combination with high reliability, this strongly supports the suitability of these methods to provide longitudinal outcome measures in neuromuscular disease treatment trials. Key points • Quantitative lower limb muscle MRI provides potential outcome measures in neuromuscular diseases • Bilateral thigh/calf coverage using sequences sensitive to acute and chronic pathology • Measurements have excellent scan-rescan and interobserver reliability • Measurements show small but significant inter-subject age and weight dependency • Readily implementable sequences suitable for further assessment in patient studies Electronic supplementary material The online version of this article (doi:10.1007/s00330-014-3145-6) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Jasper M Morrow
- Medical Research Council Centre for Neuromuscular Diseases, Department of Molecular Neuroscience, UCL Institute of Neurology, Queen Square, London, WC1N 3BG, UK,
| | | | | | | | | | | | | |
Collapse
|
12
|
Vashaee S, Newling B, MacMillan B, Balcom BJ. B(1) mapping with a pure phase encode approach: quantitative density profiling. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2013; 232:68-75. [PMID: 23708332 DOI: 10.1016/j.jmr.2013.04.012] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/24/2012] [Revised: 04/16/2013] [Accepted: 04/17/2013] [Indexed: 06/02/2023]
Abstract
In MRI, it is frequently observed that naturally uniform samples do not have uniform image intensities. In many cases this non-uniform image intensity is due to an inhomogeneous B1 field. The 'principle of reciprocity' states that the received signal is proportional to the local magnitude of the applied B1 field per unit current. Inhomogeneity in the B1 field results in signal intensity variations that limit the ability of MRI to yield quantitative information. In this paper a novel method is described for mapping B1 inhomogeneities based on measurement of the B1 field employing centric-scan pure phase encode MRI measurements. The resultant B1 map may be employed to correct related non-uniformities in MR images. The new method is based on acquiring successive images with systematically incremented low flip angle excitation pulses. The local image intensity variation is proportional to B1(2), which ensures high sensitivity to B1 field variations. Pure phase encoding ensures the resultant B1 field maps are free from distortions caused by susceptibility variation, chemical shift and paramagnetic impurities. Hence, the method works well in regions of space that are not accessible to other methods such as in the vicinity of conductive metallic structures, such as the RF probe itself. Quantitative density images result when the centric scan pure phase encode measurement is corrected with a relative or absolute B1 field map. The new technique is simple, reliable and robust.
Collapse
Affiliation(s)
- S Vashaee
- UNB MRI Centre, Department of Physics, University of New Brunswick, Fredericton, New Brunswick, Canada E3B 5A3
| | | | | | | |
Collapse
|
13
|
Abstract
High resolution and high field magnetic resonance neurography (MR neurography, MRN) is shown to have excellent anatomic capability. There have been considerable advances in the technology in the last few years leading to various feasibility studies using different structural and functional imaging approaches in both clinical and research settings. This paper is intended to be a useful seminar for readers who want to gain knowledge of the advancements in the MRN pulse sequences currently used in clinical practice as well as learn about the other techniques on the horizon aimed at better depiction of nerve anatomy, pathology, and potential noninvasive evaluation of nerve degeneration or regeneration.
Collapse
|