1
|
Kolesnikova PS, Pavlova OS, Gulyaev MV, Kuropatkina TA, Pirogov YA. Magnetic Resonance Imaging of Monocrotaline-Induced Pulmonary Hypertension in Rats Using Radial Scanning with Retrospective Gating. Bull Exp Biol Med 2024; 178:250-254. [PMID: 39760943 DOI: 10.1007/s10517-025-06316-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Indexed: 01/07/2025]
Abstract
Using magnetic resonance imaging (MRI) with radial scanning, images of intact rat lungs and rat lungs with pulmonary hypertension were obtained. The retrospective gating method was applied to construct images of rat lungs during inspiration and expiration phases. Lung volumes at both respiratory phases, relative tidal volume, and the percentage of lung lesions were calculated. Lung volumes at inspiration and expiration were greater by ~4 and ~18%, respectively, and the relative lung tidal volume was lower by ~2.8 times than in intact rats. Constructed fractional ventilation maps showed a ~2.6-fold decrease in ventilation values in the pathological area. Thus, the application of the retrospective gating method allows detecting changes in lung volumes and ventilation, confirming the presence of pathology and its impact on the respiratory function.
Collapse
Affiliation(s)
- P S Kolesnikova
- Faculty of Physics, Lomonosov Moscow State University, Moscow, Russia
| | - O S Pavlova
- Faculty of Physics, Lomonosov Moscow State University, Moscow, Russia
- Faculty of Fundamental Medicine, Lomonosov Moscow State University, Moscow, Russia
| | - M V Gulyaev
- Faculty of Fundamental Medicine, Lomonosov Moscow State University, Moscow, Russia.
| | - T A Kuropatkina
- Faculty of Fundamental Medicine, Lomonosov Moscow State University, Moscow, Russia
| | - Yu A Pirogov
- Faculty of Physics, Lomonosov Moscow State University, Moscow, Russia
| |
Collapse
|
2
|
Obert AJ, Kern AL, Gutberlet M, Voskrebenzev A, Kaireit TF, Crisosto C, Greer M, Krause ET, Wacker F, Vogel-Claussen J. Volume-Controlled 19 F MR Ventilation Imaging of Fluorinated Gas. J Magn Reson Imaging 2023; 57:1114-1128. [PMID: 36129419 DOI: 10.1002/jmri.28385] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 07/26/2022] [Accepted: 07/26/2022] [Indexed: 11/07/2022] Open
Abstract
BACKGROUND 19 F MRI of inhaled gas tracers has developed into a promising tool for pulmonary diagnostics. Prior to clinical use, the intersession repeatability of acquired ventilation parameters must be quantified and maximized. PURPOSE To evaluate repeatability of static and dynamic 19 F ventilation parameters and correlation with predicted forced expiratory volume in 1 second (FEV1 %pred) with and without inspiratory volume control. STUDY TYPE Prospective. POPULATION A total of 30 healthy subjects and 26 patients with chronic obstructive pulmonary disease (COPD). FIELD STRENGTH/SEQUENCE Three-dimensional (3D) gradient echo pulse sequence with golden-angle stack-of-stars k-space encoding at 1.5 T. ASSESSMENT All study participants underwent 19 F ventilation MRI over eight breaths with inspiratory volume control (w VC) and without inspiratory volume control (w/o VC), which was repeated within 1 week. Ventilated volume percentage (VVP), fractional ventilation (FV), and wash-in time (WI) were computed. Lung function testing was conducted on the first visit. STATISTICAL TESTS Correlation between imaging and FEV1 %pred was measured using Pearson correlation coefficient (r). Differences in imaging parameters between first and second visit were analyzed using paired t-test. Repeatability was quantified using intraclass correlation coefficient (ICC) and coefficient of variation (CoV). Minimum detectable effect size (MDES) was calculated with a power analysis for study size n = 30 and a power of 0.8. All hypotheses were tested with a significance level of 5% two sided. RESULTS Strong and moderate linear correlations with FEV1 %pred for COPD patients were found in almost all imaging parameters. The ICC w VC exceeds the ICC w/o VC for all imaging parameters. CoV was significantly lower w VC for initial VVP in COPD patients, FV, CoV FV, WI and standard deviation (SD) of WI. MDES of all imaging parameters were smaller w VC. DATA CONCLUSION 19 F gas wash-in MRI with inspiratory volume control increases the correlation and repeatability of imaging parameters with lung function testing. EVIDENCE LEVEL 2 TECHNICAL EFFICACY: Stage 2.
Collapse
Affiliation(s)
- Arnd J Obert
- Institute for Diagnostic and Interventional Radiology, Hannover Medical School, Hannover, Germany.,Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), German Center for Lung Research (DZL), Hannover, Germany
| | - Agilo L Kern
- Institute for Diagnostic and Interventional Radiology, Hannover Medical School, Hannover, Germany.,Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), German Center for Lung Research (DZL), Hannover, Germany
| | - Marcel Gutberlet
- Institute for Diagnostic and Interventional Radiology, Hannover Medical School, Hannover, Germany.,Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), German Center for Lung Research (DZL), Hannover, Germany
| | - Andreas Voskrebenzev
- Institute for Diagnostic and Interventional Radiology, Hannover Medical School, Hannover, Germany.,Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), German Center for Lung Research (DZL), Hannover, Germany
| | - Till F Kaireit
- Institute for Diagnostic and Interventional Radiology, Hannover Medical School, Hannover, Germany.,Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), German Center for Lung Research (DZL), Hannover, Germany
| | - Cristian Crisosto
- Institute for Diagnostic and Interventional Radiology, Hannover Medical School, Hannover, Germany.,Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), German Center for Lung Research (DZL), Hannover, Germany
| | - Mark Greer
- Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), German Center for Lung Research (DZL), Hannover, Germany.,Department of Respiratory Medicine, Hannover Medical School, Hannover, Germany
| | - E Tobias Krause
- Institute of Animal Welfare and Animal Husbandry, Friedrich-Loeffler-Institute, Celle, Germany
| | - Frank Wacker
- Institute for Diagnostic and Interventional Radiology, Hannover Medical School, Hannover, Germany.,Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), German Center for Lung Research (DZL), Hannover, Germany
| | - Jens Vogel-Claussen
- Institute for Diagnostic and Interventional Radiology, Hannover Medical School, Hannover, Germany.,Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), German Center for Lung Research (DZL), Hannover, Germany
| |
Collapse
|
3
|
Pavlova OS, Gulyaev MV, Gervits LL, Hurshkainen AA, Nikulin AV, Puchnin VM, Teploukhova ED, Kuropatkina TA, Anisimov NV, Medvedeva NA, Pirogov YA. Т 1 mapping of rat lungs in 19 F MRI using octafluorocyclobutane. Magn Reson Med 2023; 89:2318-2331. [PMID: 36744719 DOI: 10.1002/mrm.29606] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 01/12/2023] [Accepted: 01/12/2023] [Indexed: 02/07/2023]
Abstract
PURPOSE To demonstrate the feasibility of using octafluorocyclobutane (OFCB, c-C4 F8 ) for T1 mapping of lungs in 19 F MRI. METHODS The study was performed at 7 T in three healthy rats and three rats with pulmonary hypertension. To increase the sensitivity of 19 F MRI, a bent-shaped RF coil with periodic metal strips structure was used. The double flip angle method was used to calculate normalized transmitting RF field (B1n + ) maps and for correcting T1 maps built with the variable flip angle (VFA) method. The ultrashort TE pulse sequence was applied for acquiring MR images throughout the study. RESULTS The dependencies of OFCB relaxation times on its partial pressure in mixtures with oxygen, air, helium, and argon were obtained. T1 of OFCB linearly depended on its partial pressure with the slope of about 0.35 ms/kPa in the case of free diffusion. RF field inhomogeneity leads to distortion of T1 maps built with the VFA method, and therefore to high standard deviation of T1 in these maps. To improve the accuracy of the T1 maps, the B1n + maps were applied for VFA correction. This contributed to a 2-3-fold decrease in the SD of T1 values in the corresponding maps compared with T1 maps calculated without the correction. Three-dimensional T1 maps were obtained, and the mean T1 in healthy rat lungs was 35 ± 10 ms, and in rat lungs with pulmonary hypertension - 41 ± 9 ms. CONCLUSION OFCB has a spin-rotational relaxation mechanism and can be used for 19 F T1 mapping of lungs. The calculated OFCB maps captured ventilation defects induced by edema.
Collapse
Affiliation(s)
- Olga S Pavlova
- Faculty of Medicine, Lomonosov Moscow State University, Moscow, Russia.,Faculty of Physics, Lomonosov Moscow State University, Moscow, Russia
| | - Mikhail V Gulyaev
- Faculty of Medicine, Lomonosov Moscow State University, Moscow, Russia
| | - Lev L Gervits
- Nesmeyanov Institute of Organoelement Compounds of Russian Academy of Sciences, Moscow, Russia
| | - Anna A Hurshkainen
- School of Physics and Engineering, ITMO University, St. Petersburg, Russia
| | - Anton V Nikulin
- Center of Photonics and 2D Materials, Moscow Institute of Physics and Technology, Dolgoprudny, Russia
| | - Viktor M Puchnin
- School of Physics and Engineering, ITMO University, St. Petersburg, Russia
| | | | | | | | | | - Yury A Pirogov
- Faculty of Physics, Lomonosov Moscow State University, Moscow, Russia
| |
Collapse
|
4
|
Sembhi R, Ranota T, Fox M, Couch M, Li T, Ball I, Ouriadov A. Feasibility of Dynamic Inhaled Gas MRI-Based Measurements Using Acceleration Combined with the Stretched Exponential Model. Diagnostics (Basel) 2023; 13:diagnostics13030506. [PMID: 36766611 PMCID: PMC9914115 DOI: 10.3390/diagnostics13030506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 01/22/2023] [Accepted: 01/28/2023] [Indexed: 02/01/2023] Open
Abstract
Dynamic inhaled gas (3He/129Xe/19F) MRI permits the acquisition of regional fractional-ventilation which is useful for detecting gas-trapping in lung-diseases such as lung fibrosis and COPD. Deninger's approach used for analyzing the wash-out data can be substituted with the stretched-exponential-model (SEM) because signal-intensity is attenuated as a function of wash-out-breath in 19F lung imaging. Thirteen normal-rats were studied using 3He/129Xe and 19F MRI and the ventilation measurements were performed using two 3T clinical-scanners. Two Cartesian-sampling-schemes (Fast-Gradient-Recalled-Echo/X-Centric) were used to test the proposed method. The fully sampled dynamic wash-out images were retrospectively under-sampled (acceleration-factors (AF) of 10/14) using a varying-sampling-pattern in the wash-out direction. Mean fractional-ventilation maps using Deninger's and SEM-based approaches were generated. The mean fractional-ventilation-values generated for the fully sampled k-space case using the Deninger method were not significantly different from other fractional-ventilation-values generated for the non-accelerated/accelerated data using both Deninger and SEM methods (p > 0.05 for all cases/gases). We demonstrated the feasibility of the SEM-based approach using retrospective under-sampling, mimicking AF = 10/14 in a small-animal-cohort from the previously reported dynamic-lung studies. A pixel-by-pixel comparison of the Deninger-derived and SEM-derived fractional-ventilation-estimates obtained for AF = 10/14 (≤16% difference) has confirmed that even at AF = 14, the accuracy of the estimates is high enough to consider this method for prospective measurements.
Collapse
Affiliation(s)
- Ramanpreet Sembhi
- Department of Physics and Astronomy, The University of Western Ontario, London, ON N6A 3K7, Canada
| | - Tuneesh Ranota
- Faculty of Engineering, School of Biomedical Engineering, The University of Western Ontario, London, ON N6A 3K7, Canada
| | - Matthew Fox
- Department of Physics and Astronomy, The University of Western Ontario, London, ON N6A 3K7, Canada
- Lawson Health Research Institute, London, ON N6C 2R5, Canada
| | - Marcus Couch
- Siemens Healthcare Limited, Montreal, QC H4R 2N9, Canada
| | - Tao Li
- Department of Chemistry, Lakehead University, Thunder Bay, ON P7B 5E1, Canada
| | - Iain Ball
- Philips Australia and New Zealand, Sydney 2113, Australia
| | - Alexei Ouriadov
- Department of Physics and Astronomy, The University of Western Ontario, London, ON N6A 3K7, Canada
- Faculty of Engineering, School of Biomedical Engineering, The University of Western Ontario, London, ON N6A 3K7, Canada
- Lawson Health Research Institute, London, ON N6C 2R5, Canada
- Correspondence:
| |
Collapse
|
5
|
Wei Y, Yang C, Jiang H, Li Q, Che F, Wan S, Yao S, Gao F, Zhang T, Wang J, Song B. Multi-nuclear magnetic resonance spectroscopy: state of the art and future directions. Insights Imaging 2022; 13:135. [PMID: 35976510 PMCID: PMC9382599 DOI: 10.1186/s13244-022-01262-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Accepted: 07/04/2022] [Indexed: 12/16/2022] Open
Abstract
With the development of heteronuclear fluorine, sodium, phosphorus, and other probes and imaging technologies as well as the optimization of magnetic resonance imaging (MRI) equipment and sequences, multi-nuclear magnetic resonance (multi-NMR) has enabled localize molecular activities in vivo that are central to a variety of diseases, including cardiovascular disease, neurodegenerative pathologies, metabolic diseases, kidney, and tumor, to shift from the traditional morphological imaging to the molecular imaging, precision diagnosis, and treatment mode. However, due to the low natural abundance and low gyromagnetic ratios, the clinical application of multi-NMR has been hampered. Several techniques have been developed to amplify the NMR sensitivity such as the dynamic nuclear polarization, spin-exchange optical pumping, and brute-force polarization. Meanwhile, a wide range of nuclei can be hyperpolarized, such as 2H, 3He, 13C, 15 N, 31P, and 129Xe. The signal can be increased and allows real-time observation of biological perfusion, metabolite transport, and metabolic reactions in vivo, overcoming the disadvantages of conventional magnetic resonance of low sensitivity. HP-NMR imaging of different nuclear substrates provides a unique opportunity and invention to map the metabolic changes in various organs without invasive procedures. This review aims to focus on the recent applications of multi-NMR technology not only in a range of preliminary animal experiments but also in various disease spectrum in human. Furthermore, we will discuss the future challenges and opportunities of this multi-NMR from a clinical perspective, in the hope of truly bridging the gap between cutting-edge molecular biology and clinical applications.
Collapse
Affiliation(s)
- Yi Wei
- Department of Radiology, West China Hospital, Sichuan University, No. 37, Guoxue Alley, Chengdu, 610041, People's Republic of China
| | - Caiwei Yang
- Department of Radiology, West China Hospital, Sichuan University, No. 37, Guoxue Alley, Chengdu, 610041, People's Republic of China
| | - Hanyu Jiang
- Department of Radiology, West China Hospital, Sichuan University, No. 37, Guoxue Alley, Chengdu, 610041, People's Republic of China
| | - Qian Li
- Department of Radiology, West China Hospital, Sichuan University, No. 37, Guoxue Alley, Chengdu, 610041, People's Republic of China
| | - Feng Che
- Department of Radiology, West China Hospital, Sichuan University, No. 37, Guoxue Alley, Chengdu, 610041, People's Republic of China
| | - Shang Wan
- Department of Radiology, West China Hospital, Sichuan University, No. 37, Guoxue Alley, Chengdu, 610041, People's Republic of China
| | - Shan Yao
- Department of Radiology, West China Hospital, Sichuan University, No. 37, Guoxue Alley, Chengdu, 610041, People's Republic of China
| | - Feifei Gao
- Department of Radiology, West China Hospital, Sichuan University, No. 37, Guoxue Alley, Chengdu, 610041, People's Republic of China
| | - Tong Zhang
- Department of Radiology, West China Hospital, Sichuan University, No. 37, Guoxue Alley, Chengdu, 610041, People's Republic of China
| | - Jiazheng Wang
- Clinical & Technical Support, Philips Healthcare, Beijing, China
| | - Bin Song
- Department of Radiology, West China Hospital, Sichuan University, No. 37, Guoxue Alley, Chengdu, 610041, People's Republic of China. .,Department of Radiology, Sanya People's Hospital, Sanya, China.
| |
Collapse
|
6
|
Obert AJ, Gutberlet M, Kern AL, Kaireit TF, Glandorf J, Moher Alsady T, Wacker F, Hohlfeld JM, Vogel‐Claussen J. Examining lung microstructure using
19
F MR
diffusion imaging in
COPD
patients. Magn Reson Med 2022; 88:860-870. [DOI: 10.1002/mrm.29237] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Revised: 02/24/2022] [Accepted: 02/26/2022] [Indexed: 12/16/2022]
Affiliation(s)
- Arnd Jonathan Obert
- Institute for Diagnostic and Interventional Radiology Hannover Medical School Hannover Germany
- Biomedical Research in Endstage and Obstructive Lung Disease Hannover German Center for Lung Research Hannover Germany
| | - Marcel Gutberlet
- Institute for Diagnostic and Interventional Radiology Hannover Medical School Hannover Germany
- Biomedical Research in Endstage and Obstructive Lung Disease Hannover German Center for Lung Research Hannover Germany
| | - Agilo Luitger Kern
- Institute for Diagnostic and Interventional Radiology Hannover Medical School Hannover Germany
- Biomedical Research in Endstage and Obstructive Lung Disease Hannover German Center for Lung Research Hannover Germany
| | - Till Frederik Kaireit
- Institute for Diagnostic and Interventional Radiology Hannover Medical School Hannover Germany
- Biomedical Research in Endstage and Obstructive Lung Disease Hannover German Center for Lung Research Hannover Germany
| | - Julian Glandorf
- Institute for Diagnostic and Interventional Radiology Hannover Medical School Hannover Germany
- Biomedical Research in Endstage and Obstructive Lung Disease Hannover German Center for Lung Research Hannover Germany
| | - Tawfik Moher Alsady
- Institute for Diagnostic and Interventional Radiology Hannover Medical School Hannover Germany
- Biomedical Research in Endstage and Obstructive Lung Disease Hannover German Center for Lung Research Hannover Germany
| | - Frank Wacker
- Institute for Diagnostic and Interventional Radiology Hannover Medical School Hannover Germany
- Biomedical Research in Endstage and Obstructive Lung Disease Hannover German Center for Lung Research Hannover Germany
| | - Jens Michael Hohlfeld
- Biomedical Research in Endstage and Obstructive Lung Disease Hannover German Center for Lung Research Hannover Germany
- Department of Respiratory Medicine Hannover Medical School Hannover Germany
- Department of Clinical Airway Research Fraunhofer Institute for Toxicology and Experimental Medicine Hannover Germany
| | - Jens Vogel‐Claussen
- Institute for Diagnostic and Interventional Radiology Hannover Medical School Hannover Germany
- Biomedical Research in Endstage and Obstructive Lung Disease Hannover German Center for Lung Research Hannover Germany
| |
Collapse
|
7
|
Pippard BJ, Neal MA, Maunder AM, Hollingsworth KG, Biancardi A, Lawson RA, Fisher H, Matthews JNS, Simpson AJ, Wild JM, Thelwall PE. Reproducibility of 19 F-MR ventilation imaging in healthy volunteers. Magn Reson Med 2021; 85:3343-3352. [PMID: 33507591 PMCID: PMC7986730 DOI: 10.1002/mrm.28660] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Revised: 12/07/2020] [Accepted: 12/07/2020] [Indexed: 01/23/2023]
Abstract
Purpose To assess the reproducibility of percentage ventilated lung volume (%VV) measurements in healthy volunteers acquired by fluorine (19F)‐MRI of inhaled perfluoropropane, implemented at two research sites. Methods In this prospective, ethically approved study, 40 healthy participants were recruited (May 2018‐June 2019) to one of two research sites. Participants underwent a single MRI scan session on a 3T scanner, involving periodic inhalation of a 79% perfluoropropane/21% oxygen gas mixture. Each gas inhalation session lasted about 30 seconds, consisting of three deep breaths of gas followed by a breath‐hold. Four 19F‐MR ventilation images were acquired per participant, each separated by approximately 6 minutes. The value of %VV was determined by registering separately acquired 1H images to ventilation images before semi‐automated image segmentation, performed independently by two observers. Reproducibility of %VV measurements was assessed by components of variance, intraclass correlation coefficients, coefficients of variation (CoV), and the Dice similarity coefficient. Results The MRI scans were well tolerated throughout, with no adverse events. There was a high degree of consistency in %VV measurements for each participant (CoVobserver1 = 0.43%; CoVobserver2 = 0.63%), with overall precision of %VV measurements determined to be within ± 1.7% (95% confidence interval). Interobserver agreement in %VV measurements revealed a high mean Dice similarity coefficient (SD) of 0.97 (0.02), with only minor discrepancies between observers. Conclusion We demonstrate good reproducibility of %VV measurements in a group of healthy participants using 19F‐MRI of inhaled perfluoropropane. Our methods have been successfully implemented across two different study sites, supporting the feasibility of performing larger multicenter clinical studies.
Collapse
Affiliation(s)
- Benjamin J. Pippard
- Newcastle Magnetic Resonance CentreNewcastle UniversityNewcastle upon TyneUnited Kingdom
- Translational and Clinical Research InstituteNewcastle UniversityNewcastle upon TyneUnited Kingdom
| | - Mary A. Neal
- Newcastle Magnetic Resonance CentreNewcastle UniversityNewcastle upon TyneUnited Kingdom
- Translational and Clinical Research InstituteNewcastle UniversityNewcastle upon TyneUnited Kingdom
| | - Adam M. Maunder
- POLARIS, Department of IICDUniversity of SheffieldRoyal Hallamshire HospitalSheffieldUnited Kingdom
| | - Kieren G. Hollingsworth
- Newcastle Magnetic Resonance CentreNewcastle UniversityNewcastle upon TyneUnited Kingdom
- Translational and Clinical Research InstituteNewcastle UniversityNewcastle upon TyneUnited Kingdom
| | - Alberto Biancardi
- POLARIS, Department of IICDUniversity of SheffieldRoyal Hallamshire HospitalSheffieldUnited Kingdom
| | - Rod A. Lawson
- Respiratory MedicineSheffield Teaching Hospitals National Health Service Foundation TrustSheffieldUnited Kingdom
| | - Holly Fisher
- Population Health Sciences InstituteNewcastle UniversityNewcastle upon TyneUnited Kingdom
| | - John N. S. Matthews
- Population Health Sciences InstituteNewcastle UniversityNewcastle upon TyneUnited Kingdom
- School of Mathematics, Statistics and PhysicsNewcastle UniversityNewcastle upon TyneUnited Kingdom
| | - A. John Simpson
- Translational and Clinical Research InstituteNewcastle UniversityNewcastle upon TyneUnited Kingdom
- Respiratory MedicineNewcastle upon Tyne Hospitals National Health Service Foundation TrustNewcastle upon TyneUnited Kingdom
| | - Jim M. Wild
- POLARIS, Department of IICDUniversity of SheffieldRoyal Hallamshire HospitalSheffieldUnited Kingdom
| | - Peter E. Thelwall
- Newcastle Magnetic Resonance CentreNewcastle UniversityNewcastle upon TyneUnited Kingdom
- Translational and Clinical Research InstituteNewcastle UniversityNewcastle upon TyneUnited Kingdom
| |
Collapse
|
8
|
Mahmutovic Persson I, von Wachenfeldt K, Waterton JC, Olsson LE. Imaging Biomarkers in Animal Models of Drug-Induced Lung Injury: A Systematic Review. J Clin Med 2020; 10:jcm10010107. [PMID: 33396865 PMCID: PMC7795017 DOI: 10.3390/jcm10010107] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Accepted: 12/24/2020] [Indexed: 12/28/2022] Open
Abstract
For drug-induced interstitial lung disease (DIILD) translational imaging biomarkers are needed to improve detection and management of lung injury and drug-toxicity. Literature was reviewed on animal models in which in vivo imaging was used to detect and assess lung lesions that resembled pathological changes found in DIILD, such as inflammation and fibrosis. A systematic search was carried out using three databases with key words “Animal models”, “Imaging”, “Lung disease”, and “Drugs”. A total of 5749 articles were found, and, based on inclusion criteria, 284 papers were selected for final data extraction, resulting in 182 out of the 284 papers, based on eligibility. Twelve different animal species occurred and nine various imaging modalities were used, with two-thirds of the studies being longitudinal. The inducing agents and exposure (dose and duration) differed from non-physiological to clinically relevant doses. The majority of studies reported other biomarkers and/or histological confirmation of the imaging results. Summary of radiotracers and examples of imaging biomarkers were summarized, and the types of animal models and the most used imaging modalities and applications are discussed in this review. Pathologies resembling DIILD, such as inflammation and fibrosis, were described in many papers, but only a few explicitly addressed drug-induced toxicity experiments.
Collapse
Affiliation(s)
- Irma Mahmutovic Persson
- Department of Translational Medicine, Medical Radiation Physics, Lund University, 20502 Malmö, Sweden;
- Correspondence: ; Tel.: +46-736839562
| | | | - John C. Waterton
- Bioxydyn Ltd., Science Park, Manchester M15 6SZ, UK;
- Manchester Academic Health Sciences Centre, University of Manchester, Manchester M13 9PL, UK
| | - Lars E. Olsson
- Department of Translational Medicine, Medical Radiation Physics, Lund University, 20502 Malmö, Sweden;
| | | |
Collapse
|
9
|
Shepelytskyi Y, Li T, Grynko V, Newman C, Hane FT, Albert MS. Evaluation of fluorine-19 magnetic resonance imaging of the lungs using octafluorocyclobutane in a rat model. Magn Reson Med 2020; 85:987-994. [PMID: 32789900 PMCID: PMC7689774 DOI: 10.1002/mrm.28473] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Revised: 07/13/2020] [Accepted: 07/21/2020] [Indexed: 12/14/2022]
Abstract
PURPOSE To test octafluorocyclobutane (OFCB) as an inhalation contrast agent for fluorine-19 MRI of the lung, and to compare the image quality of OFCB scans with perfluoropropane (PFP) scans THEORY AND METHODS: After normalizing for the number of signal averages, a theoretical comparison between the OFCB signal-to-noise ratio (SNR) and PFP SNR predicted the average SNR advantage of 90% using OFCB during gradient echo imaging. The OFCB relaxometry was conducted using single-voxel spectroscopy and spin-echo imaging. A comparison of OFCB and PFP SNRs was performed in vitro and in vivo. Five healthy Sprague-Dawley rats were imaged during single breath-hold and continuous breathing using a Philips Achieva 3.0T MRI scanner (Philips, Andover, MA). The scan time was constant for both gases. Statistical comparison between PFP and OFCB scans was conducted using a paired t test and by calculating the Bayes factor. RESULTS Spin-lattice (T1 ) and effective spin-spin ( T 2 ∗ ) relaxation time constants of the pure OFCB gas were determined as 28.5 ± 1.2 ms and 10.5 ± 1.8 ms, respectively. Mixing with 21% of oxygen decreased T1 by 30% and T 2 ∗ by 20%. The OFCB in vivo images showed 73% higher normalized SNR on average compared with images acquired using PFP. The statistical significance was shown by both paired t test and calculated Bayes factors. The experimental results agree with theoretical calculations within the error of the relaxation parameter measurements. CONCLUSION The quality of the lung images acquired using OFCB was significantly better compared with PFP scans. The OFCB images had higher a SNR and were artifact-free.
Collapse
Affiliation(s)
- Yurii Shepelytskyi
- Chemistry and Materials Science Program, Lakehead University, Thunder Bay, Ontario, Canada.,Thunder Bay Regional Health Research Institute, Thunder Bay, Ontario, Canada
| | - Tao Li
- Chemistry Department, Lakehead University, Thunder Bay, Ontario, Canada
| | - Vira Grynko
- Chemistry and Materials Science Program, Lakehead University, Thunder Bay, Ontario, Canada.,Thunder Bay Regional Health Research Institute, Thunder Bay, Ontario, Canada
| | - Camryn Newman
- Biology Department, Lakehead University, Thunder Bay, Ontario, Canada
| | - Francis T Hane
- Thunder Bay Regional Health Research Institute, Thunder Bay, Ontario, Canada.,Chemistry Department, Lakehead University, Thunder Bay, Ontario, Canada
| | - Mitchell S Albert
- Thunder Bay Regional Health Research Institute, Thunder Bay, Ontario, Canada.,Chemistry Department, Lakehead University, Thunder Bay, Ontario, Canada.,Northern Ontario School of Medicine, Thunder Bay, Ontario, Canada
| |
Collapse
|
10
|
Obert AJ, Gutberlet M, Kern AL, Kaireit TF, Grimm R, Wacker F, Vogel-Claussen J. 1 H-guided reconstruction of 19 F gas MRI in COPD patients. Magn Reson Med 2020; 84:1336-1346. [PMID: 32060989 DOI: 10.1002/mrm.28209] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2019] [Revised: 01/20/2020] [Accepted: 01/20/2020] [Indexed: 12/16/2022]
Abstract
PURPOSE To reduce acquisition time and improve image quality and robustness of ventilation assessment in a single breath-hold using 1 H-guided reconstruction of fluorinated gas (19 F) MRI. METHODS Reconstructions constraining total variation in the image domain, L1 norm in the wavelet domain, and directional total variation between 19 F and 1 H images were compared in order to accelerate 19 F ventilation imaging using retrospectively undersampled data from a healthy volunteer. Using the optimal constrained reconstruction in 8 patients with chronic obstructive pulmonary disease (16-seconds breath-hold), ventilation maps of various acceleration factors (2-fold to 13-fold) were compared with maps of the full data set using the Dice coefficient, difference in volume defect percentage and overlap percentage, as well as hyperpolarized 129 Xe gas MRI. RESULTS The reconstruction constraining total variation and directional total variation simultaneously performed best in the healthy volunteer (RMS error = 0.07, structural similarity index = 0.77) for a measurement time of 2 seconds. Using the same reconstruction in the patients with chronic obstructive pulmonary disease, the Dice coefficient of defect volumes was 0.86 ± 0.05, the mean difference in volume defect percentage was -1.0 ± 1.7 percentage points, and the overlap percentage was 87% ± 2% for a measurement time of 6 seconds. Between volume defect percentage of 19 F and 129 Xe, a linear correlation (r = 0.75; P = .03) was found, with 19 F volume defect percentage being significantly higher (mean difference = 11%; P = .04). CONCLUSION 1 H-guided reconstruction of pulmonary 19 F gas MRI enables reduction of acquisition time while maintaining image quality and robustness of functional parameters.
Collapse
Affiliation(s)
- Arnd Jonathan Obert
- Institute for Diagnostic and Interventional Radiology, Hannover Medical School, Hannover, Germany.,Biomedical Research in Endstage and Obstructive Lung Disease Hannover, German Center for Lung Research, Hannover, Germany
| | - Marcel Gutberlet
- Institute for Diagnostic and Interventional Radiology, Hannover Medical School, Hannover, Germany.,Biomedical Research in Endstage and Obstructive Lung Disease Hannover, German Center for Lung Research, Hannover, Germany
| | - Agilo Luitger Kern
- Institute for Diagnostic and Interventional Radiology, Hannover Medical School, Hannover, Germany.,Biomedical Research in Endstage and Obstructive Lung Disease Hannover, German Center for Lung Research, Hannover, Germany
| | - Till Frederik Kaireit
- Institute for Diagnostic and Interventional Radiology, Hannover Medical School, Hannover, Germany.,Biomedical Research in Endstage and Obstructive Lung Disease Hannover, German Center for Lung Research, Hannover, Germany
| | | | - Frank Wacker
- Institute for Diagnostic and Interventional Radiology, Hannover Medical School, Hannover, Germany.,Biomedical Research in Endstage and Obstructive Lung Disease Hannover, German Center for Lung Research, Hannover, Germany
| | - Jens Vogel-Claussen
- Institute for Diagnostic and Interventional Radiology, Hannover Medical School, Hannover, Germany.,Biomedical Research in Endstage and Obstructive Lung Disease Hannover, German Center for Lung Research, Hannover, Germany
| |
Collapse
|
11
|
Couch MJ, Morgado F, Kanhere N, Kowalik K, Rayment JH, Ratjen F, Santyr G. Assessing the feasibility of hyperpolarized
129
Xe multiple‐breath washout MRI in pediatric cystic fibrosis. Magn Reson Med 2019; 84:304-311. [DOI: 10.1002/mrm.28099] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2019] [Revised: 10/11/2019] [Accepted: 11/05/2019] [Indexed: 12/16/2022]
Affiliation(s)
- Marcus J. Couch
- Translational Medicine Program Hospital for Sick Children Toronto Ontario Canada
- Department of Medical Biophysics University of Toronto Toronto Ontario Canada
| | - Felipe Morgado
- Translational Medicine Program Hospital for Sick Children Toronto Ontario Canada
- Department of Medical Biophysics University of Toronto Toronto Ontario Canada
- Faculty of Medicine University of Toronto Toronto Ontario Canada
| | - Nikhil Kanhere
- Translational Medicine Program Hospital for Sick Children Toronto Ontario Canada
| | - Krzysztof Kowalik
- Translational Medicine Program Hospital for Sick Children Toronto Ontario Canada
| | - Jonathan H. Rayment
- Division of Respiratory Medicine British Columbia Children’s Hospital Vancouver British Columbia Canada
| | - Felix Ratjen
- Translational Medicine Program Hospital for Sick Children Toronto Ontario Canada
- Division of Respiratory Medicine The Hospital for Sick Children Toronto Ontario Canada
| | - Giles Santyr
- Translational Medicine Program Hospital for Sick Children Toronto Ontario Canada
- Department of Medical Biophysics University of Toronto Toronto Ontario Canada
| |
Collapse
|
12
|
S. Fox M, V. Ouriadov A. High Resolution 3He Pulmonary MRI. Magn Reson Imaging 2019. [DOI: 10.5772/intechopen.84756] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
13
|
Maunder A, Rao M, Robb F, Wild JM. Optimization of steady-state free precession MRI for lung ventilation imaging with 19 F C 3 F 8 at 1.5T and 3T. Magn Reson Med 2019; 81:1130-1142. [PMID: 30387911 PMCID: PMC6491987 DOI: 10.1002/mrm.27479] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2018] [Revised: 06/26/2018] [Accepted: 07/11/2018] [Indexed: 12/12/2022]
Abstract
PURPOSE To optimize 19 F imaging pulse sequences for perfluoropropane (C3 F8 ) gas human lung ventilation MRI considering intrinsic in vivo relaxation parameters at both 1.5T and 3T. METHODS Optimization of the imaging parameters for both 3D spoiled gradient (SPGR) and steady-state free precession (SSFP) 19 F imaging sequences with inhaled 79% C3 F8% and 21% oxygen was performed. Phantom measurements were used to validate simulations of SNR. In vivo parameter mapping and sequence optimization and comparison was performed by imaging the lungs of a healthy adult volunteer. T1 and T2* mapping was performed in vivo to optimize sequence parameters for in vivo lung MRI. The performance of SSFP and SPGR was then evaluated in vivo at 1.5T and 3T. RESULTS The in vivo T2* of C3 F8 was shown to be dependent upon lung inflation level (2.04 ms ± 36% for residual volume and 3.14 ms ± 28% for total lung capacity measured at 3T), with lower T2* observed near the susceptibility interfaces of the diaphragm and around pulmonary blood vessels. Simulation and phantom measurements indicate that a factor of ~2-3 higher SNR can be achieved with SSFP when compared with optimized SPGR. In vivo lung imaging showed a 1.7 factor of improvement in SNR achieved at 1.5T, while the theoretical improvement at 3T was not attained due to experimental SAR constraints, shorter in vivo T1 , and B0 inhomogeneity. CONCLUSION SSFP imaging provides increased SNR in lung ventilation imaging of C3 F8 demonstrated at 1.5T with optimized SSFP similar to the SNR that can be obtained at 3T with optimized SPGR.
Collapse
Affiliation(s)
- Adam Maunder
- POLARIS, Unit of Academic Radiology, Department of IICDUniversity of SheffieldSheffieldUnited Kingdom
| | - Madhwesha Rao
- POLARIS, Unit of Academic Radiology, Department of IICDUniversity of SheffieldSheffieldUnited Kingdom
| | - Fraser Robb
- POLARIS, Unit of Academic Radiology, Department of IICDUniversity of SheffieldSheffieldUnited Kingdom
- GE HealthcareAuroraOhio
| | - Jim M. Wild
- POLARIS, Unit of Academic Radiology, Department of IICDUniversity of SheffieldSheffieldUnited Kingdom
- Insigneo Institute for In silico medicineSheffieldUnited Kingdom
| |
Collapse
|
14
|
Couch MJ, Ball IK, Li T, Fox MS, Biman B, Albert MS. 19 F MRI of the Lungs Using Inert Fluorinated Gases: Challenges and New Developments. J Magn Reson Imaging 2018; 49:343-354. [PMID: 30248212 DOI: 10.1002/jmri.26292] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2018] [Revised: 07/23/2018] [Accepted: 07/26/2018] [Indexed: 12/27/2022] Open
Abstract
Fluorine-19 (19 F) MRI using inhaled inert fluorinated gases is an emerging technique that can provide functional images of the lungs. Inert fluorinated gases are nontoxic, abundant, relatively inexpensive, and the technique can be performed on any MRI scanner with broadband multinuclear imaging capabilities. Pulmonary 19 F MRI has been performed in animals, healthy human volunteers, and in patients with lung disease. In this review, the technical requirements of 19 F MRI are discussed, along with various imaging approaches used to optimize the image quality. Lung imaging is typically performed in humans using a gas mixture containing 79% perfluoropropane (PFP) or sulphur hexafluoride (SF6 ) and 21% oxygen. In lung diseases, such as asthma, chronic obstructive pulmonary disease (COPD), and cystic fibrosis (CF), ventilation defects are apparent in regions that the inhaled gas cannot access. 19 F lung images are typically acquired in a single breath-hold, or in a time-resolved, multiple breath fashion. The former provides measurements of the ventilation defect percent (VDP), while the latter provides measurements of gas replacement (ie, fractional ventilation). Finally, preliminary comparisons with other functional lung imaging techniques are discussed, such as Fourier decomposition MRI and hyperpolarized gas MRI. Overall, functional 19 F lung MRI is expected to complement existing proton-based structural imaging techniques, and the combination of structural and functional lung MRI will provide useful outcome measures in the future management of pulmonary diseases in the clinic. Level of Evidence: 3 Technical Efficacy: Stage 1 J. Magn. Reson. Imaging 2019;49:343-354.
Collapse
Affiliation(s)
- Marcus J Couch
- Translational Medicine Program, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Iain K Ball
- Philips Electronics Australia, North Ryde, Sydney, Australia
| | - Tao Li
- Department of Chemistry, Lakehead University, Thunder Bay, Ontario, Canada
| | - Matthew S Fox
- Imaging Program, Lawson Health Research Institute, London, Ontario, Canada.,Department of Medical Biophysics, University of Western Ontario, London, Ontario, Canada
| | - Birubi Biman
- Thunder Bay Regional Health Sciences Centre, Thunder Bay, Ontario, Canada.,Northern Ontario School of Medicine, Thunder Bay, Ontario, Canada.,Department of Medicine, McMaster University, Hamilton, Ontario, Canada
| | - Mitchell S Albert
- Department of Chemistry, Lakehead University, Thunder Bay, Ontario, Canada.,Northern Ontario School of Medicine, Thunder Bay, Ontario, Canada.,Thunder Bay Regional Health Research Institute, Thunder Bay, Ontario, Canada
| |
Collapse
|