1
|
Bibic A, Sordia T, Henningsson E, Knutsson L, Ståhlberg F, Wirestam R. Effects of red blood cells with reduced deformability on cerebral blood flow and vascular water transport: measurements in rats using time-resolved pulsed arterial spin labelling at 9.4 T. Eur Radiol Exp 2021; 5:53. [PMID: 34935093 PMCID: PMC8692551 DOI: 10.1186/s41747-021-00243-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Accepted: 08/31/2021] [Indexed: 11/18/2022] Open
Abstract
Background Our aim was to introduce damaged red blood cells (RBCs) as a tool for haemodynamic provocation in rats, hypothesised to cause decreased cerebral blood flow (CBF) and prolonged water capillary transfer time (CTT), and to investigate whether expected changes in CBF could be observed and if haemodynamic alterations were reflected by the CTT metric. Methods Damaged RBCs exhibiting a mildly reduced deformability were injected to cause aggregation of RBCs. Arterial spin labelling (ASL) magnetic resonance imaging experiments were performed at 9.4 T. Six datasets (baseline plus five datasets after injection) were acquired for each animal in a study group and a control group (13 and 10 female adult Wistar rats, respectively). For each dataset, ASL images at ten different inversion times were acquired. The CTT model was adapted to the use of a measured arterial input function, implying the use of a realistic labelling profile. Repeated measures ANOVA was used (alpha error = 0.05). Results After injection, significant differences between the study group and control group were observed for relative CBF in white matter (up to 20 percentage points) and putamen (up to 18–20 percentage points) and for relative CTT in putamen (up to 35–40 percentage points). Conclusions Haemodynamic changes caused by injection of damaged RBCs were observed by ASL-based CBF and CTT measurements. Damaged RBCs can be used as a tool for test and validation of perfusion imaging modalities. CTT model fitting was challenging to stabilise at experimental signal-to-noise ratio levels, and the number of free parameters was minimised. Supplementary Information The online version contains supplementary material available at 10.1186/s41747-021-00243-z.
Collapse
Affiliation(s)
- Adnan Bibic
- Department of Medical Radiation Physics, Lund University, Lund, Sweden
| | - Tea Sordia
- Department of Medical Radiation Physics, Lund University, Lund, Sweden
| | | | - Linda Knutsson
- Department of Medical Radiation Physics, Lund University, Lund, Sweden.,Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Freddy Ståhlberg
- Department of Medical Radiation Physics, Lund University, Lund, Sweden
| | - Ronnie Wirestam
- Department of Medical Radiation Physics, Lund University, Lund, Sweden.
| |
Collapse
|
2
|
Petitclerc L, Schmid S, Hirschler L, van Osch MJP. Combining T 2 measurements and crusher gradients into a single ASL sequence for comparison of the measurement of water transport across the blood-brain barrier. Magn Reson Med 2020; 85:2649-2660. [PMID: 33252152 PMCID: PMC7898618 DOI: 10.1002/mrm.28613] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Revised: 11/03/2020] [Accepted: 11/03/2020] [Indexed: 02/01/2023]
Abstract
Purpose Arterial spin labeling can be used to assess the transition time of water molecules across the blood–brain barrier when combined with sequence modules, which allow a separation of intravascular from tissue signal. The bipolar gradient technique measures the intravascular fraction by removing flowing spins. The T2‐relaxation‐under‐spin‐tagging (TRUST) technique modulates the TE to differentiate between intravascular and extravascular spins based on T2. These modules were combined into a single time‐encoded pseudo‐continuous arterial spin labeling sequence to compare their mechanisms of action as well as their assessment of water transition across the blood–brain barrier. Methods This protocol was acquired on a scanner with 9 healthy volunteers who provided written, informed consent. The sequence consisted of a Hadamard‐encoded pseudo‐continuous arterial spin labeling module, followed by the TRUST module (effective TEs of 0, 40, and 80 ms) and bipolar flow‐crushing gradients (2, 4, and ∞ cm/s). An additional experiment was performed with TRUST and a 3D gradient and spin‐echo readout. Results Gradients imperfectly canceled the intravascular signal, as evidenced by the presence of residual signal in the arteries at early postlabeling delays as well as the underestimation of the intravascular fraction as compared with the TRUST method. The TRUST module allowed us to detect the transport of water deeper into the vascular tree through changes in T2 than the used crusher gradients could, with their limited b‐value. Conclusion Of the implemented techniques, TRUST allowed us to follow intravascular signal deeper into the vascular tree than the approach with (relatively weak) crusher gradients when quantifying the transport time of water across the blood–brain barrier.
Collapse
Affiliation(s)
- Léonie Petitclerc
- Gorter Center for High-Field MRI, Department of Radiology, Leiden University Medical Center, Leiden, Netherlands.,Leiden Institute for Brain and Cognition, Leiden, Netherlands
| | - Sophie Schmid
- Gorter Center for High-Field MRI, Department of Radiology, Leiden University Medical Center, Leiden, Netherlands.,Leiden Institute for Brain and Cognition, Leiden, Netherlands
| | - Lydiane Hirschler
- Gorter Center for High-Field MRI, Department of Radiology, Leiden University Medical Center, Leiden, Netherlands
| | - Matthias J P van Osch
- Gorter Center for High-Field MRI, Department of Radiology, Leiden University Medical Center, Leiden, Netherlands.,Leiden Institute for Brain and Cognition, Leiden, Netherlands
| |
Collapse
|
3
|
Kim CM, Alvarado RL, Stephens K, Wey HY, Wang DJJ, Leritz EC, Salat DH. Associations between cerebral blood flow and structural and functional brain imaging measures in individuals with neuropsychologically defined mild cognitive impairment. Neurobiol Aging 2019; 86:64-74. [PMID: 31813626 DOI: 10.1016/j.neurobiolaging.2019.10.023] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2018] [Revised: 10/05/2019] [Accepted: 10/08/2019] [Indexed: 01/18/2023]
Abstract
Reduced cerebral blood flow (CBF), an indicator of neurovascular processes and metabolic demands, is a common finding in Alzheimer's disease. However, little is known about what contributes to CBF deficits in individuals with mild cognitive impairment (MCI). We examine regional CBF differences in 17 MCI compared with 21 age-matched cognitively healthy older adults. Next, we examined associations between CBF, white matter lesion (WML) volume, amplitude of low-frequency fluctuations, and cortical thickness to better understand whether altered CBF was detectable before other markers and the potential mechanistic underpinnings of CBF deficits in MCI. MCI had significantly reduced CBF, whereas cortical thickness and amplitude of low-frequency fluctuation were not affected. Reduced CBF was associated with the WML volume but not associated with other measures. Given the presumed vascular etiology of WML and relative worsening of vascular health in MCI, it may suggest CBF deficits result from early vascular as opposed to metabolic deficits in MCI. These findings may support vascular mechanisms as an underlying component of cognitive impairment.
Collapse
Affiliation(s)
- Chan-Mi Kim
- Brain Aging and Dementia (BAnD) Laboratory, MGH/MIT/HMS Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Charlestown, MA, USA.
| | - Rachel L Alvarado
- Brain Aging and Dementia (BAnD) Laboratory, MGH/MIT/HMS Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Charlestown, MA, USA
| | - Kimberly Stephens
- Brain Aging and Dementia (BAnD) Laboratory, MGH/MIT/HMS Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Charlestown, MA, USA
| | - Hsiao-Ying Wey
- Department of Radiology, Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, MA, USA
| | - Dany J J Wang
- Laboratory of FMRI Technology (LOFT), Mark & Mary Stevens Neuroimaging and Informatics Institute, Keck School of Medicine, University of Southern California, CA, USA; Department of Neurology, University of Southern California, Los Angeles, CA, USA
| | - Elizabeth C Leritz
- Department of Psychiatry, Harvard Medical School, Boston, MA, USA; Geriatric Research, Education & Clinical Center & Translational Research Center for TBI and Stress Disorders, VA Boston Healthcare System, Boston, MA, USA
| | - David H Salat
- Brain Aging and Dementia (BAnD) Laboratory, MGH/MIT/HMS Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Charlestown, MA, USA; Neuroimaging Research for Veterans (NeRVe) Center, VA Boston Healthcare System, Boston, MA, USA
| |
Collapse
|
4
|
Wengler K, Bangiyev L, Canli T, Duong TQ, Schweitzer ME, He X. 3D MRI of whole-brain water permeability with intrinsic diffusivity encoding of arterial labeled spin (IDEALS). Neuroimage 2019; 189:401-414. [DOI: 10.1016/j.neuroimage.2019.01.035] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2018] [Revised: 01/11/2019] [Accepted: 01/13/2019] [Indexed: 12/11/2022] Open
|
5
|
Delgado AF, De Luca F, Hanagandi P, van Westen D, Delgado AF. Arterial Spin-Labeling in Children with Brain Tumor: A Meta-Analysis. AJNR Am J Neuroradiol 2018; 39:1536-1542. [PMID: 30072368 PMCID: PMC7410530 DOI: 10.3174/ajnr.a5727] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2018] [Accepted: 05/18/2018] [Indexed: 12/19/2022]
Abstract
BACKGROUND The value of arterial spin-labeling in a pediatric population has not been assessed in a meta-analysis. PURPOSE Our aim was to assess the diagnostic accuracy of arterial spin-labeling-derived cerebral blood flow to discriminate low- and high-grade tumors. DATA SOURCES MEDLINE, EMBASE, the Web of Science Core Collection, and the Cochrane Library were used. STUDY SELECTION Pediatric patients with arterial spin-labeling MR imaging with verified neuropathologic diagnoses were included. DATA ANALYSIS Relative CBF and absolute CBF and tumor grade were extracted, including sequence-specific information. Mean differences in CBF between low- and high-grade tumors were calculated. Study quality was assessed. DATA SYNTHESIS Data were aggregated using the bivariate summary receiver operating characteristic curve model. Heterogeneity was explored with meta-regression and subgroup analyses. The study protocol was published at PROSPERO (CRD42017075055). Eight studies encompassing 286 pediatric patients were included. The mean differences in absolute CBF were 29.62 mL/min/100 g (95% CI, 10.43-48.82 mL/min/100 g), I2 = 74, P = .002, and 1.34 mL/min/100 g (95% CI, 0.95-1.74 mL/min/100 g), P < .001, I2 = 38 for relative CBF. Pooled sensitivity for relative CBF ranged from 0.75 to 0.90, and specificity, from 0.77 to 0.92 with an area under curve = 0.92. Meta-regression showed no moderating effect of sequence parameters TE, TR, acquisition time, or ROI method. LIMITATIONS Included tumor types, analysis method, and original data varied among included studies. CONCLUSIONS Arterial spin-labeling-derived CBF measures showed high diagnostic accuracy for discriminating low- and high-grade tumors in pediatric patients with brain tumors. The relative CBF showed less variation among studies than the absolute CBF.
Collapse
Affiliation(s)
- A F Delgado
- From the Departments of Clinical Neuroscience (Anna F.D.)
| | - F De Luca
- Faculty of Medicine and Surgery (F.D.L.), School of Medicine and Health Sciences, University "G. d'Annunzio," Chieti, Italy
| | - P Hanagandi
- Neuroradiology (P.H.), Karolinska Institute, Stockholm, Sweden
| | - D van Westen
- Faculty of Medicine (D.v.W.), Clinical Sciences, Lund University, Sweden
| | - A F Delgado
- Department of Surgical Sciences (Alberto F.D.), Uppsala University, Uppsala, Sweden
| |
Collapse
|
6
|
Li Z, Li N, Qu Y, Gai F, Zhang G, Zhang G. Application of 3.0T magnetic resonance arterial spin labeling (ASL) technology in mild and moderate intracranial atherosclerotic stenosis. Exp Ther Med 2016; 12:297-301. [PMID: 27347052 PMCID: PMC4907036 DOI: 10.3892/etm.2016.3318] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2015] [Accepted: 05/06/2016] [Indexed: 11/05/2022] Open
Abstract
The application value of 3.0T magnetic resonance arterial spin labeling (ASL) technology in mild and moderate intracranial atherosclerotic stenosis was evaluated. A total of 58 cases of transient ischemic attack (TIA) and 60 cases of ischemic cerebral apoplexy cases were selected. The cases were analysed using a GE Healthcare Signa HDx 3.0T superconducting whole-body magnetic resonance scan within 24 h of attack. Eight-channel head phased array coils and conventional sequence were used to create T1-weighted images (T1WI), T2WI, diffusion-weighted imaging, magnetic resonance angiography (MRA) and ASL imaging, which were generated into ASL pseudo-color images (blue was hypoperfusion area) through post-processing in order to compare and analyze the correlation and differences between ASL and conventional imaging in terms of lesion location, size, blood perfusion situation and signal range of relative cerebral blood flow (rCBF). The results showed that, 13 TIA cases of abnormal signal in conventional magnetic resonance imaging (MRI) can also be found through ASL technology. Diameter stenosis beyond 30% in MRA can also be tested in ASL. A positive rate in ASL was significantly higher than that of conventional MRI (χ2=29.078, P<0.001) and hypoperfusion area was greatly increased (t=32.526, P<0.001). The rCBF value was positively correlated with the degree of diameter stenosis shown in MRA (r=0.524, P=0.012). Additionally, the positive rate of ASL was positively correlated with the attack times of TIA (r=0.352, P=0.027). A total of 39 cerebral apoplexy cases of abnormal signal in conventional MRI were also found through ASL technology. A positive rate in ASL was significantly higher than that of conventional MRI (χ2=7.685, P=0.006) and hypoperfusion area was greatly increased (t=9.425, P<0.001). The rCBF value was positively correlated with the degree of diameter stenosis (r=0.635, P=0.009). In conclusion, 3.0T ASL correlated with early diagnosis of TIA and mild and moderate intracranial arterial stenosis of cerebral apoplexy.
Collapse
Affiliation(s)
- Zhongwei Li
- CT Room, Yantaishan Hospital, Yantai, Shandong 264001, P.R. China
| | - Naikun Li
- Department of Medical Imaging, Yantai Affiliated Hospital of Binzhou Medical University, Yantai, Shandong 264100, P.R. China
| | - Yanyan Qu
- Department of Endocrinology, Yantaishan Hospital, Yantai, Shandong 264001, P.R. China
| | - Feng Gai
- Department of Radiology, Yantai Municipal Laiyang Central Hospital, Yantai, Shandong 265200, P.R. China
| | - Guowei Zhang
- CT Room, Yantaishan Hospital, Yantai, Shandong 264001, P.R. China
| | - Guanghui Zhang
- Department of Medical Imaging, Yantai Affiliated Hospital of Binzhou Medical University, Yantai, Shandong 264100, P.R. China
| |
Collapse
|