1
|
Mezincescu AM, Rudd A, Cheyne L, Horgan G, Philip S, Cameron D, van Loon L, Whitfield P, Gribbin R, Hu MK, Delibegovic M, Fielding B, Lobley G, Thies F, Newby DE, Gray S, Henning A, Dawson D. Comparison of intramyocellular lipid metabolism in patients with diabetes and male athletes. Nat Commun 2024; 15:3690. [PMID: 38750012 PMCID: PMC11096352 DOI: 10.1038/s41467-024-47843-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Accepted: 04/05/2024] [Indexed: 05/18/2024] Open
Abstract
Despite opposing insulin sensitivity and cardiometabolic risk, both athletes and patients with type 2 diabetes have increased skeletal myocyte fat storage: the so-called "athlete's paradox". In a parallel non-randomised, non-blinded trial (NCT03065140), we characterised and compared the skeletal myocyte lipid signature of 29 male endurance athletes and 30 patients with diabetes after undergoing deconditioning or endurance training respectively. The primary outcomes were to assess intramyocellular lipid storage of the vastus lateralis in both cohorts and the secondary outcomes were to examine saturated and unsaturated intramyocellular lipid pool turnover. We show that athletes have higher intramyocellular fat saturation with very high palmitate kinetics, which is attenuated by deconditioning. In contrast, type 2 diabetes patients have higher unsaturated intramyocellular fat and blunted palmitate and linoleate kinetics but after endurance training, all were realigned with those of deconditioned athletes. Improved basal insulin sensitivity was further associated with better serum cholesterol/triglycerides, glycaemic control, physical performance, enhanced post insulin receptor pathway signalling and metabolic sensing. We conclude that insulin-resistant, maladapted intramyocellular lipid storage and turnover in patients with type 2 diabetes show reversibility after endurance training through increased contributions of the saturated intramyocellular fatty acid pools. Clinical Trial Registration: NCT03065140: Muscle Fat Compartments and Turnover as Determinant of Insulin Sensitivity (MISTY).
Collapse
Affiliation(s)
- Alice M Mezincescu
- Aberdeen Cardiovascular and Diabetes Centre, University of Aberdeen, Aberdeen, UK
| | - Amelia Rudd
- Aberdeen Cardiovascular and Diabetes Centre, University of Aberdeen, Aberdeen, UK
| | - Lesley Cheyne
- Aberdeen Cardiovascular and Diabetes Centre, University of Aberdeen, Aberdeen, UK
| | | | - Sam Philip
- Aberdeen Cardiovascular and Diabetes Centre, University of Aberdeen, Aberdeen, UK
| | - Donnie Cameron
- C.J. Gorter MRI Center, Leiden University Medical Center, Leiden, The Netherlands
| | - Luc van Loon
- University of Maastricht, Maastricht, The Netherlands
| | | | | | - May Khei Hu
- Aberdeen Cardiovascular and Diabetes Centre, University of Aberdeen, Aberdeen, UK
| | - Mirela Delibegovic
- Aberdeen Cardiovascular and Diabetes Centre, University of Aberdeen, Aberdeen, UK
| | | | - Gerald Lobley
- Aberdeen Cardiovascular and Diabetes Centre, University of Aberdeen, Aberdeen, UK
| | - Frank Thies
- Aberdeen Cardiovascular and Diabetes Centre, University of Aberdeen, Aberdeen, UK
| | - David E Newby
- Centre for Cardiovascular Science, University of Edinburgh, Edinburgh, UK
| | | | | | - Dana Dawson
- Aberdeen Cardiovascular and Diabetes Centre, University of Aberdeen, Aberdeen, UK.
| |
Collapse
|
2
|
Adanyeguh IM, Henry PG, Deelchand DK. Prospective motion correction for cervical spinal cord MRS. Magn Reson Med 2024; 91:19-27. [PMID: 37772616 PMCID: PMC10842172 DOI: 10.1002/mrm.29836] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 07/24/2023] [Accepted: 08/02/2023] [Indexed: 09/30/2023]
Abstract
PURPOSE To develop prospective motion correction for single-voxel MRS in the human cervical spinal cord. METHODS A motion MR navigator was implemented using reduced field-of-view 2D-selective RF excitation together with EPI readout. A short-echo semi-LASER sequence (TE = 30 ms) was updated to incorporate this real-time image-based motion navigator, as well as real-time shim and frequency navigators. Five healthy participants were studied at 3 T with a 64-channel head-neck receive coil. Single-voxel MRS data were measured in a voxel located at the C3-5 vertebrae level. The motion navigator was used to correct for translations in the X-Y plane and was validated by assessing spectral quality with and without prospective correction in the presence of subject motion. RESULTS Without prospective correction, motion resulted in severe lipid contamination in the MR spectra. With prospective correction, the quality of spinal cord MR spectra in the presence of motion was similar to that obtained in the absence of motion, with comparable spectral signal-to-noise ratio and linewidth and no significant lipid contamination. CONCLUSION Prospective motion and B0 correction allow acquisition of good-quality MR spectra in the human cervical spinal cord in the presence of motion. This new technique should facilitate reliable acquisition of spinal cord MR spectra in both research and clinical settings.
Collapse
Affiliation(s)
- Isaac M Adanyeguh
- Center for Magnetic Resonance Research, Department of Radiology, University of Minnesota, Minneapolis, Minnesota, USA
| | - Pierre-Gilles Henry
- Center for Magnetic Resonance Research, Department of Radiology, University of Minnesota, Minneapolis, Minnesota, USA
| | - Dinesh K Deelchand
- Center for Magnetic Resonance Research, Department of Radiology, University of Minnesota, Minneapolis, Minnesota, USA
| |
Collapse
|
3
|
Joers JM, Adanyeguh IM, Deelchand DK, Hutter DH, Eberly LE, Iltis I, Bushara KO, Lenglet C, Henry PG. Spinal cord magnetic resonance imaging and spectroscopy detect early-stage alterations and disease progression in Friedreich ataxia. Brain Commun 2022; 4:fcac246. [PMID: 36300142 PMCID: PMC9581897 DOI: 10.1093/braincomms/fcac246] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Revised: 06/04/2022] [Accepted: 09/23/2022] [Indexed: 02/01/2023] Open
Abstract
Friedreich ataxia is the most common hereditary ataxia. Atrophy of the spinal cord is one of the hallmarks of the disease. MRI and magnetic resonance spectroscopy are powerful and non-invasive tools to investigate pathological changes in the spinal cord. A handful of studies have reported cross-sectional alterations in Friedreich ataxia using MRI and diffusion MRI. However, to our knowledge no longitudinal MRI, diffusion MRI or MRS results have been reported in the spinal cord. Here, we investigated early-stage cross-sectional alterations and longitudinal changes in the cervical spinal cord in Friedreich ataxia, using a multimodal magnetic resonance protocol comprising morphometric (anatomical MRI), microstructural (diffusion MRI), and neurochemical (1H-MRS) assessments.We enrolled 28 early-stage individuals with Friedreich ataxia and 20 age- and gender-matched controls (cross-sectional study). Disease duration at baseline was 5.5 ± 4.0 years and Friedreich Ataxia Rating Scale total neurological score at baseline was 42.7 ± 13.6. Twenty-one Friedreich ataxia participants returned for 1-year follow-up, and 19 of those for 2-year follow-up (cohort study). Each visit consisted in clinical assessments and magnetic resonance scans. Controls were scanned at baseline only. At baseline, individuals with Friedreich ataxia had significantly lower spinal cord cross-sectional area (-31%, P = 8 × 10-17), higher eccentricity (+10%, P = 5 × 10-7), lower total N-acetyl-aspartate (tNAA) (-36%, P = 6 × 10-9) and higher myo-inositol (mIns) (+37%, P = 2 × 10-6) corresponding to a lower ratio tNAA/mIns (-52%, P = 2 × 10-13), lower fractional anisotropy (-24%, P = 10-9), as well as higher radial diffusivity (+56%, P = 2 × 10-9), mean diffusivity (+35%, P = 10-8) and axial diffusivity (+17%, P = 4 × 10-5) relative to controls. Longitudinally, spinal cord cross-sectional area decreased by 2.4% per year relative to baseline (P = 4 × 10-4), the ratio tNAA/mIns decreased by 5.8% per year (P = 0.03), and fractional anisotropy showed a trend to decrease (-3.2% per year, P = 0.08). Spinal cord cross-sectional area correlated strongly with clinical measures, with the strongest correlation coefficients found between cross-sectional area and Scale for the Assessment and Rating of Ataxia (R = -0.55, P = 7 × 10-6) and between cross-sectional area and Friedreich ataxia Rating Scale total neurological score (R = -0.60, P = 4 × 10-7). Less strong but still significant correlations were found for fractional anisotropy and tNAA/mIns. We report here the first quantitative longitudinal magnetic resonance results in the spinal cord in Friedreich ataxia. The largest longitudinal effect size was found for spinal cord cross-sectional area, followed by tNAA/mIns and fractional anisotropy. Our results provide direct evidence that abnormalities in the spinal cord result not solely from hypoplasia, but also from neurodegeneration, and show that disease progression can be monitored non-invasively in the spinal cord.
Collapse
Affiliation(s)
- James M Joers
- Center for Magnetic Resonance Research and Department of Radiology, University of Minnesota Medical School, Minneapolis, MN 55455, USA
| | - Isaac M Adanyeguh
- Center for Magnetic Resonance Research and Department of Radiology, University of Minnesota Medical School, Minneapolis, MN 55455, USA
| | - Dinesh K Deelchand
- Center for Magnetic Resonance Research and Department of Radiology, University of Minnesota Medical School, Minneapolis, MN 55455, USA
| | - Diane H Hutter
- Center for Magnetic Resonance Research and Department of Radiology, University of Minnesota Medical School, Minneapolis, MN 55455, USA
| | - Lynn E Eberly
- Division of Biostatistics, School of Public Health, University of Minnesota, Minneapolis, MN 55455, USA
| | - Isabelle Iltis
- Center for Magnetic Resonance Research and Department of Radiology, University of Minnesota Medical School, Minneapolis, MN 55455, USA
| | - Khalaf O Bushara
- Department of Neurology, University of Minnesota Medical School, Minneapolis, MN 55455, USA
| | - Christophe Lenglet
- Center for Magnetic Resonance Research and Department of Radiology, University of Minnesota Medical School, Minneapolis, MN 55455, USA
| | - Pierre-Gilles Henry
- Center for Magnetic Resonance Research and Department of Radiology, University of Minnesota Medical School, Minneapolis, MN 55455, USA
| |
Collapse
|
4
|
Weigand A, Gärtner M, Scheidegger M, Wyss PO, Henning A, Seifritz E, Stippl A, Herrera-Melendez A, Bajbouj M, Aust S, Grimm S. Predicting Antidepressant Effects of Ketamine: the Role of the Pregenual Anterior Cingulate Cortex as a Multimodal Neuroimaging Biomarker. Int J Neuropsychopharmacol 2022; 25:1003-1013. [PMID: 35948274 PMCID: PMC9743970 DOI: 10.1093/ijnp/pyac049] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Revised: 07/15/2022] [Accepted: 08/10/2022] [Indexed: 01/07/2023] Open
Abstract
BACKGROUND Growing evidence underscores the utility of ketamine as an effective and rapid-acting treatment option for major depressive disorder (MDD). However, clinical outcomes vary between patients. Predicting successful response may enable personalized treatment decisions and increase clinical efficacy. METHODS We here explored the potential of pregenual anterior cingulate cortex (pgACC) activity to predict antidepressant effects of ketamine in relation to ketamine-induced changes in glutamatergic metabolism. Prior to a single i.v. infusion of ketamine, 24 patients with MDD underwent functional magnetic resonance imaging during an emotional picture-viewing task and magnetic resonance spectroscopy. Changes in depressive symptoms were evaluated using the Beck Depression Inventory measured 24 hours pre- and post-intervention. A subsample of 17 patients underwent a follow-up magnetic resonance spectroscopy scan. RESULTS Antidepressant efficacy of ketamine was predicted by pgACC activity during emotional stimulation. In addition, pgACC activity was associated with glutamate increase 24 hours after the ketamine infusion, which was in turn related to better clinical outcome. CONCLUSIONS Our results add to the growing literature implicating a key role of the pgACC in mediating antidepressant effects and highlighting its potential as a multimodal neuroimaging biomarker of early treatment response to ketamine.
Collapse
Affiliation(s)
| | | | - Milan Scheidegger
- Department of Psychiatry, Psychotherapy and Psychosomatics, University Hospital of Psychiatry, University of Zurich, Switzerland
| | - Patrik O Wyss
- Department of Radiology, Swiss Paraplegic Centre, Nottwil, Switzerland
| | - Anke Henning
- Advanced Imaging Research Center, UT Southwestern Medical Center, Dallas, Texas, USA
| | - Erich Seifritz
- Department of Psychiatry, Psychotherapy and Psychosomatics, University Hospital of Psychiatry, University of Zurich, Switzerland
| | - Anna Stippl
- Department of Psychiatry and Psychotherapy, Charité – Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin and Berlin Institute of Health, Berlin, Germany
| | - Ana Herrera-Melendez
- Department of Psychiatry and Psychotherapy, Charité – Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin and Berlin Institute of Health, Berlin, Germany
| | - Malek Bajbouj
- Department of Psychiatry and Psychotherapy, Charité – Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin and Berlin Institute of Health, Berlin, Germany
| | - Sabine Aust
- Department of Psychiatry and Psychotherapy, Charité – Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin and Berlin Institute of Health, Berlin, Germany
| | - Simone Grimm
- Correspondence: Simone Grimm, PhD, MSB Medical School Berlin, Rüdesheimer Straße 50, 14197 Berlin, Germany ()
| |
Collapse
|
5
|
Roussel T, Le Fur Y, Guye M, Viout P, Ranjeva JP, Callot V. Respiratory-triggered quantitative MR spectroscopy of the human cervical spinal cord at 7 T. Magn Reson Med 2022; 87:2600-2612. [PMID: 35181915 DOI: 10.1002/mrm.29182] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2021] [Revised: 01/07/2022] [Accepted: 01/12/2022] [Indexed: 02/06/2023]
Abstract
PURPOSE Ultra-high field 1 H MR spectroscopy (MRS) is of great interest to help characterizing human spinal cord pathologies. However, very few studies have been reported so far in this small size structure at these fields due to challenging experimental difficulties caused by static and radiofrequency field heterogeneities, as well as physiological motion. In this work, in line with the recent developments proposed to strengthen spinal cord MRS feasibility at 7 T, a respiratory-triggered acquisition approach was optimized to compensate for dynamic B 0 field heterogeneities and to provide robust cervical spinal cord MRS data. METHODS A semi-LASER sequence was purposely used, and a dedicated raw data processing algorithm was developed to enhance MR spectral quality by discarding corrupted scans. To legitimate the choices done during the optimization stage, additional tests were carried out to determine the impact of breathing, voluntary motion, body mass index, and fitting algorithm. An in-house quantification tool was concomitantly designed for accurate estimation of the metabolite concentration ratios for choline, N-acetyl-aspartate (NAA), myo-inositol and glutathione. The method was tested on a cohort of 14 healthy volunteers. RESULTS Average water linewidth and NAA signal-to-noise ratio reached 0.04 ppm and 11.01, respectively. The group-average metabolic ratios were in good agreement with previous studies and showed intersession reproducibility variations below 30%. CONCLUSION The developed approach allows a rise of the acquired MRS signal quality and of the quantification robustness as compared to previous studies hence offering strengthened possibilities to probe the metabolism of degenerative and traumatic spinal cord pathologies.
Collapse
Affiliation(s)
- Tangi Roussel
- Aix Marseille Univ, CNRS, CRMBM, Marseille, France.,APHM, Hôpital Universitaire Timone, CEMEREM, Marseille, France
| | - Yann Le Fur
- Aix Marseille Univ, CNRS, CRMBM, Marseille, France.,APHM, Hôpital Universitaire Timone, CEMEREM, Marseille, France
| | - Maxime Guye
- Aix Marseille Univ, CNRS, CRMBM, Marseille, France.,APHM, Hôpital Universitaire Timone, CEMEREM, Marseille, France
| | - Patrick Viout
- Aix Marseille Univ, CNRS, CRMBM, Marseille, France.,APHM, Hôpital Universitaire Timone, CEMEREM, Marseille, France
| | - Jean-Philippe Ranjeva
- Aix Marseille Univ, CNRS, CRMBM, Marseille, France.,APHM, Hôpital Universitaire Timone, CEMEREM, Marseille, France
| | - Virginie Callot
- Aix Marseille Univ, CNRS, CRMBM, Marseille, France.,APHM, Hôpital Universitaire Timone, CEMEREM, Marseille, France
| |
Collapse
|
6
|
Gärtner M, Weigand A, Scheidegger M, Lehmann M, Wyss PO, Wunder A, Henning A, Grimm S. Acute effects of ketamine on the pregenual anterior cingulate: linking spontaneous activation, functional connectivity, and glutamate metabolism. Eur Arch Psychiatry Clin Neurosci 2022; 272:703-714. [PMID: 35020021 PMCID: PMC9095553 DOI: 10.1007/s00406-021-01377-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Accepted: 12/16/2021] [Indexed: 11/29/2022]
Abstract
Ketamine exerts its rapid antidepressant effects via modulation of the glutamatergic system. While numerous imaging studies have investigated the effects of ketamine on a functional macroscopic brain level, it remains unclear how altered glutamate metabolism and changes in brain function are linked. To shed light on this topic we here conducted a multimodal imaging study in healthy volunteers (N = 23) using resting state fMRI and proton (1H) magnetic resonance spectroscopy (MRS) to investigate linkage between metabolic and functional brain changes induced by ketamine. Subjects were investigated before and during an intravenous ketamine infusion. The MRS voxel was placed in the pregenual anterior cingulate cortex (pgACC), as this region has been repeatedly shown to be involved in ketamine's effects. Our results showed functional connectivity changes from the pgACC to the right frontal pole and anterior mid cingulate cortex (aMCC). Absolute glutamate and glutamine concentrations in the pgACC did not differ significantly from baseline. However, we found that stronger pgACC activation during ketamine was linked to lower glutamine concentration in this region. Furthermore, reduced functional connectivity between pgACC and aMCC was related to increased pgACC activation and reduced glutamine. Our results thereby demonstrate how multimodal investigations in a single brain region could help to advance our understanding of the association between metabolic and functional changes.
Collapse
Affiliation(s)
- Matti Gärtner
- MSB Medical School Berlin, Rüdesheimer Straße 50, 14197, Berlin, Germany. .,Department of Psychiatry and Psychotherapy, Charité, Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität Zu Berlin, Hindenburgdamm 30, 12203, Berlin, Germany.
| | - Anne Weigand
- grid.466457.20000 0004 1794 7698MSB Medical School Berlin, Rüdesheimer Straße 50, 14197 Berlin, Germany
| | - Milan Scheidegger
- grid.7400.30000 0004 1937 0650Department of Psychiatry, Psychotherapy and Psychosomatics, University Hospital of Psychiatry, University of Zurich, Zurich, Switzerland
| | - Mick Lehmann
- grid.7400.30000 0004 1937 0650Department of Psychiatry, Psychotherapy and Psychosomatics, University Hospital of Psychiatry, University of Zurich, Zurich, Switzerland
| | - Patrik O. Wyss
- grid.419769.40000 0004 0627 6016Department of Radiology, Swiss Paraplegic Centre, Nottwil, Switzerland
| | - Andreas Wunder
- grid.420061.10000 0001 2171 7500Translational Medicine and Clinical Pharmacology, Boehringer Ingelheim Pharma GmbH & Co. KG, 88397 Biberach an der Riss, Germany
| | - Anke Henning
- grid.267313.20000 0000 9482 7121Advanced Imaging Research Center, UT Southwestern Medical Center, Dallas, TX USA
| | - Simone Grimm
- grid.466457.20000 0004 1794 7698MSB Medical School Berlin, Rüdesheimer Straße 50, 14197 Berlin, Germany ,grid.6363.00000 0001 2218 4662Department of Psychiatry and Psychotherapy, Charité, Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität Zu Berlin, Hindenburgdamm 30, 12203 Berlin, Germany ,grid.7400.30000 0004 1937 0650Department of Psychiatry, Psychotherapy and Psychosomatics, University Hospital of Psychiatry, University of Zurich, Zurich, Switzerland
| |
Collapse
|
7
|
Horak T, Horakova M, Svatkova A, Kadanka Z, Kudlicka P, Valosek J, Rohan T, Kerkovsky M, Vlckova E, Kadanka Z, Deelchand DK, Henry PG, Bednarik J, Bednarik P. In vivo Molecular Signatures of Cervical Spinal Cord Pathology in Degenerative Compression. J Neurotrauma 2021; 38:2999-3010. [PMID: 34428934 PMCID: PMC8917902 DOI: 10.1089/neu.2021.0151] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Degenerative cervical myelopathy (DCM) is a severe consequence of degenerative cervical spinal cord (CSC) compression. The non-myelopathic stage of compression (NMDC) is highly prevalent and often progresses to disabling DCM. This study aims to disclose markers of progressive neurochemical alterations in NMDC and DCM by utilizing an approach based on state-of-the-art proton magnetic resonance spectroscopy (1H-MRS). Proton-MRS data were prospectively acquired from 73 participants with CSC compression and 47 healthy controls (HCs). The MRS voxel was centered at the C2 level. Compression-affected participants were clinically categorized as NMDC and DCM, radiologically as mild (MC) or severe (SC) compression. CSC volumes and neurochemical concentrations were compared between cohorts (HC vs. NMDC vs. DCM and HC vs. MC vs. SC) with general linear models adjusted for age and height (pFWE < 0.05) and correlated to stenosis severity, electrophysiology, and myelopathy symptoms (p < 0.05). Whereas the ratio of total creatine (tCr) to total N-acetylaspartate (tNAA) increased in NMDC (+11%) and in DCM (+26%) and SC (+21%), myo-inositol/tNAA, glutamate + glutamine/tNAA, and volumes changed only in DCM (+20%, +73%, and −14%) and SC (+12%, +46%, and −8%, respectively) relative to HCs. Both tCr/tNAA and myo-inositol/tNAA correlated with compression severity and volume (−0.376 < r < −0.259). Myo-inositol/tNAA correlated with myelopathy symptoms (r = −0.670), whereas CSC volume did not. Short-echo 1H-MRS provided neurochemical signatures of CSC impairment that reflected compression severity and clinical significance. Whereas volumetry only reflected clinically manifest myelopathy (DCM), MRS detected neurochemical changes already before the onset of myelopathy symptoms.
Collapse
Affiliation(s)
- Tomas Horak
- Faculty of Medicine, Masaryk University, Brno, Czechia.,Department of Neurology, University Hospital Brno, Brno, Czechia.,Multimodal and Functional Imaging Laboratory, Central European Institute of Technology, Brno, Czechia
| | - Magda Horakova
- Faculty of Medicine, Masaryk University, Brno, Czechia.,Department of Neurology, University Hospital Brno, Brno, Czechia.,Multimodal and Functional Imaging Laboratory, Central European Institute of Technology, Brno, Czechia
| | - Alena Svatkova
- Department of Medicine III, Clinical Division of Endocrinology and Metabolism, Medical University of Vienna, Vienna, Austria.,Department of Imaging Methods, Faculty of Medicine, University of Ostrava, Czechia
| | - Zdenek Kadanka
- Faculty of Medicine, Masaryk University, Brno, Czechia.,Department of Neurology, University Hospital Brno, Brno, Czechia
| | - Petr Kudlicka
- Faculty of Medicine, Masaryk University, Brno, Czechia.,Multimodal and Functional Imaging Laboratory, Central European Institute of Technology, Brno, Czechia
| | - Jan Valosek
- Department of Neurology, Faculty of Medicine and Dentistry, Palacky University, Olomouc, Czechia.,Department of Biomedical Engineering, University Hospital, Olomouc, Czechia
| | - Tomas Rohan
- Department of Radiology, University Hospital Brno, Brno, Czechia
| | - Milos Kerkovsky
- Department of Radiology, University Hospital Brno, Brno, Czechia
| | - Eva Vlckova
- Faculty of Medicine, Masaryk University, Brno, Czechia.,Department of Neurology, University Hospital Brno, Brno, Czechia.,Multimodal and Functional Imaging Laboratory, Central European Institute of Technology, Brno, Czechia
| | - Zdenek Kadanka
- Department of Neurology, University Hospital Brno, Brno, Czechia
| | - Dinesh K Deelchand
- Department of Radiology, Center for Magnetic Resonance Research, University of Minnesota, Minneapolis, Minnesota, USA
| | - Pierre-Gilles Henry
- Department of Radiology, Center for Magnetic Resonance Research, University of Minnesota, Minneapolis, Minnesota, USA
| | - Josef Bednarik
- Faculty of Medicine, Masaryk University, Brno, Czechia.,Department of Neurology, University Hospital Brno, Brno, Czechia.,Multimodal and Functional Imaging Laboratory, Central European Institute of Technology, Brno, Czechia
| | - Petr Bednarik
- Multimodal and Functional Imaging Laboratory, Central European Institute of Technology, Brno, Czechia.,Department of Biomedical Imaging and Image-guided Therapy, High Field MR Centre, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
8
|
Geldschläger O, Bosch D, Avdievich NI, Henning A. Ultrahigh-resolution quantitative spinal cord MRI at 9.4T. Magn Reson Med 2020; 85:1013-1027. [PMID: 32789980 DOI: 10.1002/mrm.28455] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Revised: 07/06/2020] [Accepted: 07/10/2020] [Indexed: 11/08/2022]
Abstract
PURPOSE To present the results of the first human spinal cord in vivo MRI scans at 9.4T. METHODS A human brain coil was used to image the human spinal cord at 9.4T. All anatomical images were acquired with a T2 *-weighted gradient-echo sequence. A comparison of the influence of four different B0 shimming routines on the image quality was performed. Intrinsic signal-to-noise-ratio maps were determined using a pseudo-multiple replica approach. Measurements with different echo times were compared and processed to one multiecho data image combination image. Based on the multiecho acquisitions, T2 *-relaxation time maps were calculated. Algorithmic spinal cord detection and gray matter/white matter segmentation were tested. RESULTS An echo time between 9 and 13.8 ms compromised best between gray matter/white matter contrast and image quality. A maximum in-plane resolution of 0.15 × 0.15 mm2 was achieved for anatomical images. These images offered excellent image quality and made small structures of the spinal cord visible. The scanner vendor implemented B0 shimming routine performed best during this work. Intrinsic signal-to-noise-ratio values of between 6600 and 8060 at the upper cervical spinal cord were achieved. Detection and segmentation worked reliably. An average T2 *-time of 24.88 ms ± 6.68 ms for gray matter and 19.37 ms ± 8.66 ms for white matter was calculated. CONCLUSION The proposed human brain coil can be used to image the spinal cord. The maximum in-plane resolution in this work was higher compared with the 7T results from the literature. The 9.4T acquisitions made the small structures of the spinal cord clearly visible.
Collapse
Affiliation(s)
- Ole Geldschläger
- High-Field Magnetic Resonance Center, Max Planck Institute for Biological Cybernetics, Tübingen, Germany
| | - Dario Bosch
- High-Field Magnetic Resonance Center, Max Planck Institute for Biological Cybernetics, Tübingen, Germany.,Biomedical Magnetic Resonance, University Hospital Tübingen, Tübingen, Germany
| | - Nikolai I Avdievich
- High-Field Magnetic Resonance Center, Max Planck Institute for Biological Cybernetics, Tübingen, Germany
| | - Anke Henning
- High-Field Magnetic Resonance Center, Max Planck Institute for Biological Cybernetics, Tübingen, Germany.,Advanced Imaging Research Center, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| |
Collapse
|
9
|
Geiger Y, Tal A. Optimal echo times for multi-gradient echo-based B 0 field-mapping. NMR IN BIOMEDICINE 2020; 33:e4316. [PMID: 32339348 DOI: 10.1002/nbm.4316] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Revised: 03/28/2020] [Accepted: 04/05/2020] [Indexed: 06/11/2023]
Abstract
B0 field maps are used ubiquitously in neuroimaging, in disciplines ranging from magnetic resonance spectroscopy to temperature mapping and susceptibility-weighted imaging. Most B0 maps are acquired using standard gradient-echo-based vendor-provided sequences, often comprised of two echoes spaced a few milliseconds apart. Herein, we analyze the optimal spacing of echo times, defined as those maximizing precision-minimizing the standard deviation-for a fixed total acquisition time. Field estimation is carried out using a weighted least squares estimator. The standard deviation is shown to be approximately inversely proportional to the total acquisition time, suggesting a law of diminishing returns, whereby substantial gains are obtained up to a certain point, with little improvement beyond that point. Validations are provided in a phantom and a group of volunteers. Multi-gradient echo sequences are readily available on all manufacturer platforms, making our recommendations straightforward to implement on any modern scanner.
Collapse
Affiliation(s)
- Yasmin Geiger
- Department of Chemical and Biological Physics, Weizmann Institute of Science, Israel
| | - Assaf Tal
- Department of Chemical and Biological Physics, Weizmann Institute of Science, Israel
| |
Collapse
|
10
|
Pfyffer D, Wyss PO, Huber E, Curt A, Henning A, Freund P. Metabolites of neuroinflammation relate to neuropathic pain after spinal cord injury. Neurology 2020; 95:e805-e814. [PMID: 32591473 PMCID: PMC7605501 DOI: 10.1212/wnl.0000000000010003] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2019] [Accepted: 01/27/2020] [Indexed: 12/14/2022] Open
Abstract
OBJECTIVE To determine whether cervical cord levels of metabolites are associated with pain sensation after spinal cord injury (SCI) by performing magnetic resonance spectroscopy in patients with SCI with and without neuropathic pain (NP). METHODS Cervical cord single-voxel spectroscopic data of 24 patients with SCI (14 with NP, 10 pain-free) and 21 healthy controls were acquired at C2/3 to investigate metabolite ratios associated with neuroinflammation (choline-containing compounds to myoinositol [tCho/mI]) and neurodegeneration (total N-acetylaspartate to myo-inositol [tNAA/mI]). NP levels were measured, and Spearman correlation tests assessed associations between metabolite levels, cord atrophy, and pinprick score. RESULTS In patients with NP, tCho/mI levels were increased (p = 0.024) compared to pain-free patients and negatively related to cord atrophy (p = 0.006, r = 0.714). Better pinprick score was associated with higher tCho/mI levels (p = 0.032, r = 0.574). In pain-free patients, tCho/mI levels were not related to cord atrophy (p = 0.881, r = 0.055) or pinprick score (p = 0.676, r = 0.152). tNAA/mI levels were similar in both patient groups (p = 0.396) and were not associated with pinprick score in patients with NP (p = 0.405, r = 0.242) and pain-free patients (p = 0.117, r = 0.527). CONCLUSIONS Neuroinflammatory metabolite levels (i.e., tCho/mI) were elevated in patients with NP, its magnitude being associated with less cord atrophy and greater pain sensation (e.g., pinprick score). This suggests that patients with NP have more residual spinal tissue and greater metabolite turnover than pain-free patients. Neurodegenerative metabolite levels (i.e., tNAA/mI) were associated with greater cord atrophy but unrelated to NP. Identifying the metabolic NP signature provides new NP treatment targets and could improve patient stratification in interventional trials. CLASSIFICATION OF EVIDENCE This study provides Class II evidence that levels of magnetic resonance spectroscopy-identified metabolites of neuroinflammation were elevated in patients with SCI with NP compared to those without NP.
Collapse
Affiliation(s)
- Dario Pfyffer
- From the Spinal Cord Injury Center (D.P., E.H., A.C., P.F.), Balgrist University Hospital, University of Zurich; Institute for Biomedical Engineering (A.H., P.O.W.), University and ETH, Zurich; Department of Radiology (P.O.W.), Swiss Paraplegic Centre, Nottwil, Switzerland; Max Planck Institute for Biological Cybernetics (P.O.W., A.H.), Tuebingen, Germany; Advanced Imaging Research Center (A.H.), UT Southwestern Medical Center, Dallas TX; Department of Brain Repair and Rehabilitation (P.F.) and Wellcome Trust Centre for Neuroimaging (P.F.), UCL Institute of Neurology, University College London, UK; and Department of Neurophysics (P.F.), Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
| | - Patrik O Wyss
- From the Spinal Cord Injury Center (D.P., E.H., A.C., P.F.), Balgrist University Hospital, University of Zurich; Institute for Biomedical Engineering (A.H., P.O.W.), University and ETH, Zurich; Department of Radiology (P.O.W.), Swiss Paraplegic Centre, Nottwil, Switzerland; Max Planck Institute for Biological Cybernetics (P.O.W., A.H.), Tuebingen, Germany; Advanced Imaging Research Center (A.H.), UT Southwestern Medical Center, Dallas TX; Department of Brain Repair and Rehabilitation (P.F.) and Wellcome Trust Centre for Neuroimaging (P.F.), UCL Institute of Neurology, University College London, UK; and Department of Neurophysics (P.F.), Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
| | - Eveline Huber
- From the Spinal Cord Injury Center (D.P., E.H., A.C., P.F.), Balgrist University Hospital, University of Zurich; Institute for Biomedical Engineering (A.H., P.O.W.), University and ETH, Zurich; Department of Radiology (P.O.W.), Swiss Paraplegic Centre, Nottwil, Switzerland; Max Planck Institute for Biological Cybernetics (P.O.W., A.H.), Tuebingen, Germany; Advanced Imaging Research Center (A.H.), UT Southwestern Medical Center, Dallas TX; Department of Brain Repair and Rehabilitation (P.F.) and Wellcome Trust Centre for Neuroimaging (P.F.), UCL Institute of Neurology, University College London, UK; and Department of Neurophysics (P.F.), Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
| | - Armin Curt
- From the Spinal Cord Injury Center (D.P., E.H., A.C., P.F.), Balgrist University Hospital, University of Zurich; Institute for Biomedical Engineering (A.H., P.O.W.), University and ETH, Zurich; Department of Radiology (P.O.W.), Swiss Paraplegic Centre, Nottwil, Switzerland; Max Planck Institute for Biological Cybernetics (P.O.W., A.H.), Tuebingen, Germany; Advanced Imaging Research Center (A.H.), UT Southwestern Medical Center, Dallas TX; Department of Brain Repair and Rehabilitation (P.F.) and Wellcome Trust Centre for Neuroimaging (P.F.), UCL Institute of Neurology, University College London, UK; and Department of Neurophysics (P.F.), Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
| | - Anke Henning
- From the Spinal Cord Injury Center (D.P., E.H., A.C., P.F.), Balgrist University Hospital, University of Zurich; Institute for Biomedical Engineering (A.H., P.O.W.), University and ETH, Zurich; Department of Radiology (P.O.W.), Swiss Paraplegic Centre, Nottwil, Switzerland; Max Planck Institute for Biological Cybernetics (P.O.W., A.H.), Tuebingen, Germany; Advanced Imaging Research Center (A.H.), UT Southwestern Medical Center, Dallas TX; Department of Brain Repair and Rehabilitation (P.F.) and Wellcome Trust Centre for Neuroimaging (P.F.), UCL Institute of Neurology, University College London, UK; and Department of Neurophysics (P.F.), Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
| | - Patrick Freund
- From the Spinal Cord Injury Center (D.P., E.H., A.C., P.F.), Balgrist University Hospital, University of Zurich; Institute for Biomedical Engineering (A.H., P.O.W.), University and ETH, Zurich; Department of Radiology (P.O.W.), Swiss Paraplegic Centre, Nottwil, Switzerland; Max Planck Institute for Biological Cybernetics (P.O.W., A.H.), Tuebingen, Germany; Advanced Imaging Research Center (A.H.), UT Southwestern Medical Center, Dallas TX; Department of Brain Repair and Rehabilitation (P.F.) and Wellcome Trust Centre for Neuroimaging (P.F.), UCL Institute of Neurology, University College London, UK; and Department of Neurophysics (P.F.), Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany.
| |
Collapse
|
11
|
Tan C, Huang Y, Cai S, Chen Z. High-resolution two-dimensional 1H J-resolved MRS measurements on in vivo samples. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2019; 300:51-60. [PMID: 30711783 DOI: 10.1016/j.jmr.2019.01.012] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2018] [Revised: 12/31/2018] [Accepted: 01/22/2019] [Indexed: 06/09/2023]
Abstract
Magnetic resonance spectroscopy (MRS) provides a noninvasive tool for metabolite characterization of in vivo biological samples. Conventional MRS measurements on biological samples generally suffer from field inhomogeneity caused by intrinsic magnetic susceptibility variations inside samples. Compared to one-dimensional MRS, two-dimensional (2D) J-resolved spectroscopy enables resolving J couplings along one of the spectral dimension and benefits to metabolite identification and analyses. Intermolecular double-quantum coherences (iDQC) has been proven to be insensitive to magnetic field inhomogeneity, herein we propose a MRS approach based on iDQC evolution and optimal echo sampling scheme to achieve high-resolution 2D J-resolved measurements on biological samples. The applicability of the proposed method is evaluated with experiments on an ex vivo pig brain tissue and an in vivo rat brain tissue. Compared to conventional MRS method which is sensitive to field inhomogeneity inside investigated biological tissues, the proposed method holds immunity to this field inhomogeneity and the quality of resulting spectra may not be influenced by localized voxel size variation. The signal to noise ratio enhancement of the proposed method benefitting from the optimal echo signal sampling is verified with a solution experiment. The new method provides a promising way for high-resolution MRS measurements on biological samples. In combination with fast acquisition strategy, it may find some promising biomedical applications.
Collapse
Affiliation(s)
- Chunhua Tan
- Department of Electronic Science, Fujian Provincial Key Laboratory of Plasma and Magnetic Resonance, Xiamen University, Xiamen, China
| | - Yuqing Huang
- Department of Electronic Science, Fujian Provincial Key Laboratory of Plasma and Magnetic Resonance, Xiamen University, Xiamen, China.
| | - Shuhui Cai
- Department of Electronic Science, Fujian Provincial Key Laboratory of Plasma and Magnetic Resonance, Xiamen University, Xiamen, China.
| | - Zhong Chen
- Department of Electronic Science, Fujian Provincial Key Laboratory of Plasma and Magnetic Resonance, Xiamen University, Xiamen, China
| |
Collapse
|
12
|
Zoelch N, Hock A, Henning A. Quantitative magnetic resonance spectroscopy at 3T based on the principle of reciprocity. NMR IN BIOMEDICINE 2018; 31:e3875. [PMID: 29465821 DOI: 10.1002/nbm.3875] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2017] [Revised: 10/06/2017] [Accepted: 11/10/2017] [Indexed: 05/22/2023]
Abstract
Quantification of magnetic resonance spectroscopy signals using the phantom replacement method requires an adequate correction of differences between the acquisition of the reference signal in the phantom and the measurement in vivo. Applying the principle of reciprocity, sensitivity differences can be corrected at low field strength by measuring the RF transmitter gain needed to obtain a certain flip angle in the measured volume. However, at higher field strength the transmit sensitivity may vary from the reception sensitivity, which leads to wrongly estimated concentrations. To address this issue, a quantification approach based on the principle of reciprocity for use at 3T is proposed and validated thoroughly. In this approach, the RF transmitter gain is determined automatically using a volume-selective power optimization and complemented with information from relative reception sensitivity maps derived from contrast-minimized images to correct differences in transmission and reception sensitivity. In this way, a reliable measure of the local sensitivity was obtained. The proposed method is used to derive in vivo concentrations of brain metabolites and tissue water in two studies with different coil sets in a total of 40 healthy volunteers. Resulting molar concentrations are compared with results using internal water referencing (IWR) and Electric REference To access In vivo Concentrations (ERETIC). With the proposed method, changes in coil loading and regional sensitivity due to B1 inhomogeneities are successfully corrected, as demonstrated in phantom and in vivo measurements. For the tissue water content, coefficients of variation between 2% and 3.5% were obtained (0.6-1.4% in a single subject). The coefficients of variation of the three major metabolites ranged from 3.4-14.5%. In general, the derived concentrations agree well with values estimated with IWR. Hence, the presented method is a valuable alternative for IWR, without the need for additional hardware such as ERETIC and with potential advantages in diseased tissue.
Collapse
Affiliation(s)
- Niklaus Zoelch
- Institute for Biomedical Engineering, University and ETH Zurich, Zurich, Switzerland
- Institute of Forensic Medicine, University of Zurich, Zurich, Switzerland
- Hospital of Psychiatry, Department of Psychiatry, Psychotherapy and Psychosomatics, University of Zurich, Zurich, Switzerland
| | - Andreas Hock
- Institute for Biomedical Engineering, University and ETH Zurich, Zurich, Switzerland
- Hospital of Psychiatry, Department of Psychiatry, Psychotherapy and Psychosomatics, University of Zurich, Zurich, Switzerland
| | - Anke Henning
- Institute for Biomedical Engineering, University and ETH Zurich, Zurich, Switzerland
- Max Plank Institute for Biological Cybernetics, Tuebingen, Germany
| |
Collapse
|
13
|
Reischauer C, Hock A, Kolokythas O, Binkert CA, Gutzeit A. Fully navigated 3 T proton magnetic resonance spectroscopy of liver metastases with inner-volume saturation. Abdom Radiol (NY) 2017; 42:2615-2622. [PMID: 28523414 DOI: 10.1007/s00261-017-1173-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
PURPOSE To demonstrate that fully navigated magnetic resonance spectroscopy (MRS) with inner-volume saturation (IVS) at 3 T results in high-quality spectra that permit evaluating metabolic changes in hepatic metastases without the need for patient compliance. METHODS Nine patients with untreated, biopsy-proven large hepatic metastases (minimum diameter of 3 cm) were included. In each patient, localized proton MRS was performed in the metastatic lesion and in uninvolved liver parenchyma. To improve quality and consistency of proton MRS, navigator gating was thereby performed not only during acquisition of the spectroscopic data but also during localization imaging and throughout the preparation phases. IVS was utilized to reduce chemical shift displacement between different metabolites and to diminish flow artifacts. Metabolite quantities were normalized relative to the unsuppressed water peak and choline-containing compounds (CCC) to lipid ratios were determined. Wilcoxon signed-rank tests were used to assess differences in the amounts of lipids and CCC as well as the CCC-to-lipid ratios between liver metastases and normal-appearing liver parenchyma. RESULTS Fully navigated point-resolved spectroscopy with IVS resulted in high-quality spectra in all patients. Navigator gating during localization imaging and spectroscopic acquisition thereby ensured a precise localization of the spectroscopic voxel. Decreased quantities of lipid and CCC were observed in metastatic tissue compared with uninvolved liver parenchyma. However, the latter trend fell short of statistical significance. Moreover, elevated levels of the CCC-to-lipid ratios were detected in metastatic tissue relative to normal-appearing liver parenchyma. CONCLUSIONS The present study demonstrates that fully navigated MRS of the liver with IVS at 3 T allows for a precise localization of the spectroscopic voxel and results in high-quality spectra that permit evaluating liver metabolism without the need for patient compliance.
Collapse
Affiliation(s)
- Carolin Reischauer
- Institute of Radiology and Nuclear Medicine, Clinical Research Unit, Hirslanden Hospital St. Anna, Lucerne, Switzerland.
- Institute for Biomedical Engineering, ETH and University of Zurich, Zurich, Switzerland.
- Department of Radiology, Paracelsus Medical University Salzburg, Salzburg, Austria.
| | - Andreas Hock
- Institute for Biomedical Engineering, ETH and University of Zurich, Zurich, Switzerland
- Department of Psychiatry, Psychotherapy of Psychosomatics, Zurich University Hospital for Psychiatry, Zurich, Switzerland
- Philips Healthcare, Hamburg, Germany
| | - Orpheus Kolokythas
- Department of Radiology and Nuclear Medicine, Cantonal Hospital Winterthur, Winterthur, Switzerland
| | - Christoph A Binkert
- Department of Radiology and Nuclear Medicine, Cantonal Hospital Winterthur, Winterthur, Switzerland
| | - Andreas Gutzeit
- Institute of Radiology and Nuclear Medicine, Clinical Research Unit, Hirslanden Hospital St. Anna, Lucerne, Switzerland
- Department of Radiology, Paracelsus Medical University Salzburg, Salzburg, Austria
| |
Collapse
|
14
|
Henning A. Proton and multinuclear magnetic resonance spectroscopy in the human brain at ultra-high field strength: A review. Neuroimage 2017; 168:181-198. [PMID: 28712992 DOI: 10.1016/j.neuroimage.2017.07.017] [Citation(s) in RCA: 69] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2016] [Revised: 06/27/2017] [Accepted: 07/10/2017] [Indexed: 12/11/2022] Open
Abstract
Magnetic Resonance Spectroscopy (MRS) allows for a non-invasive and non-ionizing determination of in vivo tissue concentrations and metabolic turn-over rates of more than 20 metabolites and compounds in the central nervous system of humans. The aim of this review is to give a comprehensive overview about the advantages, challenges and advances of ultra-high field MRS with regard to methodological development, discoveries and applications from its beginnings around 15 years ago up to the current state. The review is limited to human brain and spinal cord application at field strength of 7T and 9.4T and includes all relevant nuclei (1H, 31P, 13C).
Collapse
Affiliation(s)
- Anke Henning
- Max Plank Institute for Biological Cybernetics, Tübingen, Germany; Institute of Physics, Ernst-Moritz-Arndt University, Greifswald, Germany.
| |
Collapse
|
15
|
Cohen-Adad J. Functional Magnetic Resonance Imaging of the Spinal Cord: Current Status and Future Developments. Semin Ultrasound CT MR 2017; 38:176-186. [DOI: 10.1053/j.sult.2016.07.007] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
16
|
Wyss PO, Hock A, Kollias S. The Application of Human Spinal Cord Magnetic Resonance Spectroscopy to Clinical Studies: A Review. Semin Ultrasound CT MR 2017; 38:153-162. [DOI: 10.1053/j.sult.2016.07.005] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
17
|
Ernst J, Hock A, Henning A, Seifritz E, Boeker H, Grimm S. Increased pregenual anterior cingulate glucose and lactate concentrations in major depressive disorder. Mol Psychiatry 2017; 22:113-119. [PMID: 27184123 DOI: 10.1038/mp.2016.73] [Citation(s) in RCA: 58] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/09/2015] [Revised: 03/25/2016] [Accepted: 03/31/2016] [Indexed: 12/27/2022]
Abstract
There is ample evidence that glucose metabolism in the pregenual anterior cingulate cortex (PACC) is increased in major depressive disorder (MDD), whereas it is still unknown whether glucose levels per se are also elevated. Elevated cerebrospinal fluid (CSF) lactate concentrations in MDD patients might indicate that increased glycolytical metabolization of glucose to lactate in astrocytes either alone or in conjunction with mitochondrial dysfunction results in an accumulation of lactate and contributes to pathophysiological mechanisms of MDD. However, until now, no study investigated in vivo PACC glucose and lactate levels in MDD. Proton magnetic resonance spectroscopy was therefore used to test the hypothesis that patients with MDD have increased PACC glucose and lactate levels. In 40 healthy and depressed participants, spectra were acquired from the PACC using a maximum echo J-resolved spectroscopy protocol. Results show significant increases of glucose and lactate in patients, which are also associated with depression severity. These findings indicate impaired brain energy metabolism in MDD with increased fraction of energy utilization via glycolysis and reduced mitochondrial oxidative clearance of lactate. Targeting these metabolic disturbances might affect the balance of metabolic pathways regulating neuronal energetics and result in an attenuation of the elevated basal activity of brain regions within the neural circuitry of depression.
Collapse
Affiliation(s)
- J Ernst
- Department of Psychiatry, Psychotherapy and Psychosomatics, Hospital of Psychiatry, University of Zurich, Zurich, Switzerland
| | - A Hock
- Department of Psychiatry, Psychotherapy and Psychosomatics, Hospital of Psychiatry, University of Zurich, Zurich, Switzerland.,Institute for Biomedical Engineering, University and ETH Zurich, Zurich, Switzerland
| | - A Henning
- Institute for Biomedical Engineering, University and ETH Zurich, Zurich, Switzerland.,Zurich Center for Integrative Human Physiology (ZIHP), University of Zurich, Zurich, Switzerland.,Max Planck Institute for Biological Cybernetics, Tuebingen, Germany
| | - E Seifritz
- Department of Psychiatry, Psychotherapy and Psychosomatics, Hospital of Psychiatry, University of Zurich, Zurich, Switzerland.,Zurich Center for Integrative Human Physiology (ZIHP), University of Zurich, Zurich, Switzerland
| | - H Boeker
- Department of Psychiatry, Psychotherapy and Psychosomatics, Hospital of Psychiatry, University of Zurich, Zurich, Switzerland
| | - S Grimm
- Department of Psychiatry, Psychotherapy and Psychosomatics, Hospital of Psychiatry, University of Zurich, Zurich, Switzerland.,Department of Psychiatry, Charité, Campus Benjamin Franklin, Berlin, Germany
| |
Collapse
|
18
|
Hock A, Wilm B, Zandomeneghi G, Ampanozi G, Franckenberg S, Zoelch N, Wyss PO, De Zanche N, Nordmeyer-Maßner J, Kraemer T, Thali M, Ernst M, Kollias S, Henning A. Neurochemical profile of the human cervical spinal cord determined by MRS. NMR IN BIOMEDICINE 2016; 29:1464-1476. [PMID: 27580498 DOI: 10.1002/nbm.3589] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2016] [Revised: 06/14/2016] [Accepted: 06/29/2016] [Indexed: 06/06/2023]
Abstract
MRS enables insight into the chemical composition of central nervous system tissue. However, technical challenges degrade the data quality when applied to the human spinal cord. Therefore, to date detection of only the most prominent metabolite resonances has been reported in the healthy human spinal cord. The aim of this investigation is to provide an extended metabolic profile including neurotransmitters and antioxidants in addition to metabolites involved in the energy and membrane metabolism of the human cervical spinal cord in vivo. To achieve this, data quality was improved by using a custom-made, cervical detector array together with constructive averaging of a high number of echo signals, which is enabled by the metabolite cycling technique at 3T. In addition, the improved spinal cord spectra were extensively cross-validated, in vivo, post-mortem in situ and ex vivo. Reliable identification of up to nine metabolites was achieved in group analyses for the first time. Distinct features of the spinal cord neurochemical profile, in comparison with the brain neurotransmission system, include decreased concentrations of the sum of glutamate and glutamate and increased concentrations of aspartate, γ-amino-butyric acid, scyllo-inositol and the sum of myo-inositol and glycine.
Collapse
Affiliation(s)
- Andreas Hock
- Institute for Biomedical Engineering, University and ETH Zurich, Zurich, Switzerland.
- Hospital of Psychiatry, Department of Psychiatry, Psychotherapy and Psychosomatics, University of Zurich, Zurich, Switzerland.
| | - Bertram Wilm
- Institute for Biomedical Engineering, University and ETH Zurich, Zurich, Switzerland
| | | | - Garyfalia Ampanozi
- Institute of Forensic Medicine, University of Zurich, Zurich, Switzerland
| | | | - Niklaus Zoelch
- Institute for Biomedical Engineering, University and ETH Zurich, Zurich, Switzerland
| | - Patrik Oliver Wyss
- Institute for Biomedical Engineering, University and ETH Zurich, Zurich, Switzerland
- Institute of Neuroradiology, University Hospital of Zurich, Zurich, Switzerland
| | - Nicola De Zanche
- Department of Oncology, University of Alberta, Edmonton, Alberta, Canada
| | | | - Thomas Kraemer
- Institute of Forensic Medicine, University of Zurich, Zurich, Switzerland
| | - Michael Thali
- Institute of Forensic Medicine, University of Zurich, Zurich, Switzerland
| | | | - Spyros Kollias
- Institute of Neuroradiology, University Hospital of Zurich, Zurich, Switzerland
| | - Anke Henning
- Institute for Biomedical Engineering, University and ETH Zurich, Zurich, Switzerland
- Max Plank Institute for Biological Cybernetics, Tuebingen, Baden-Württemberg, Germany
| |
Collapse
|
19
|
Henning A, Koning W, Fuchs A, Raaijmakers A, Bluemink JJ, van den Berg CAT, Boer VO, Klomp DWJ. (1) H MRS in the human spinal cord at 7 T using a dielectric waveguide transmitter, RF shimming and a high density receive array. NMR IN BIOMEDICINE 2016; 29:1231-1239. [PMID: 27191947 DOI: 10.1002/nbm.3541] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2014] [Revised: 03/22/2016] [Accepted: 03/23/2016] [Indexed: 06/05/2023]
Abstract
Multimodal MRI is the state of the art method for clinical diagnostics and therapy monitoring of the spinal cord, with MRS being an emerging modality that has the potential to detect relevant changes of the spinal cord tissue at an earlier stage and to enhance specificity. Methodological challenges related to the small dimensions and deep location of the human spinal cord inside the human body, field fluctuations due to respiratory motion, susceptibility differences to adjacent tissue such as vertebras and pulsatile flow of the cerebrospinal fluid hinder the clinical application of (1) H MRS to the human spinal cord. Complementary to previous studies that partly addressed these problems, this work aims at enhancing the signal-to-noise ratio (SNR) of (1) H MRS in the human spinal cord. To this end a flexible tight fit high density receiver array and ultra-high field strength (7 T) were combined. A dielectric waveguide and dipole antenna transmission coil allowed for dual channel RF shimming, focusing the RF field in the spinal cord, and an inner-volume saturated semi-LASER sequence was used for robust localization in the presence of B1 (+) inhomogeneity. Herein we report the first 7 T spinal cord (1) H MR spectra, which were obtained in seven independent measurements of 128 averages each in three healthy volunteers. The spectra exhibit high quality (full width at half maximum 0.09 ppm, SNR 7.6) and absence of artifacts and allow for reliable quantification of N-acetyl aspartate (NAA) (NAA/Cr (creatine) 1.31 ± 0.20; Cramér-Rao lower bound (CRLB) 5), total choline containing compounds (Cho) (Cho/Cr 0.32 ± 0.07; CRLB 7), Cr (CRLB 5) and myo-inositol (mI) (mI/Cr 1.08 ± 0.22; CRLB 6) in 7.5 min in the human cervical spinal cord. Thus metabolic information from the spinal cord can be obtained in clinically feasible scan times at 7 T, and its benefit for clinical decision making in spinal cord disorders will be investigated in the future using the presented methodology. Copyright © 2016 John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- A Henning
- Max Plank Institute for Biological Cybernetics, Tübingen, Germany
- Institute for Biomedical Engineering, University and ETH Zurich, Zurich, Switzerland
| | - W Koning
- University Medical Center Utrecht, Utrecht, The Netherlands
| | - A Fuchs
- Institute for Biomedical Engineering, University and ETH Zurich, Zurich, Switzerland
| | - A Raaijmakers
- University Medical Center Utrecht, Utrecht, The Netherlands
| | - J J Bluemink
- University Medical Center Utrecht, Utrecht, The Netherlands
| | | | - V O Boer
- University Medical Center Utrecht, Utrecht, The Netherlands
| | - D W J Klomp
- University Medical Center Utrecht, Utrecht, The Netherlands
| |
Collapse
|
20
|
Fichtner ND, Henning A, Zoelch N, Boesch C, Kreis R. Elucidation of the downfield spectrum of human brain at 7 T using multiple inversion recovery delays and echo times. Magn Reson Med 2016; 78:11-19. [DOI: 10.1002/mrm.26343] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2016] [Revised: 06/22/2016] [Accepted: 06/22/2016] [Indexed: 01/02/2023]
Affiliation(s)
- Nicole D. Fichtner
- Department of Radiology, Neuroradiology, and Nuclear Medicine; University of Bern; Bern Switzerland
- Department of Clinical Research; University of Bern; Bern Switzerland
- Graduate School for Cellular and Biomedical Sciences; University of Bern; Bern Switzerland
- Institute for Biomedical Engineering, UZH and ETH Zurich; Zurich Switzerland
| | - Anke Henning
- Institute for Biomedical Engineering, UZH and ETH Zurich; Zurich Switzerland
- Max Planck Institute for Biological Cybernetics; Tübingen Germany
| | - Niklaus Zoelch
- Institute for Biomedical Engineering, UZH and ETH Zurich; Zurich Switzerland
| | - Chris Boesch
- Department of Radiology, Neuroradiology, and Nuclear Medicine; University of Bern; Bern Switzerland
- Department of Clinical Research; University of Bern; Bern Switzerland
| | - Roland Kreis
- Department of Radiology, Neuroradiology, and Nuclear Medicine; University of Bern; Bern Switzerland
- Department of Clinical Research; University of Bern; Bern Switzerland
| |
Collapse
|
21
|
de Matos NMP, Meier L, Wyss M, Meier D, Gutzeit A, Ettlin DA, Brügger M. Reproducibility of Neurochemical Profile Quantification in Pregenual Cingulate, Anterior Midcingulate, and Bilateral Posterior Insular Subdivisions Measured at 3 Tesla. Front Hum Neurosci 2016; 10:300. [PMID: 27445745 PMCID: PMC4914599 DOI: 10.3389/fnhum.2016.00300] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2016] [Accepted: 06/02/2016] [Indexed: 12/19/2022] Open
Abstract
The current report assessed measurement reproducibility of proton magnetic resonance spectroscopy at 3 Tesla in the left and right posterior insular, pregenual anterior cingulate, and anterior midcingulate cortices. Ten healthy male volunteers aged 21–30 years were tested at four different days, of which nine were included in the data analysis. Intra- and inter-subject variability of myo-inositol, creatine, glutamate, total-choline, total-N-acetylaspartate, and combined glutamine–glutamate were calculated considering the influence of movement parameters, age, daytime of measurements, and tissue composition. Overall mean intra-/inter-subject variability for all neurochemicals combined revealed small mean coefficients of variation across the four regions: 5.3/9.05% in anterior midcingulate, 6.6/8.84% in pregenual anterior cingulate, 7.3/10.00% in left posterior and 8.2/10.55% in right posterior insula. Head movement, tissue composition and day time revealed no significant explanatory variance contribution suggesting a negligible influence on the data. A strong correlation between Cramer–Rao Lower Bounds (a measure of fitting errors) and the mean intra-subject coefficients of variation (r = 0.799, p < 0.001) outlined the importance of low fitting errors in order to obtain robust and finally meaningful measurements. The present findings confirm proton magnetic resonance spectroscopy as a reliable tool to measure brain neurochemistry in small subregions of the human brain.
Collapse
Affiliation(s)
- Nuno M P de Matos
- Center of Dental Medicine, University of ZurichZurich, Switzerland; Institute for Complementary and Integrative Medicine, University Hospital Zurich and University of ZurichZurich, Switzerland
| | - Lukas Meier
- Seminar for Statistics, ETH Zurich Zurich, Switzerland
| | - Michael Wyss
- Institute for Biomedical Engineering, University of Zurich and ETH Zurich Zurich, Switzerland
| | - Dieter Meier
- Institute for Biomedical Engineering, University of Zurich and ETH Zurich Zurich, Switzerland
| | - Andreas Gutzeit
- Institute of Radiology and Nuclear Medicine, Hirslanden Hospital St. Anna Lucerne, Switzerland
| | - Dominik A Ettlin
- Center of Dental Medicine, University of Zurich Zurich, Switzerland
| | - Mike Brügger
- Center of Dental Medicine, University of ZurichZurich, Switzerland; Institute for Biomedical Engineering, University of Zurich and ETH ZurichZurich, Switzerland
| |
Collapse
|
22
|
Effects of serotonin 2A/1A receptor stimulation on social exclusion processing. Proc Natl Acad Sci U S A 2016; 113:5119-24. [PMID: 27091970 DOI: 10.1073/pnas.1524187113] [Citation(s) in RCA: 109] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Social ties are crucial for physical and mental health. However, psychiatric patients frequently encounter social rejection. Moreover, an increased reactivity to social exclusion influences the development, progression, and treatment of various psychiatric disorders. Nevertheless, the neuromodulatory substrates of rejection experiences are largely unknown. The preferential serotonin (5-HT) 2A/1A receptor agonist, psilocybin (Psi), reduces the processing of negative stimuli, but whether 5-HT2A/1A receptor stimulation modulates the processing of negative social interactions remains unclear. Therefore, this double-blind, randomized, counterbalanced, cross-over study assessed the neural response to social exclusion after the acute administration of Psi (0.215 mg/kg) or placebo (Pla) in 21 healthy volunteers by using functional magnetic resonance imaging (fMRI) and resting-state magnetic resonance spectroscopy (MRS). Participants reported a reduced feeling of social exclusion after Psi vs. Pla administration, and the neural response to social exclusion was decreased in the dorsal anterior cingulate cortex (dACC) and the middle frontal gyrus, key regions for social pain processing. The reduced neural response in the dACC was significantly correlated with Psi-induced changes in self-processing and decreased aspartate (Asp) content. In conclusion, 5-HT2A/1A receptor stimulation with psilocybin seems to reduce social pain processing in association with changes in self-experience. These findings may be relevant to the normalization of negative social interaction processing in psychiatric disorders characterized by increased rejection sensitivity. The current results also emphasize the importance of 5-HT2A/1A receptor subtypes and the Asp system in the control of social functioning, and as prospective targets in the treatment of sociocognitive impairments in psychiatric illnesses.
Collapse
|
23
|
Hock A, Henning A. Motion correction and frequency stabilization for MRS of the human spinal cord. NMR IN BIOMEDICINE 2016; 29:490-498. [PMID: 26867133 DOI: 10.1002/nbm.3487] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2015] [Revised: 12/15/2015] [Accepted: 12/20/2015] [Indexed: 06/05/2023]
Abstract
Subject motion is challenging for MRS, because it can falsify results. For spinal cord MRS in particular, subject movement is critical, since even a small movement > 1 mm) can lead to a voxel shift out of the desired measurement region. Therefore, the identification of motion corrupted MRS scans is essential. In this investigation, MR navigators acquired simultaneously with the MRS data are used to identify a displacement of the spinal cord due to subject motion. It is shown that navigators are able to recognize substantial subject motion (>1 mm) without impairing the MRS measurement. In addition, navigators are easy to apply to the measurement, because no additional hardware and just a minor additional user effort are needed. Moreover, no additional scan time is required, because navigators can be applied in the deadtime of the MRS sequence. Furthermore, in this work, retrospective motion correction combined with frequency stabilization is presented by combining navigators with non-water-suppressed (1)H-MRS, resulting in an improved spectral quality of the spinal cord measurements.
Collapse
Affiliation(s)
- Andreas Hock
- Institute for Biomedical Engineering, University and ETH Zurich, Zurich, Switzerland
- Department of Psychiatry, Psychotherapy and Psychosomatics, Hospital of Psychiatry, University of Zurich, Zurich, Switzerland
| | - Anke Henning
- Institute for Biomedical Engineering, University and ETH Zurich, Zurich, Switzerland
- Max Plank Institute for Biological Cybernetics, Tuebingen, Germany
| |
Collapse
|
24
|
Riese F, Gietl A, Zölch N, Henning A, O'Gorman R, Kälin AM, Leh SE, Buck A, Warnock G, Edden RAE, Luechinger R, Hock C, Kollias S, Michels L. Posterior cingulate γ-aminobutyric acid and glutamate/glutamine are reduced in amnestic mild cognitive impairment and are unrelated to amyloid deposition and apolipoprotein E genotype. Neurobiol Aging 2014; 36:53-9. [PMID: 25169676 DOI: 10.1016/j.neurobiolaging.2014.07.030] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2014] [Revised: 07/18/2014] [Accepted: 07/23/2014] [Indexed: 02/08/2023]
Abstract
The biomarker potential of the inhibitory neurotransmitter γ-aminobutyric acid (GABA) for the in vivo characterization of preclinical stages in Alzheimer's disease has not yet been explored. We measured GABA, glutamate + glutamine (Glx), and N-acetyl-aspartate (NAA) levels by single-voxel MEGA-PRESS magnetic resonance spectroscopy in the posterior cingulate cortex of 21 elderly subjects and 15 patients with amnestic mild cognitive impairment. Participants underwent Pittsburgh Compound B positron emission tomography, apolipoprotein E (APOE) genotyping, and neuropsychological examination. GABA, Glx, and NAA levels were significantly lower in patients. NAA was lower in Pittsburgh Compound B-positive subjects and APOE ε4 allele carriers. GABA, Glx, and NAA levels were positively correlated to CERAD word learning scores. Reductions in GABA, Glx, and NAA levels may serve as metabolic biomarkers for cognitive impairment in amnestic mild cognitive impairment. Because GABA and Glx do not seem to reflect amyloid β deposition or APOE genotype, they are less likely biomarker candidates for preclinical Alzheimer's disease.
Collapse
Affiliation(s)
- Florian Riese
- Division of Psychiatry Research and Psychogeriatric Medicine, University of Zurich, Zurich, Switzerland
| | - Anton Gietl
- Division of Psychiatry Research and Psychogeriatric Medicine, University of Zurich, Zurich, Switzerland
| | - Niklaus Zölch
- Institute of Biomedical Engineering, University and ETH Zurich, Zurich, Switzerland
| | - Anke Henning
- Institute of Biomedical Engineering, University and ETH Zurich, Zurich, Switzerland; Max-Planck Institute for Biological Cybernetics, Tübingen, Germany
| | - Ruth O'Gorman
- Center of MR-Research, University Children's Hospital Zurich, Zurich, Switzerland
| | - Andrea M Kälin
- Division of Psychiatry Research and Psychogeriatric Medicine, University of Zurich, Zurich, Switzerland
| | - Sandra E Leh
- Division of Psychiatry Research and Psychogeriatric Medicine, University of Zurich, Zurich, Switzerland
| | - Alfred Buck
- Institute of Nuclear Medicine, University Hospital Zurich, Zurich, Switzerland
| | - Geoffrey Warnock
- Institute of Nuclear Medicine, University Hospital Zurich, Zurich, Switzerland
| | - Richard A E Edden
- Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, Baltimore, MD, USA; F.M. Kirby Center for Functional Brain Imaging, Kenneddy Krieger Institute, Baltimore, MD, USA
| | - Roger Luechinger
- Institute of Biomedical Engineering, University and ETH Zurich, Zurich, Switzerland
| | - Christoph Hock
- Division of Psychiatry Research and Psychogeriatric Medicine, University of Zurich, Zurich, Switzerland
| | - Spyros Kollias
- Clinic of Neuroradiology, University Hospital Zurich, Zurich, Switzerland
| | - Lars Michels
- Clinic of Neuroradiology, University Hospital Zurich, Zurich, Switzerland.
| |
Collapse
|
25
|
Fillmer A, Kirchner T, Cameron D, Henning A. Constrained image-based B0 shimming accounting for "local minimum traps" in the optimization and field inhomogeneities outside the region of interest. Magn Reson Med 2014; 73:1370-80. [PMID: 24715495 DOI: 10.1002/mrm.25248] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2013] [Revised: 03/17/2014] [Accepted: 03/19/2014] [Indexed: 01/09/2023]
Abstract
PURPOSE To improve B0 shimming for applications in high- and ultrahigh-field magnetic resonance imaging and magnetic resonance spectroscopy. METHODS An existing image-based constrained B0 shimming algorithm was enhanced using two techniques: (1) A region of less interest was introduced to control B0 field inhomogeneities in the vicinity of the region of interest; (2) multiple sets of starting values were used for the fitting routine, to avoid "getting trapped" in a local minimum of the optimization function. The influence of constraints during the fitting procedure, due to hardware limitations, on the B0 shim result was investigated. The performance of this algorithm was compared to other B0 shim algorithms for typical shim problems in head and body applications at 3T and 7T. RESULTS Utilization of a weighted region of less interest lead to a significant gain in B0 homogeneity adjacent to the region of interest. The loss of B0 quality due to the enlarged total shim volume within the region of interest remained minimal, allowing for improved artifact reduction in magnetic resonance spectroscopic imaging. Multiple sets of starting values and consideration of shim field constraints led to an additional gain in B0 shim quality. CONCLUSION The proposed algorithm allows for more flexible control of B0 inhomogeneities and, hence, enables gains in image and spectral quality for MR applications. RO1AR050597
Collapse
Affiliation(s)
- Ariane Fillmer
- Institute for Biomedical Engineering, University and ETH Zurich, Zurich, Switzerland
| | | | | | | |
Collapse
|
26
|
Hock A, Valkovič L, Geier A, Kuntzen T, Boesiger P, Henning A. Navigator based respiratory gating during acquisition and preparation phases for proton liver spectroscopy at 3 T. NMR IN BIOMEDICINE 2014; 27:348-355. [PMID: 24591124 DOI: 10.1002/nbm.3069] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2013] [Revised: 12/02/2013] [Accepted: 12/03/2013] [Indexed: 06/03/2023]
Abstract
Proton magnetic resonance spectroscopy ((1)H MRS) enables the non-invasive investigation of the human liver; however, because of technical difficulties it is not regularly used for diagnosis of liver diseases in clinical routine. Breathing motion is one of the major challenges, as it decreases spectral quality and leads to misplacement of the spectroscopic voxel. To overcome this problem, real-time navigator gating for spectral acquisition and preparation steps (B0 shimming, water frequency determination, receiver gain optimization, and water suppression) combined with short TE , optimized first order projection based B0 shimming, water suppression, and inner-volume saturated point resolved spectroscopy (PRESS) at 3 T is suggested. Simultaneous lipid and trimethylamine quantification is demonstrated by means of phantom, volunteer, and representative patient measurements. Precise localization of the voxel despite respiratory motion, increased spectral quality (higher signal-to-noise ratio and reduced linewidth) compared with measurements without respiratory gating, and the possibility of acquiring data without additional subject instructions regarding breathing enable robust and accurate liver (1)H MRS measurements with this novel acquisition protocol.
Collapse
Affiliation(s)
- A Hock
- Institute for Biomedical Engineering, University and ETH Zurich, Zurich, Switzerland; Department of Psychiatry, Psychotherapy and Psychosomatics, Zurich University Hospital for Psychiatry, Zurich, Switzerland
| | | | | | | | | | | |
Collapse
|
27
|
Hock A, Henning A, Boesiger P, Kollias S. (1)H-MR spectroscopy in the human spinal cord. AJNR Am J Neuroradiol 2013; 34:1682-9. [PMID: 23237857 PMCID: PMC7965644 DOI: 10.3174/ajnr.a3342] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2012] [Accepted: 07/25/2012] [Indexed: 12/14/2022]
Abstract
SUMMARY MR spectroscopy allows insight into the chemical composition of human tissue noninvasively. Thereby it can help to better characterize pathologic processes affecting the spinal cord and may provide important clinical markers for differential diagnosis. However, due to technical challenges, it has been rarely applied to the spinal cord. The aim of this review was to summarize the technical development and clinical studies using MR spectroscopy in the spinal cord. Main challenges of applying MR spectroscopy in the spinal cord are discussed, and a description of a state-of-the-art scan protocol is given. In conclusion, MR spectroscopy is a promising tool for research and diagnosis of the spinal cord because it can provide additional information complementary to other noninvasive imaging methods. However, the application of MR spectroscopy in the spinal cord is not straightforward, and great care is required to attain optimal spectral quality.
Collapse
Affiliation(s)
- A. Hock
- From the Institute of Neuroradiology (A. Hock, S.S.K.), University of Zurich, Zurich, Switzerland
- Institute for Biomedical Engineering (A. Hock, A. Henning, P.B.), University and ETH Zurich (Swiss Federal Institute of Technology), Zurich, Switzerland
| | - A. Henning
- Institute for Biomedical Engineering (A. Hock, A. Henning, P.B.), University and ETH Zurich (Swiss Federal Institute of Technology), Zurich, Switzerland
| | - P. Boesiger
- Institute for Biomedical Engineering (A. Hock, A. Henning, P.B.), University and ETH Zurich (Swiss Federal Institute of Technology), Zurich, Switzerland
| | - S.S. Kollias
- From the Institute of Neuroradiology (A. Hock, S.S.K.), University of Zurich, Zurich, Switzerland
| |
Collapse
|