1
|
Komatsu C, van der Merwe Y, He L, Kasi A, Sims JR, Miller MR, Rosner IA, Khatter NJ, Su AJA, Schuman JS, Washington KM, Chan KC. In vivo MRI evaluation of anterograde manganese transport along the visual pathway following whole eye transplantation. J Neurosci Methods 2022; 372:109534. [PMID: 35202613 PMCID: PMC8940646 DOI: 10.1016/j.jneumeth.2022.109534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Revised: 02/12/2022] [Accepted: 02/18/2022] [Indexed: 11/17/2022]
Abstract
BACKGROUND Since adult mammalian retinal ganglion cells cannot regenerate after injury, we have recently established a whole-eye transplantation (WET) rat model that provides an intact optical system to investigate potential surgical restoration of irreversible vision loss. However, it remains to be elucidated whether physiological axoplasmic transport exists in the transplanted visual pathway. New Method: We developed an in vivo imaging model system to assess WET integration using manganese-enhanced magnetic resonance imaging (MEMRI) in rats. Since Mn2+ is a calcium analogue and an active T1-positive contrast agent, the levels of anterograde manganese transport can be evaluated in the visual pathways upon intravitreal Mn2+ administration into both native and transplanted eyes. RESULTS No significant intraocular pressure difference was found between native and transplanted eyes, whereas comparable manganese enhancement was observed between native and transplanted intraorbital optic nerves, suggesting the presence of anterograde manganese transport after WET. No enhancement was detected across the coaptation site in the higher visual areas of the recipient brain. Comparison with Existing Methods: Existing imaging methods to assess WET focus on either the eye or local optic nerve segments without direct visualization and longitudinal quantification of physiological transport along the transplanted visual pathway, hence the development of in vivo MEMRI. CONCLUSION Our established imaging platform indicated that essential physiological transport exists in the transplanted optic nerve after WET. As neuroregenerative approaches are being developed to connect the transplanted eye to the recipient's brain, in vivo MEMRI is well-suited to guide strategies for successful WET integration for vision restoration. Keywords (Max 6): Anterograde transport, magnetic resonance imaging, manganese, neuroregeneration, optic nerve, whole-eye transplantation.
Collapse
Affiliation(s)
- Chiaki Komatsu
- Department of Plastic and Reconstructive Surgery, Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, United States
| | - Yolandi van der Merwe
- Department of Ophthalmology, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
| | - Lin He
- Department of Plastic and Reconstructive Surgery, Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, United States; Department of Plastic, Aesthetic & Maxillofacial Surgery, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Anisha Kasi
- Department of Ophthalmology, NYU Grossman School of Medicine, NYU Langone Health, New York University, New York, NY, United States
| | - Jeffrey R Sims
- Department of Ophthalmology, NYU Grossman School of Medicine, NYU Langone Health, New York University, New York, NY, United States
| | - Maxine R Miller
- Department of Plastic and Reconstructive Surgery, Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, United States; Department of Ophthalmology, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
| | - Ian A Rosner
- Department of Plastic and Reconstructive Surgery, Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, United States
| | - Neil J Khatter
- Division of Plastic and Reconstructive Surgery, Department of Surgery, University of Colorado, Denver, CO, United States; William Beaumont School of Medicine, Oakland University, Rochester, MI, United States
| | - An-Jey A Su
- Department of Plastic and Reconstructive Surgery, Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, United States; Division of Plastic and Reconstructive Surgery, Department of Surgery, University of Colorado, Denver, CO, United States
| | - Joel S Schuman
- Department of Ophthalmology, NYU Grossman School of Medicine, NYU Langone Health, New York University, New York, NY, United States; Neuroscience Institute, NYU Grossman School of Medicine, NYU Langone Health, New York University, New York, NY, United States; Center for Neural Science, College of Arts and Science, New York University, New York, NY, United States; Department of Biomedical Engineering, Tandon School of Engineering, New York University, New York, NY, United States
| | - Kia M Washington
- Department of Plastic and Reconstructive Surgery, Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, United States; Department of Ophthalmology, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States; Division of Plastic and Reconstructive Surgery, Department of Surgery, University of Colorado, Denver, CO, United States; Veterans Administration Pittsburgh Healthcare System, Pittsburgh, PA, United States
| | - Kevin C Chan
- Department of Ophthalmology, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States; Department of Ophthalmology, NYU Grossman School of Medicine, NYU Langone Health, New York University, New York, NY, United States; Neuroscience Institute, NYU Grossman School of Medicine, NYU Langone Health, New York University, New York, NY, United States; Center for Neural Science, College of Arts and Science, New York University, New York, NY, United States; Department of Biomedical Engineering, Tandon School of Engineering, New York University, New York, NY, United States; Department of Radiology, NYU Grossman School of Medicine, NYU Langone Health, New York University, New York, NY, United States.
| |
Collapse
|
2
|
Wang J, Zhao J, Li S. Research progress on the therapeutic effect of olfactory ensheathing cell transplantation on ischemic stroke. JOURNAL OF NEURORESTORATOLOGY 2021. [DOI: 10.26599/jnr.2021.9040012] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
Olfactory ensheathing cells (OECs) are a special type of glial cell in the olfactory system, which exhibit neuroprotective, immunomodulatory, and angiogenic effects. Although many studies have focused on the reversal of demyelination and axonal degeneration (during spinal cord injury) by OECs, few reports have focused on the ability of OECs to repair ischemic nerve injury. This article reviews the protective effects of OEC transplantation in ischemic stroke and provides a theoretical basis and new strategy for OEC transplantation in the treatment of ischemic stroke.
Collapse
|
3
|
Xiao Z, Tang Z, Wu L, Feng X, Sun X, Tang W, Wang J, Jin L, Wang R. Manganese-enhanced magnetic resonance imaging in the whole visual pathway: chemical identification and neurotoxic changes. Acta Radiol 2019; 60:1653-1662. [PMID: 30922072 DOI: 10.1177/0284185119840227] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Affiliation(s)
- Zebin Xiao
- Department of Radiology, Eye & ENT Hospital of Shanghai Medical School, Fudan University, Shanghai, PR China
| | - Zuohua Tang
- Department of Radiology, Eye & ENT Hospital of Shanghai Medical School, Fudan University, Shanghai, PR China
| | - Lingjie Wu
- Department of Otolaryngology, Eye & ENT Hospital of Shanghai Medical School, Fudan University, Shanghai, PR China
| | - Xiaoyuan Feng
- Department of Radiology, Huashan Hospital of Shanghai Medical School, Fudan University, Shanghai, PR China
| | - Xinghuai Sun
- Department of Ophthalmology & Visual Science, Eye & ENT Hospital of Shanghai Medical School, State Key Laboratory of Medical Neurobiology, Institutes of Brain Science, Fudan University, Key Laboratory of Myopia, NHFPC (Fudan University), and Shanghai Key Laboratory of Visual Impairment and Restoration, Fudan University, Shanghai, PR China
| | - Weijun Tang
- Department of Radiology, Huashan Hospital of Shanghai Medical School, Fudan University, Shanghai, PR China
| | - Jie Wang
- Department of Radiotherapy, Eye & ENT Hospital of Shanghai Medical School, Fudan University, Shanghai, PR China
| | - Lixin Jin
- Siemens Ltd., Healthcare Sector, Shanghai, PR China
| | - Rong Wang
- Department of Radiology, Eye & ENT Hospital of Shanghai Medical School, Fudan University, Shanghai, PR China
| |
Collapse
|
4
|
Bastakis GG, Ktena N, Karagogeos D, Savvaki M. Models and treatments for traumatic optic neuropathy and demyelinating optic neuritis. Dev Neurobiol 2019; 79:819-836. [PMID: 31297983 DOI: 10.1002/dneu.22710] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2019] [Revised: 07/04/2019] [Accepted: 07/05/2019] [Indexed: 02/06/2023]
Abstract
Pathologies of the optic nerve could result as primary insults in the visual tract or as secondary deficits due to inflammation, demyelination, or compressing effects of the surrounding tissue. The extent of damage may vary from mild to severe, differently affecting patient vision, with the most severe forms leading to complete uni- or bilateral visual loss. The aim of researchers and clinicians in the field is to alleviate the symptoms of these, yet uncurable pathologies, taking advantage of known and novel potential therapeutic approaches, alone or in combinations, and applying them in a limited time window after the insult. In this review, we discuss the epidemiological and clinical profile as well as the pathophysiological mechanisms of two main categories of optic nerve pathologies, namely traumatic optic neuropathy and optic neuritis, focusing on the demyelinating form of the latter. Moreover, we report on the main rodent models mimicking these pathologies or some of their clinical aspects. The current treatment options will also be reviewed and novel approaches will be discussed.
Collapse
Affiliation(s)
| | - Niki Ktena
- University of Crete Faculty of Medicine, Heraklion, Greece.,Institute of Molecular Biology and Biotechnology, Heraklion, Greece
| | - Domna Karagogeos
- University of Crete Faculty of Medicine, Heraklion, Greece.,Institute of Molecular Biology and Biotechnology, Heraklion, Greece
| | - Maria Savvaki
- University of Crete Faculty of Medicine, Heraklion, Greece.,Institute of Molecular Biology and Biotechnology, Heraklion, Greece
| |
Collapse
|
5
|
Deng W, Faiq MA, Liu C, Adi V, Chan KC. Applications of Manganese-Enhanced Magnetic Resonance Imaging in Ophthalmology and Visual Neuroscience. Front Neural Circuits 2019; 13:35. [PMID: 31156399 PMCID: PMC6530364 DOI: 10.3389/fncir.2019.00035] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2019] [Accepted: 04/26/2019] [Indexed: 12/21/2022] Open
Abstract
Understanding the mechanisms of vision in health and disease requires knowledge of the anatomy and physiology of the eye and the neural pathways relevant to visual perception. As such, development of imaging techniques for the visual system is crucial for unveiling the neural basis of visual function or impairment. Magnetic resonance imaging (MRI) offers non-invasive probing of the structure and function of the neural circuits without depth limitation, and can help identify abnormalities in brain tissues in vivo. Among the advanced MRI techniques, manganese-enhanced MRI (MEMRI) involves the use of active manganese contrast agents that positively enhance brain tissue signals in T1-weighted imaging with respect to the levels of connectivity and activity. Depending on the routes of administration, accumulation of manganese ions in the eye and the visual pathways can be attributed to systemic distribution or their local transport across axons in an anterograde fashion, entering the neurons through voltage-gated calcium channels. The use of the paramagnetic manganese contrast in MRI has a wide range of applications in the visual system from imaging neurodevelopment to assessing and monitoring neurodegeneration, neuroplasticity, neuroprotection, and neuroregeneration. In this review, we present four major domains of scientific inquiry where MEMRI can be put to imperative use — deciphering neuroarchitecture, tracing neuronal tracts, detecting neuronal activity, and identifying or differentiating glial activity. We deliberate upon each category studies that have successfully employed MEMRI to examine the visual system, including the delivery protocols, spatiotemporal characteristics, and biophysical interpretation. Based on this literature, we have identified some critical challenges in the field in terms of toxicity, and sensitivity and specificity of manganese enhancement. We also discuss the pitfalls and alternatives of MEMRI which will provide new avenues to explore in the future.
Collapse
Affiliation(s)
- Wenyu Deng
- NYU Langone Eye Center, Department of Ophthalmology, NYU School of Medicine, NYU Langone Health, New York University, New York, NY, United States
| | - Muneeb A Faiq
- NYU Langone Eye Center, Department of Ophthalmology, NYU School of Medicine, NYU Langone Health, New York University, New York, NY, United States
| | - Crystal Liu
- NYU Langone Eye Center, Department of Ophthalmology, NYU School of Medicine, NYU Langone Health, New York University, New York, NY, United States
| | - Vishnu Adi
- NYU Langone Eye Center, Department of Ophthalmology, NYU School of Medicine, NYU Langone Health, New York University, New York, NY, United States
| | - Kevin C Chan
- NYU Langone Eye Center, Department of Ophthalmology, NYU School of Medicine, NYU Langone Health, New York University, New York, NY, United States.,Department of Radiology, NYU School of Medicine, NYU Langone Health, New York University, New York, NY, United States.,Center for Neural Science, Faculty of Arts and Science, New York University, New York, NY, United States
| |
Collapse
|
6
|
Cloyd RA, Koren SA, Abisambra JF. Manganese-Enhanced Magnetic Resonance Imaging: Overview and Central Nervous System Applications With a Focus on Neurodegeneration. Front Aging Neurosci 2018; 10:403. [PMID: 30618710 PMCID: PMC6300587 DOI: 10.3389/fnagi.2018.00403] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2018] [Accepted: 11/23/2018] [Indexed: 12/16/2022] Open
Abstract
Manganese-enhanced magnetic resonance imaging (MEMRI) rose to prominence in the 1990s as a sensitive approach to high contrast imaging. Following the discovery of manganese conductance through calcium-permeable channels, MEMRI applications expanded to include functional imaging in the central nervous system (CNS) and other body systems. MEMRI has since been employed in the investigation of physiology in many animal models and in humans. Here, we review historical perspectives that follow the evolution of applied MRI research into MEMRI with particular focus on its potential toxicity. Furthermore, we discuss the more current in vivo investigative uses of MEMRI in CNS investigations and the brief but decorated clinical usage of chelated manganese compound mangafodipir in humans.
Collapse
Affiliation(s)
- Ryan A Cloyd
- Department of Physiology, University of Kentucky, Lexington, KY, United States.,College of Medicine, University of Kentucky, Lexington, KY, United States.,Sanders-Brown Center on Aging, University of Kentucky, Lexington, KY, United States
| | - Shon A Koren
- Department of Physiology, University of Kentucky, Lexington, KY, United States.,Sanders-Brown Center on Aging, University of Kentucky, Lexington, KY, United States.,Department of Neuroscience & Center for Translational Research in Neurodegenerative Disease, University of Florida, Gainesville, FL, United States
| | - Jose F Abisambra
- Department of Physiology, University of Kentucky, Lexington, KY, United States.,Sanders-Brown Center on Aging, University of Kentucky, Lexington, KY, United States.,Department of Neuroscience & Center for Translational Research in Neurodegenerative Disease, University of Florida, Gainesville, FL, United States.,Spinal Cord and Brain Injury Research Center, University of Kentucky, Lexington, KY, United States
| |
Collapse
|
7
|
Cen LP, Ng TK, Liang JJ, Zhuang X, Yao X, Yam GHF, Chen H, Cheung HS, Zhang M, Pang CP. Human Periodontal Ligament-Derived Stem Cells Promote Retinal Ganglion Cell Survival and Axon Regeneration After Optic Nerve Injury. Stem Cells 2018; 36:844-855. [PMID: 29476565 DOI: 10.1002/stem.2812] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2017] [Revised: 02/06/2018] [Accepted: 02/12/2018] [Indexed: 02/05/2023]
Abstract
Optic neuropathies are the leading cause of irreversible blindness and visual impairment in the developed countries, affecting more than 80 million people worldwide. While most optic neuropathies have no effective treatment, there is intensive research on retinal ganglion cell (RGC) protection and axon regeneration. We previously demonstrated potential of human periodontal ligament-derived stem cells (PDLSCs) for retinal cell replacement. Here, we report the neuroprotective effect of human PDLSCs to ameliorate RGC degeneration and promote axonal regeneration after optic nerve crush (ONC) injury. Human PDLSCs were intravitreally injected into the vitreous chamber of adult Fischer rats after ONC in vivo as well as cocultured with retinal explants in vitro. Human PDLSCs survived in the vitreous chamber and were maintained on the RGC layer even at 3 weeks after ONC. Immunofluorescence analysis of βIII-tubulin and Gap43 showed that the numbers of surviving RGCs and regenerating axons were significantly increased in the rats with human PDLSC transplantation. In vitro coculture experiments confirmed that PDLSCs enhanced RGC survival and neurite regeneration in retinal explants without inducing inflammatory responses. Direct cell-cell interaction and elevated brain-derived neurotrophic factor secretion, but not promoting endogenous progenitor cell regeneration, were the RGC protective mechanisms of human PDLSCs. In summary, our results revealed the neuroprotective role of human PDLSCs by strongly promoting RGC survival and axonal regeneration both in vivo and in vitro, indicating a therapeutic potential for RGC protection against optic neuropathies. Stem Cells 2018;36:844-855.
Collapse
Affiliation(s)
- Ling-Ping Cen
- Joint Shantou International Eye Center of Shantou University and The Chinese University of Hong Kong, Shantou, People's Republic of China
| | - Tsz Kin Ng
- Joint Shantou International Eye Center of Shantou University and The Chinese University of Hong Kong, Shantou, People's Republic of China
- Department of Ophthalmology and Visual Sciences, The Chinese University of Hong Kong, Sha Tin, Hong Kong
| | - Jia-Jian Liang
- Joint Shantou International Eye Center of Shantou University and The Chinese University of Hong Kong, Shantou, People's Republic of China
| | - Xi Zhuang
- Joint Shantou International Eye Center of Shantou University and The Chinese University of Hong Kong, Shantou, People's Republic of China
| | - Xiaowu Yao
- Dentistry Department, Second Affiliated Hospital, Shantou University Medical College, Shantou, People's Republic of China
| | - Gary Hin-Fai Yam
- Department of Ophthalmology and Visual Sciences, The Chinese University of Hong Kong, Sha Tin, Hong Kong
| | - Haoyu Chen
- Joint Shantou International Eye Center of Shantou University and The Chinese University of Hong Kong, Shantou, People's Republic of China
| | - Herman S Cheung
- Department of Biomedical Engineering, College of Engineering, University of Miami, Coral Gables, Florida, USA
| | - Mingzhi Zhang
- Joint Shantou International Eye Center of Shantou University and The Chinese University of Hong Kong, Shantou, People's Republic of China
| | - Chi Pui Pang
- Joint Shantou International Eye Center of Shantou University and The Chinese University of Hong Kong, Shantou, People's Republic of China
- Department of Ophthalmology and Visual Sciences, The Chinese University of Hong Kong, Sha Tin, Hong Kong
| |
Collapse
|
8
|
The Therapeutic Effects after Transplantation of Whole-Layer Olfactory Mucosa in Rats with Optic Nerve Injury. BIOMED RESEARCH INTERNATIONAL 2018; 2018:6069756. [PMID: 29713644 PMCID: PMC5866852 DOI: 10.1155/2018/6069756] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/15/2017] [Revised: 12/18/2017] [Accepted: 01/03/2018] [Indexed: 01/14/2023]
Abstract
Background Existing evidence suggests the potential therapy of transplanting olfactory ensheathing cells (OEC) either alone or in combination with neurotrophic factors or other cell types in optic nerve injury (ONI). However, clinical use of autologous OEC in the acute stages of ONI is not possible. On the other hand, acute application of heterologous transplantation may bring the issue of immune rejection. The olfactory mucosa (OM) with OEC in the lamina propria layer is located in the upper region of the nasal cavity and is easy to dissect under nasal endoscopy, which makes it a candidate as autograft material in acute stages of ONI. To investigate the potential of the OM on the protection of injured neurons and on the promotion of axonal regeneration, we developed a transplantation of syngenic OM in rats with ONI model. Methods After the right optic nerve was crushed in Lewis rats, pieces of syngenic whole-layer OM were transplanted into the lesion. Rats undergoing phosphate buffered saline (PBS) injection were used as negative controls (NC). The authors evaluated the regeneration of retinal ganglion cells (RGCs) and axons for 3, 7, 14, and 28 days after transplantation. Obtained retinas and optic nerves were analyzed histologically. Results Transplantations of OM significantly promoted the survival of retinal ganglion cells (RGCs) and axonal growth of RGCs compared with PBS alone. Moreover, OM group was associated with higher expression of GAP-43 in comparison with the PBS group. In addition to the potential effects on RGCs, transplantations of OM significantly decreased the expression of GFAP in the retinas, suggesting inhibiting astrocyte activation. Conclusions Transplantation of whole-layer OM in rats contributes to the neuronal survival and axon regeneration after ONI.
Collapse
|
9
|
Bollaerts I, Veys L, Geeraerts E, Andries L, De Groef L, Buyens T, Salinas-Navarro M, Moons L, Van Hove I. Complementary research models and methods to study axonal regeneration in the vertebrate retinofugal system. Brain Struct Funct 2017; 223:545-567. [DOI: 10.1007/s00429-017-1571-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2017] [Accepted: 11/15/2017] [Indexed: 01/18/2023]
|
10
|
Effects of Neural Stem Cell and Olfactory Ensheathing Cell Co-transplants on Tissue Remodelling After Transient Focal Cerebral Ischemia in the Adult Rat. Neurochem Res 2017; 42:1599-1609. [PMID: 28120153 DOI: 10.1007/s11064-016-2098-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2016] [Revised: 10/27/2016] [Accepted: 11/01/2016] [Indexed: 02/08/2023]
Abstract
Effective transplant-mediated repair of ischemic brain lesions entails extensive tissue remodeling, especially in the ischemic core. Neural stem cells (NSCs) are promising reparative candidates for stroke induced lesions, however, their survival and integration with the host-tissue post-transplantation is poor. In this study, we address this challenge by testing whether co-grafting of NSCs with olfactory ensheathing cells (OECs), a special type of glia with proven neuroprotective, immunomodulatory, and angiogenic effects, can promote graft survival and host tissue remodelling. Transient focal cerebral ischemia was induced in adult rats by a 60-min middle cerebral artery occlusion (MCAo) followed by reperfusion. Ischemic lesions were verified by neurological testing and magnetic resonance imaging. Transplantation into the globus pallidus of NSCs alone or in combination with OECs was performed at two weeks post-MCAo, followed by histological analyses at three weeks post-transplantation. We found evidence of extensive vascular remodelling in the ischemic core as well as evidence of NSC motility away from the graft and into the infarct border in severely lesioned animals co-grafted with OECs. These findings support a possible role of OECs as part of an in situ tissue engineering paradigm for transplant mediated repair of ischemic brain lesions.
Collapse
|
11
|
McDonagh BH, Singh G, Hak S, Bandyopadhyay S, Augestad IL, Peddis D, Sandvig I, Sandvig A, Glomm WR. L-DOPA-Coated Manganese Oxide Nanoparticles as Dual MRI Contrast Agents and Drug-Delivery Vehicles. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2016; 12:301-306. [PMID: 26619158 DOI: 10.1002/smll.201502545] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2015] [Revised: 09/28/2015] [Indexed: 06/05/2023]
Abstract
Manganese oxide nanoparticles (MONPs) are capable of time-dependent magnetic resonance imaging contrast switching as well as releasing a surface-bound drug. MONPs give T2/T2* contrast, but dissolve and release T1-active Mn(2+) and L-3,4-dihydroxyphenylalanine. Complementary images are acquired with a single contrast agent, and applications toward Parkinson's disease are suggested.
Collapse
Affiliation(s)
- Birgitte Hjelmeland McDonagh
- Uglestad Laboratory, Department of Chemical Engineering, Norwegian University of Science and Technology, 7491, Trondheim, Norway
| | - Gurvinder Singh
- Department of Materials Science and Engineering, Norwegian University of Science and Technology, 7491, Trondheim, Norway
| | - Sjoerd Hak
- Department of Circulation and Medical Imaging, Norwegian University of Science and Technology, 7491, Trondheim, Norway
| | - Sulalit Bandyopadhyay
- Uglestad Laboratory, Department of Chemical Engineering, Norwegian University of Science and Technology, 7491, Trondheim, Norway
| | - Ingrid Lovise Augestad
- Department of Neuroscience, Norwegian University of Science and Technology, 7491, Trondheim, Norway
| | - Davide Peddis
- Institute of Structure and Matter, National Research Council, 00015, Monterotondo, Scalo, Italy
| | - Ioanna Sandvig
- Department of Neuroscience, Norwegian University of Science and Technology, 7491, Trondheim, Norway
- John Van Geest Centre for Brain Repair, Department of Clinical Neurosciences, University of Cambridge, CB2 OPY, Cambridge, UK
| | - Axel Sandvig
- Department of Neuroscience, Norwegian University of Science and Technology, 7491, Trondheim, Norway
- Division of Pharmacology and Clinical Neurosciences, Department of Neurosurgery, Umeå University, 901 87, Umeå, Sweden
| | - Wilhelm Robert Glomm
- Uglestad Laboratory, Department of Chemical Engineering, Norwegian University of Science and Technology, 7491, Trondheim, Norway
- Sector for Biotechnology and Nanomedicine, SINTEF Materials and Chemistry, 7465, Trondheim, Norway
| |
Collapse
|
12
|
Jendelová P, Kubinová Š, Sandvig I, Erceg S, Sandvig A, Syková E. Current developments in cell- and biomaterial-based approaches for stroke repair. Expert Opin Biol Ther 2015; 16:43-56. [DOI: 10.1517/14712598.2016.1094457] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
13
|
Bade AN, Zhou B, McMillan J, Narayanasamy P, Veerubhotla R, Gendelman HE, Boska MD, Liu Y. Potential of N-acetylated-para-aminosalicylic acid to accelerate manganese enhancement decline for long-term MEMRI in rodent brain. J Neurosci Methods 2015; 251:92-8. [PMID: 26004847 DOI: 10.1016/j.jneumeth.2015.05.013] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2015] [Revised: 05/14/2015] [Accepted: 05/15/2015] [Indexed: 11/25/2022]
Abstract
BACKGROUND Manganese (Mn(2+))-enhanced MRI (MEMRI) is a valuable imaging tool to study brain structure and function in normal and diseased small animals. The brain retention of Mn(2+) is relatively long with a half-life (t1/2) of 51-74 days causing a slow decline of MRI signal enhancement following Mn(2+) administration. Such slow decline limits using repeated MEMRI to follow the central nervous system longitudinally in weeks or months. This is because residual Mn(2+) from preceding administrations can confound the interpretation of imaging results. We investigated whether the Mn(2+) enhancement decline could be accelerated thus enabling repeated MEMRI, and as a consequence broadens the utility of MEMRI tests. NEW METHODS We investigated whether N-acetyl-para-aminosalicylic acid (AcPAS), a chelator of Mn(2+), could affect the decline of Mn(2+) induced MRI enhancement in brain. RESULTS AND CONCLUSION Two-week treatment with AcPAS (200mg/kg/dose×3 daily) accelerated the decline of Mn(2+) induced enhancement in MRI. In the whole brain on average the enhancement declined from 100% to 17% in AcPAS treated mice, while in PBS controls the decline is from 100% to 27%. We posit that AcPAS could enhance MEMRI utility for evaluating brain biology in small animals. COMPARISON WITH EXISTING METHODS To the best of our knowledge, no method exists to accelerate the decline of the Mn(2+) induced MRI enhancement for repeated MEMRI tests.
Collapse
Affiliation(s)
- Aditya N Bade
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, 68198-5800, United States
| | - Biyun Zhou
- Department of Anesthesiology, Tongji Medical College, Huanzhong University of Science and Technology, China
| | - JoEllyn McMillan
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, 68198-5800, United States
| | - Prabagaran Narayanasamy
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, 68198-5800, United States; Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, NE, 68198-5900, United States
| | - Ram Veerubhotla
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, 68198-5800, United States
| | - Howard E Gendelman
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, 68198-5800, United States
| | - Michael D Boska
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, 68198-5800, United States; Department of Radiology, University of Nebraska Medical Center, Omaha, NE, 68198-1045, United States
| | - Yutong Liu
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, 68198-5800, United States; Department of Radiology, University of Nebraska Medical Center, Omaha, NE, 68198-1045, United States.
| |
Collapse
|
14
|
Sandvig I, Karstensen K, Rokstad AM, Aachmann FL, Formo K, Sandvig A, Skjåk-Braek G, Strand BL. RGD-peptide modified alginate by a chemoenzymatic strategy for tissue engineering applications. J Biomed Mater Res A 2014; 103:896-906. [DOI: 10.1002/jbm.a.35230] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2014] [Revised: 04/15/2014] [Accepted: 05/13/2014] [Indexed: 01/20/2023]
Affiliation(s)
- Ioanna Sandvig
- MI Lab and Department of Circulation and Medical Imaging; Norwegian University of Science and Technology; Trondheim Norway
| | - Kristin Karstensen
- Department of Biotechnology, NOBIPOL; Norwegian University of Science and Technology; Trondheim Norway
| | - Anne Mari Rokstad
- Department of Cancer Research and Molecular Medicine; Norwegian University of Science and Technology; Trondheim Norway
- Central Norwegian Regional Health Authority; St. Olav's Hospital, Trondheim University Hospital; Trondheim Norway
| | - Finn Lillelund Aachmann
- Department of Biotechnology, NOBIPOL; Norwegian University of Science and Technology; Trondheim Norway
| | - Kjetil Formo
- Department of Biotechnology, NOBIPOL; Norwegian University of Science and Technology; Trondheim Norway
| | - Axel Sandvig
- MI Lab and Department of Circulation and Medical Imaging; Norwegian University of Science and Technology; Trondheim Norway
- Department of Neurosurgery; Umeå University Hospital; Umeå Sweden
| | - Gudmund Skjåk-Braek
- Department of Biotechnology, NOBIPOL; Norwegian University of Science and Technology; Trondheim Norway
| | - Berit Løkensgard Strand
- Department of Biotechnology, NOBIPOL; Norwegian University of Science and Technology; Trondheim Norway
- Department of Cancer Research and Molecular Medicine; Norwegian University of Science and Technology; Trondheim Norway
- Central Norwegian Regional Health Authority; St. Olav's Hospital, Trondheim University Hospital; Trondheim Norway
| |
Collapse
|
15
|
Roose D, Leroux F, De Vocht N, Guglielmetti C, Pintelon I, Adriaensen D, Ponsaerts P, Van der Linden A, Bals S. Multimodal imaging of micron-sized iron oxide particles following in vitro and in vivo uptake by stem cells: down to the nanometer scale. CONTRAST MEDIA & MOLECULAR IMAGING 2014; 9:400-8. [PMID: 24753446 DOI: 10.1002/cmmi.1594] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2013] [Revised: 10/10/2013] [Accepted: 01/08/2014] [Indexed: 11/08/2022]
Abstract
In this study, the interaction between cells and micron-sized paramagnetic iron oxide (MPIO) particles was investigated by characterizing MPIO in their original state, and after cellular uptake in vitro as well as in vivo. Moreover, MPIO in the olfactory bulb were studied 9 months after injection. Using various imaging techniques, cell-MPIO interactions were investigated with increasing spatial resolution. Live cell confocal microscopy demonstrated that MPIO co-localize with lysosomes after in vitro cellular uptake. In more detail, a membrane surrounding the MPIO was observed by high-angle annular dark-field scanning transmission electron microscopy (HAADF-STEM). Following MPIO uptake in vivo, the same cell-MPIO interaction was observed by HAADF-STEM in the subventricular zone at 1 week and in the olfactory bulb at 9 months after MPIO injection. These findings provide proof for the current hypothesis that MPIO are internalized by the cell through endocytosis. The results also show MPIO are not biodegradable, even after 9 months in the brain. Moreover, they show the possibility of HAADF-STEM generating information on the labeled cell as well as on the MPIO. In summary, the methodology presented here provides a systematic route to investigate the interaction between cells and nanoparticles from the micrometer level down to the nanometer level and beyond.
Collapse
Affiliation(s)
- Dimitri Roose
- EMAT, University of Antwerp, Antwerp, Belgium; Bio-Imaging Lab, University of Antwerp, Antwerp, Belgium; Laboratory of Experimental Hematology, University of Antwerp, Antwerp, Belgium
| | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Xiong F, Du X, Hu J, Li T, Du S, Wu Q. Altered retinal microRNA expression profiles in early diabetic retinopathy: an in silico analysis. Curr Eye Res 2014; 39:720-9. [PMID: 24502381 DOI: 10.3109/02713683.2013.872280] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
PURPOSE MicroRNAs (miRNAs) - as negative regulators of target genes - are associated with various human diseases, but their precise role(s) in diabetic retinopathy (DR) remains to be elucidated. The aim of this study was to elucidate the involvement of miRNAs in early DR using in silico analysis to explore their gene expression patterns. METHODS We used the streptozotocin (STZ)-induced diabetic rat to investigate the roles of miRNAs in early DR. Retinal miRNA expression profiles from diabetic versus healthy control rats were examined by miRNA array analysis. Based on several bioinformatic systems, specifically, gene ontology (GO) and the Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways, we identified signatures of the potential pathological processes, gene functions, and signaling pathways that are influenced by dysregulated miRNAs. We used quantitative real-time polymerase chain reaction (qRT-PCR) to validate six (i.e. those with significant changes in expression levels) of the 17 miRNAs that were detected in the miRNA array. We also describe the significant role of the miRNA-gene network, which is based on the interactions between miRNAs and target genes. RESULTS GO analysis of the 17 miRNAs detected in the miRNA array analysis revealed the most prevalent miRNAs to be those related to biological processes, olfactory bulb development and axonogenesis. These miRNAs also exert significant influence on additional pathways, including the mitogen-activated protein and calcium signaling pathways. Six of the seventeen miRNAs were chosen for qRT-PCR validation. With the exception of a slight difference in miRNA-350, our results are in close agreement with the differential expressions detected by array analysis. CONCLUSIONS This study, which describes miRNA expression during the early developmental phases of DR, revealed extensive miRNA interactions. Based on both their target genes and signaling pathways, we suggest that miRNAs perform critical regulatory functions during the early stages of DR evolution.
Collapse
Affiliation(s)
- Fen Xiong
- Department of Ophthalmology, The Sixth People's Hospital, Shanghai Jiaotong University , Shanghai , China
| | | | | | | | | | | |
Collapse
|
17
|
Butt GF, Habib A, Mahgoub K, Sofela A, Tilley M, Guo L, Cordeiro MF. Optic nerve regeneration. EXPERT REVIEW OF OPHTHALMOLOGY 2014. [DOI: 10.1586/eop.12.66] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
18
|
Schültke E, Menk R, Pinzer B, Astolfo A, Stampanoni M, Arfelli F, Harsan LA, Nikkhah G. Single-cell resolution in high-resolution synchrotron X-ray CT imaging with gold nanoparticles. JOURNAL OF SYNCHROTRON RADIATION 2014; 21:242-50. [PMID: 24365943 DOI: 10.1107/s1600577513029007] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2013] [Accepted: 10/22/2013] [Indexed: 05/20/2023]
Abstract
Gold nanoparticles are excellent intracellular markers in X-ray imaging. Having shown previously the suitability of gold nanoparticles to detect small groups of cells with the synchrotron-based computed tomography (CT) technique both ex vivo and in vivo, it is now demonstrated that even single-cell resolution can be obtained in the brain at least ex vivo. Working in a small animal model of malignant brain tumour, the image quality obtained with different imaging modalities was compared. To generate the brain tumour, 1 × 10(5) C6 glioma cells were loaded with gold nanoparticles and implanted in the right cerebral hemisphere of an adult rat. Raw data were acquired with absorption X-ray CT followed by a local tomography technique based on synchrotron X-ray absorption yielding single-cell resolution. The reconstructed synchrotron X-ray images were compared with images obtained by small animal magnetic resonance imaging. The presence of gold nanoparticles in the tumour tissue was verified in histological sections.
Collapse
Affiliation(s)
- Elisabeth Schültke
- Stereotactic and Functional Neurosurgery, Freiburg University Medical Center, Breisacher Strasse 64, Freiburg 79106, Germany
| | - Ralf Menk
- Sincrotrone Trieste SCpA, Science Park, Trieste, Italy
| | - Bernd Pinzer
- Swiss Light Source, Paul Scherrer Institute, Villigen, Switzerland
| | - Alberto Astolfo
- Swiss Light Source, Paul Scherrer Institute, Villigen, Switzerland
| | - Marco Stampanoni
- Swiss Light Source, Paul Scherrer Institute, Villigen, Switzerland
| | - Fulvia Arfelli
- Dipartimento di Fisica, Università di Trieste and Istituto Nazionale di Fisica Nucleare Sezione di Trieste, Trieste, Italy
| | - Laura-Adela Harsan
- Medical Physics, Radiology Department, Freiburg University Medical Center, Freiburg, Germany
| | - Guido Nikkhah
- Neurochirurgische Klinik, Universitätsklinikum Erlangen, Schwabachanlage 6, 91054 Erlangen, Germany
| |
Collapse
|
19
|
Abstract
Experimental visual pathway lesion in the form of optic nerve (ON) crush or transection injury results in massive death of retinal ganglion cells (RGCs) and permanent loss of synaptic connections (Berkelaar et al., J Neurosci 14:4368-4374, 1994). Despite the fact that RGC axon regeneration is inhibited in a manner typical of other CNS lesions, the rodent ON injury model is one of the few models where robust axon regeneration has been achieved after therapeutic intervention (Berry et al., Restor Neurol Neurosci 26:147-174, 2008). However, assessment of the efficacy of therapeutic approaches in promoting ON regeneration has traditionally relied on histological methods, which necessitate the sacrifice of experimental animals and thus preclude longitudinal in vivo monitoring of individual subjects. Manganese-enhanced MRI (MEMRI) utilizes the paramagnetic properties and uptake and transport mechanisms of manganese ions (Mn(2+)) by neurons, thus enabling serial in vivo monitoring of the entire axonal projections (Sandvig et al., J Magn Reson Imaging 34:670-675, 2011; Thuen et al., J Magn Reson Imaging 4:492-500, 2005; Pautler et al., Magn Res Med 50:33-39, 2003; Saleem et al., Neurotechnique 34:685-700, 2000). The above properties of Mn(2+) render MEMRI a highly suitable technique for assessment of ON regeneration after injury, especially with a view to in vivo monitoring of neuronal connectivity and axon-regenerative responses to treatment. In this chapter, we provide a generic protocol for ON lesioning and MEMRI application for assessment of ON regeneration in rodents.
Collapse
Affiliation(s)
- Ioanna Sandvig
- MI Lab and Department of Circulation and Medical Imaging, Faculty of Medicine, Norwegian University of Science and Technology, 7489, Trondheim, Norway,
| | | |
Collapse
|
20
|
Luo L, Xu H, Li Y, Du Z, Sun X, Ma Z, Hu Y. Manganese-enhanced MRI optic nerve tracking: effect of intravitreal manganese dose on retinal toxicity. NMR IN BIOMEDICINE 2012; 25:1360-1368. [PMID: 22573611 DOI: 10.1002/nbm.2808] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2011] [Revised: 03/20/2012] [Accepted: 03/26/2012] [Indexed: 05/31/2023]
Abstract
The aim of this study was to provide data on the dose dependence of manganese-enhanced MRI (MEMRI) in the visual pathway of experimental rats and to study the toxicity of MnCl₂ to the retina. Sprague-Dawley rats were intravitreally injected with 2 μL of 0, 10, 25, 50, 75, 100, 150 and 300 mM MnCl₂, respectively. The contrast-to-noise ratio (CNR) of MEMRI for optic nerve enhancement was measured at different concentrations of MnCl₂. Simultaneously, the toxicity of manganese was evaluated by counting retinal ganglion cells and by retinal histological examination using light microscopy and transmission electron microscopy. The CNR increased with increasing concentration of MnCl₂ up to 75 mM. Retinal ganglion cell densities were reduced significantly when the concentration of MnCl₂ in the intravitreal injection was equal to or greater than 75 mM. Increasing numbers of ribosomes in retinal ganglion cells were first detected at 25 mM of MnCl₂. The retinal toxicity of MnCl₂ at higher concentration also included mitochondrial pathology and cell disruption of retinal ganglion cells, as well as abnormalities of photoreceptor and retinal pigment epithelium cells. It can be concluded that intravitreal injection of MnCl₂ induces retinal cell damage that appears to start from 25 mM. The concentration of MnCl₂ should not exceed 25 mm through intravitreal injection for visual pathway MEMRI in the rat.
Collapse
Affiliation(s)
- Lisha Luo
- Peking University Eye Center, Peking University Third Hospital, Beijing, China
| | | | | | | | | | | | | |
Collapse
|
21
|
Sun SW, Thiel T, Liang HF. Impact of repeated topical-loaded manganese-enhanced MRI on the mouse visual system. Invest Ophthalmol Vis Sci 2012; 53:4699-709. [PMID: 22700708 DOI: 10.1167/iovs.12-9715] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
PURPOSE Optic nerve degeneration in diseases such as glaucoma and multiple sclerosis evolves in months to years. The use of Mn(2+)-Enhanced Magnetic Resonance Imaging (MEMRI) in a time-course study may provide new insights into the disease progression. Previously, we demonstrated the feasibility of using a topical administration for Mn(2+) delivery to the visual system. This study is to evaluate the impact of biweekly or monthly repeated Mn(2+) topical administration and the pH levels of the Mn(2+) solutions for MEMRI on the mouse visual pathway. METHODS Using groups of mice, the MEMRI with an acidic or pH neutralized 1 M MnCl(2) solution was performed. To evaluate the feasibility of repeated MEMRIs, topical-loaded MEMRI was conducted biweekly seven times or monthly three times. The enhancement of MEMRI in the visual system was quantified. After repeated MEMRIs, the corneas were examined by optical coherence tomography. The retinal ganglion cells (RGCs) and optic nerves were examined by histology. RESULTS All mice exhibited consistent enhancements along the visual system following repeated MEMRIs. The acidic Mn(2+) solution induced a greater MEMRI enhancement as compared with a neutral pH Mn(2+) solution. Significant 20% RGC loss was found after three biweekly Mn(2+) inductions, but no RGC loss was found after three monthly Mn(2+) treatments. The corneal thickness was found increased after seven biweekly topical-loaded MEMRI. CONCLUSIONS Acidic Mn(2+) solutions enhanced the uptake of Mn(2+) observed on the MEMRI. Increasing the time intervals of repeated Mn(2+) topical administration reduced the adverse effects caused by MEMRI.
Collapse
Affiliation(s)
- Shu-Wei Sun
- Department of Basic Sciences, School of Medicine, Loma Linda University, Loma Linda, CA 92350, USA.
| | | | | |
Collapse
|