1
|
Ejma M, Madetko N, Brzecka A, Alster P, Budrewicz S, Koszewicz M, Misiuk-Hojło M, Tomilova IK, Somasundaram SG, Kirkland CE, Aliev G. The Role of Stem Cells in the Therapy of Stroke. Curr Neuropharmacol 2021; 20:630-647. [PMID: 34365923 PMCID: PMC9608230 DOI: 10.2174/1570159x19666210806163352] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Revised: 04/19/2021] [Accepted: 06/03/2021] [Indexed: 11/22/2022] Open
Abstract
Background: Stroke is a major challenge in neurology due to its multifactorial genesis and irreversible consequences. Processes of endogenous post-stroke neurogenesis, although insufficient, may indicate possible direction of future therapy. Multiple research considers stem-cell-based approaches in order to maximize neuroregeneration and minimize post-stroke deficits. Objective: Aim of this study is to review current literature considering post-stroke stem-cell-based therapy and possibilities of inducing neuroregeneration after brain vascular damage. Methods: Papers included in this article were obtained from PubMed and MEDLINE databases. The following medical subject headings (MeSH) were used: “stem cell therapy”, “post-stroke neurogenesis”, “stem-cells stroke”, “stroke neurogenesis”, “stroke stem cells”, “stroke”, “cell therapy”, “neuroregeneration”, “neurogenesis”, “stem-cell human”, “cell therapy in human”. Ultimate inclusion was made after manual review of the obtained reference list. Results: Attempts of stimulating neuroregeneration after stroke found in current literature include supporting endogenous neurogenesis, different routes of exogenous stem cells supplying and extracellular vesicles used as a method of particle transport. Conclusion: Although further research in this field is required, post stroke brain recovery supported by exogenous stem cells seems to be promising future therapy revolutionizing modern neurology.
Collapse
Affiliation(s)
- Maria Ejma
- Department of Neurology, Wroclaw Medical University, 50-556 Wrocław, Borowska 213. Poland
| | - Natalia Madetko
- Department of Neurology, Medical University of Warsaw, Kondratowicza 8, 03-242 Warszawa. Poland
| | - Anna Brzecka
- Department of Pulmonology and Lung Oncology, Wroclaw Medical University, Grabiszynska 105, 53-439 Wroclaw. Poland
| | - Piotr Alster
- Department of Neurology, Medical University of Warsaw, Kondratowicza 8, 03-242 Warszawa. Poland
| | - Sławomir Budrewicz
- Department of Neurology, Wroclaw Medical University, 50-556 Wrocław, Borowska 213. Poland
| | - Magdalena Koszewicz
- Department of Neurology, Wroclaw Medical University, 50-556 Wrocław, Borowska 213. Poland
| | - Marta Misiuk-Hojło
- Department of Ophthalmology, Wroclaw Medical University, 50-556 Wroclaw, Borowska 213. Poland
| | - Irina K Tomilova
- Department of Biochemistry, Ivanovo State Medical Academy, Avenue Sheremetyevsky 8, Ivanovo, 153012. Russian Federation
| | - Siva G Somasundaram
- Department of Biological Sciences, Salem University, Salem, WV, 26426. United States
| | - Cecil E Kirkland
- Department of Biological Sciences, Salem University, Salem, WV, 26426. United States
| | - Gjumrakch Aliev
- Wroclaw Medical University, Department of Pulmonology and Lung Oncology, Wroclaw. Poland
| |
Collapse
|
2
|
Sun C, Liu X, Bao C, Wei F, Gong Y, Li Y, Liu J. Advanced non-invasive MRI of neuroplasticity in ischemic stroke: Techniques and applications. Life Sci 2020; 261:118365. [PMID: 32871181 DOI: 10.1016/j.lfs.2020.118365] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Revised: 08/26/2020] [Accepted: 08/27/2020] [Indexed: 12/27/2022]
Abstract
Ischemic stroke represents a serious medical condition which could cause survivors suffer from long-term and even lifetime disabilities. After a stroke attack, the brain would undergo varying degrees of recovery, in which the central nervous system could be reorganized spontaneously or with the help of appropriate rehabilitation. Magnetic resonance imaging (MRI) is a non-invasive technique which can provide comprehensive information on structural, functional and metabolic features of brain tissue. In the last decade, there has been an increased technical advancement in MR techniques such as voxel-based morphological analysis (VBM), diffusion magnetic resonance imaging (dMRI), functional magnetic resonance imaging (fMRI), arterial spin-labeled perfusion imaging (ASL), magnetic sensitivity weighted imaging (SWI), quantitative sensitivity magnetization (QSM) and magnetic resonance spectroscopy (MRS) which have been proven to be a valuable tool to study the brain tissue reorganization. Due to MRI indices of neuroplasticity related to neurological outcome could be translated to the clinic. The ultimate goal of this review is to equip readers with a fundamental understanding of advanced MR techniques and their corresponding clinical application for improving the ability to predict neuroplasticity that are most suitable for stroke management.
Collapse
Affiliation(s)
- Chao Sun
- Graduate School, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, PR China
| | - Xuehuan Liu
- Department of Radiology, Tianjin Union Medical Center, Tianjin 300121, PR China
| | - Cuiping Bao
- Department of Radiology, Tianjin Union Medical Center, Tianjin 300121, PR China
| | - Feng Wei
- Department of Radiology, Tianjin Union Medical Center, Tianjin 300121, PR China
| | - Yi Gong
- Department of Radiology, Tianjin Union Medical Center, Tianjin 300121, PR China
| | - Yiming Li
- Department of Radiology, Tianjin Union Medical Center, Tianjin 300121, PR China
| | - Jun Liu
- Department of Radiology, Tianjin Union Medical Center, Tianjin 300121, PR China.
| |
Collapse
|
3
|
Gower A, Tiberi M. The Intersection of Central Dopamine System and Stroke: Potential Avenues Aiming at Enhancement of Motor Recovery. Front Synaptic Neurosci 2018; 10:18. [PMID: 30034335 PMCID: PMC6043669 DOI: 10.3389/fnsyn.2018.00018] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2018] [Accepted: 06/13/2018] [Indexed: 12/12/2022] Open
Abstract
Dopamine, a major neurotransmitter, plays a role in a wide range of brain sensorimotor functions. Parkinson's disease and schizophrenia are two major human neuropsychiatric disorders typically associated with dysfunctional dopamine activity levels, which can be alleviated through the druggability of the dopaminergic systems. Meanwhile, several studies suggest that optimal brain dopamine activity levels are also significantly impacted in other serious neurological conditions, notably stroke, but this has yet to be fully appreciated at both basic and clinical research levels. This is of utmost importance as there is a need for better treatments to improve recovery from stroke. Here, we discuss the state of knowledge regarding the modulation of dopaminergic systems following stroke, and the use of dopamine boosting therapies in animal stroke models to improve stroke recovery. Indeed, studies in animals and humans show stroke leads to changes in dopamine functioning. Moreover, evidence from animal stroke models suggests stimulation of dopamine receptors may be a promising therapeutic approach for enhancing motor recovery from stroke. With respect to the latter, we discuss the evidence for several possible receptor-linked mechanisms by which improved motor recovery may be mediated. One avenue of particular promise is the subtype-selective stimulation of dopamine receptors in conjunction with physical therapy. However, results from clinical trials so far have been more mixed due to a number of potential reasons including, targeting of the wrong patient populations and use of drugs which modulate a wide array of receptors. Notwithstanding these issues, it is hoped that future research endeavors will assist in the development of more refined dopaminergic therapeutic approaches to enhance stroke recovery.
Collapse
Affiliation(s)
- Annette Gower
- Ottawa Hospital Research Institute (Neuroscience Program), Ottawa, ON, Canada.,University of Ottawa Brain and Mind Institute, Ottawa, ON, Canada.,Departments of Medicine, Cellular and Molecular Medicine, and Psychiatry, University of Ottawa, Ottawa, ON, Canada
| | - Mario Tiberi
- Ottawa Hospital Research Institute (Neuroscience Program), Ottawa, ON, Canada.,University of Ottawa Brain and Mind Institute, Ottawa, ON, Canada.,Departments of Medicine, Cellular and Molecular Medicine, and Psychiatry, University of Ottawa, Ottawa, ON, Canada
| |
Collapse
|
4
|
Wu KJ, Yu S, Lee JY, Hoffer B, Wang Y. Improving Neurorepair in Stroke Brain Through Endogenous Neurogenesis-Enhancing Drugs. Cell Transplant 2018; 26:1596-1600. [PMID: 29113469 PMCID: PMC5680955 DOI: 10.1177/0963689717721230] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Stroke induces not only cell death but also neurorepair. De novo neurogenesis has been found in the subventricular zone of the adult mammalian brain days after stroke. Most of these newly generated cells die shortly after the insult. Recent studies have shown that pharmacological manipulation can improve the survival of endogenous neuroprogenitor cells and neural regeneration in stroke rats. As these drugs target the endogenous reparative processes that occur days after stroke, they may provide a prolonged window for stroke therapy. Here, we discuss endogenous neurogenesis-enhancing drugs and review the general status of stroke therapeutics in evaluating the field of pharmacotherapy for stroke.
Collapse
Affiliation(s)
- Kuo-Jen Wu
- 1 Center for Neuropsychiatric Research, National Health Research Institutes, Miaoli, Taiwan
| | - Seongjin Yu
- 1 Center for Neuropsychiatric Research, National Health Research Institutes, Miaoli, Taiwan
| | - Jea-Young Lee
- 2 University of South Florida Morsani College of Medicine, FL, USA
| | - Barry Hoffer
- 3 Case Western Reserve University, Cleveland, OH, USA
| | - Yun Wang
- 1 Center for Neuropsychiatric Research, National Health Research Institutes, Miaoli, Taiwan
| |
Collapse
|
5
|
Zhou Z, Lu J, Liu WW, Manaenko A, Hou X, Mei Q, Huang JL, Tang J, Zhang JH, Yao H, Hu Q. Advances in stroke pharmacology. Pharmacol Ther 2018; 191:23-42. [PMID: 29807056 DOI: 10.1016/j.pharmthera.2018.05.012] [Citation(s) in RCA: 110] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Stroke occurs when a cerebral blood vessel is blocked or ruptured, and it is the major cause of death and adult disability worldwide. Various pharmacological agents have been developed for the treatment of stroke either through interrupting the molecular pathways leading to neuronal death or enhancing neuronal survival and regeneration. Except for rtPA, few of these agents have succeeded in clinical trials. Recently, with the understanding of the pathophysiological process of stroke, there is a resurrection of research on developing neuroprotective agents for stroke treatment, and novel molecular targets for neuroprotection and neurorestoration have been discovered to predict or offer clinical benefits. Here we review the latest major progress of pharmacological studies in stroke, especially in ischemic stroke; summarize emerging potential therapeutic mechanisms; and highlight recent clinical trials. The aim of this review is to provide a panorama of pharmacological interventions for stroke and bridge basic and translational research to guide the clinical management of stroke therapy.
Collapse
Affiliation(s)
- Zhenhua Zhou
- Department of Physiology and Pharmacology, Loma Linda University School of Medicine, Loma Linda, CA, USA; Department of Neurology, Southwest Hospital, the Third Military Medical University, Chongqing 400038, China
| | - Jianfei Lu
- Discipline of Neuroscience, Department of Physiology and Anatomy, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Wen-Wu Liu
- Department of Diving and Hyperbaric Medicine, the Second Military Medical University, Shanghai 200433, China
| | - Anatol Manaenko
- Department of Neurology, University of Erlangen-Nuremberg, Erlangen, Germany
| | - Xianhua Hou
- Department of Neurology, Southwest Hospital, the Third Military Medical University, Chongqing 400038, China
| | - Qiyong Mei
- Department of Neurosurgery, Changzheng Hospital, the Second Military Medical University, Shanghai 200003, China
| | - Jun-Long Huang
- Discipline of Neuroscience, Department of Physiology and Anatomy, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Jiping Tang
- Department of Physiology and Pharmacology, Loma Linda University School of Medicine, Loma Linda, CA, USA
| | - John H Zhang
- Department of Physiology and Pharmacology, Loma Linda University School of Medicine, Loma Linda, CA, USA
| | - Honghong Yao
- Department of Pharmacology, School of Medicine, Southeast University, Nanjing, China.
| | - Qin Hu
- Discipline of Neuroscience, Department of Physiology and Anatomy, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China.
| |
Collapse
|
6
|
Zhang X, Gao Y, Tang N, Qi J, Wu Y, Hao J, Wang S, Chen D, Li Z. One evidence of cocaine- and amphetamine-regulated transcript (CART) has the bidirectional effects on appetite in Siberian sturgeon (Acipenser baerii). FISH PHYSIOLOGY AND BIOCHEMISTRY 2018; 44:411-422. [PMID: 29143945 DOI: 10.1007/s10695-017-0444-2] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2017] [Accepted: 11/07/2017] [Indexed: 06/07/2023]
Abstract
Cocaine- and amphetamine-regulated transcript (CART), discovered in 1995, with various biological functions, has received much attention recently due to its role in the regulation of appetite in mammals. However, the function of CART on the appetite control in fish species is still not very clear. In this study, Siberian sturgeon (Acipenser baerii Brandt) cart gene was cloned for the first time, and the cart mRNA levels in 11 feeding-related tissues was investigated. The Siberian sturgeon cart gene sequence was 1459 base pairs (bp), including a 3'-terminal untranslated region (3'-UTR) of 39 bp, a 5'-terminal untranslated region (5'-UTR) of 52 bp, and an open reading frame (ORF) of 348 bp encoding 115 amino acids. Siberian sturgeon cart gene has three exons and two introns including 341 bp intron 1 and 679 bp intron 2. The result of tissue distribution showed that cart was widely distributed in 11 tissues with the highest expression in the whole brain. The effects of periprandial (pre- and post-feeding), fasting, and re-feeding on cart mRNA abundance in the whole brain were assessed. Periprandial result showed the expression of cart mRNA in the whole brain significantly elevated after feeding for 3 h. However, fasting experiment showed that the level of cart significantly decreased after 1 day of fasting, but that significantly increased after 3-17 days of food deprivation and returned to the basic level after 3 days of re-feeding in the fishes which were fasted for 15 days. In conclusion, this study suggests that CART has the bidirectional effects on appetite, which acts as a satiety factor in short-term feeding regulation but as a starvation factor in long-term appetite regulation in Siberian sturgeon.
Collapse
Affiliation(s)
- Xin Zhang
- Department of Aquaculture, College of Animal Science and Technology, Sichuan Agricultural University, 211# Huimin Road, Chengdu, China
| | - Yundi Gao
- Department of Aquaculture, College of Animal Science and Technology, Sichuan Agricultural University, 211# Huimin Road, Chengdu, China
| | - Ni Tang
- Department of Aquaculture, College of Animal Science and Technology, Sichuan Agricultural University, 211# Huimin Road, Chengdu, China
| | - Jinwen Qi
- Department of Aquaculture, College of Animal Science and Technology, Sichuan Agricultural University, 211# Huimin Road, Chengdu, China
| | - Yuanbing Wu
- Department of Aquaculture, College of Animal Science and Technology, Sichuan Agricultural University, 211# Huimin Road, Chengdu, China
| | - Jin Hao
- Department of Aquaculture, College of Animal Science and Technology, Sichuan Agricultural University, 211# Huimin Road, Chengdu, China
| | - Shuyao Wang
- Department of Aquaculture, College of Animal Science and Technology, Sichuan Agricultural University, 211# Huimin Road, Chengdu, China
| | - Defang Chen
- Department of Aquaculture, College of Animal Science and Technology, Sichuan Agricultural University, 211# Huimin Road, Chengdu, China
| | - Zhiqiong Li
- Department of Aquaculture, College of Animal Science and Technology, Sichuan Agricultural University, 211# Huimin Road, Chengdu, China.
| |
Collapse
|
7
|
Dewan SN, Wang Y, Yu S. Drug treatments that optimize endogenous neurogenesis as a therapeutic option for stroke. Brain Circ 2017; 3:152-155. [PMID: 30276317 PMCID: PMC6057687 DOI: 10.4103/bc.bc_20_17] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2017] [Revised: 09/03/2017] [Accepted: 09/05/2017] [Indexed: 01/28/2023] Open
Abstract
Cell death and neurogenesis have been examined after stroke in the subventricular zone of the adult mammalian brain. New research focuses on the use of drugs to improve the viability of neural progenitor cells in rats after stroke. The aim of the drugs is to lengthen the timeframe for stroke therapy by targeting the endogenous repair mechanism that follows injury. In this paper, we look at the broad state of stroke therapy to assess the effectiveness of endogenous neurogenesis-enhancing drugs on stroke. This paper is a review article. Referred literature in this paper has been listed in the reference section. The data sets supporting the conclusions of this article are available online by searching various databases, including PubMed. Some original points in this article come from the laboratory practice in our research center and the authors’ experiences.
Collapse
Affiliation(s)
- Shyam N Dewan
- Center of Excellence for Aging and Brain Repair, University of South Florida, Tampa, FL, USA
| | - Yun Wang
- Center for Neuropsychiatric Research, National Health Research Institutes, Taiwan
| | - Seongjin Yu
- Center for Neuropsychiatric Research, National Health Research Institutes, Taiwan
| |
Collapse
|