1
|
Dai C, Zeng X, Zhang X, Liu Z, Cheng S. Machine learning-based integration develops a mitophagy-related lncRNA signature for predicting the progression of prostate cancer: a bioinformatic analysis. Discov Oncol 2024; 15:316. [PMID: 39073679 PMCID: PMC11286916 DOI: 10.1007/s12672-024-01189-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/26/2024] [Accepted: 07/23/2024] [Indexed: 07/30/2024] Open
Abstract
Prostate cancer remains a complex and challenging disease, necessitating innovative approaches for prognosis and therapeutic guidance. This study integrates machine learning techniques to develop a novel mitophagy-related long non-coding RNA (lncRNA) signature for predicting the progression of prostate cancer. Leveraging the TCGA-PRAD dataset, we identify a set of four key lncRNAs and formulate a riskscore, revealing its potential as a prognostic indicator. Subsequent analyses unravel the intricate connections between riskscore, immune cell infiltration, mutational landscapes, and treatment outcomes. Notably, the pan-cancer exploration of YEATS2-AS1 highlights its pervasive impact, demonstrating elevated expression across various malignancies. Furthermore, drug sensitivity predictions based on riskscore guide personalized chemotherapy strategies, with drugs like Carmustine and Entinostat showing distinct suitability for high and low-risk group patients. Regression analysis exposes significant correlations between the mitophagy-related lncRNAs, riskscore, and key mitophagy-related genes. Molecular docking analyses reveal promising interactions between Cyclophosphamide and proteins encoded by these genes, suggesting potential therapeutic avenues. This comprehensive study not only introduces a robust prognostic tool but also provides valuable insights into the molecular intricacies and potential therapeutic interventions in prostate cancer, paving the way for more personalized and effective clinical approaches.
Collapse
Affiliation(s)
- Caixia Dai
- Department of Urology, The Second Xiangya Hospital of Central South University, Changsha, 410011, Hunan, China
| | - Xiangju Zeng
- Department of Outpatient, The Second Xiangya Hospital of Central South University, Changsha, 410011, Hunan, China
| | - Xiuhong Zhang
- Department of Urology, The Second Xiangya Hospital of Central South University, Changsha, 410011, Hunan, China
| | - Ziqi Liu
- Department of Acupuncture and Moxibustion, The First Hospital of Hunan University of Chinese Medicine, Changsha, Hunan, China
| | - Shunhua Cheng
- Department of Urology, The Second Xiangya Hospital of Central South University, Changsha, 410011, Hunan, China.
| |
Collapse
|
2
|
Stamatelatou A, Bertinetto CG, Jansen JJ, Postma G, Selnaes KM, Bathen TF, Heerschap A, Scheenen TWJ. A multivariate curve resolution analysis of multicenter proton spectroscopic imaging of the prostate for cancer localization and assessment of aggressiveness. NMR IN BIOMEDICINE 2024; 37:e5062. [PMID: 37920145 DOI: 10.1002/nbm.5062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 09/21/2023] [Accepted: 09/25/2023] [Indexed: 11/04/2023]
Abstract
In this study, we investigated the potential of the multivariate curve resolution alternating least squares (MCR-ALS) algorithm for analyzing three-dimensional (3D) 1 H-MRSI data of the prostate in prostate cancer (PCa) patients. MCR-ALS generates relative intensities of components representing spectral profiles derived from a large training set of patients, providing an interpretable model. Our objectives were to classify magnetic resonance (MR) spectra, differentiating tumor lesions from benign tissue, and to assess PCa aggressiveness. We included multicenter 3D 1 H-MRSI data from 106 PCa patients across eight centers. The patient cohort was divided into a training set (N = 63) and an independent test set (N = 43). Singular value decomposition determined that MR spectra were optimally represented by five components. The profiles of these components were extracted from the training set by MCR-ALS and assigned to specific tissue types. Using these components, MCR-ALS was applied to the test set for a quantitative analysis to discriminate tumor lesions from benign tissue and to assess tumor aggressiveness. Relative intensity maps of the components were reconstructed and compared with histopathology reports. The quantitative analysis demonstrated a significant separation between tumor and benign voxels (t-test, p < 0.001). This result was achieved including voxels with low-quality MR spectra. A receiver operating characteristic analysis of the relative intensity of the tumor component revealed that low- and high-risk tumor lesions could be distinguished with an area under the curve of 0.88. Maps of this component properly identified the extent of tumor lesions. Our study demonstrated that MCR-ALS analysis of 1 H-MRSI of the prostate can reliably identify tumor lesions and assess their aggressiveness. It handled multicenter data with minimal preprocessing and without using prior knowledge or quality control. These findings indicate that MCR-ALS can serve as an automated tool to assess the presence, extent, and aggressiveness of tumor lesions in the prostate, enhancing diagnostic capabilities and treatment planning of PCa patients.
Collapse
Affiliation(s)
- Angeliki Stamatelatou
- Department of Medical Imaging, Radboud University Medical Center, Nijmegen, The Netherlands
| | | | - Jeroen J Jansen
- Department of Analytical Chemistry & Chemometrics, Radboud University, Nijmegen, The Netherlands
| | - Geert Postma
- Department of Analytical Chemistry & Chemometrics, Radboud University, Nijmegen, The Netherlands
| | - Kirsten Margrete Selnaes
- Department of Circulation and Medical Imaging, Norwegian University of Technology and Science, Trondheim, Norway
| | - Tone F Bathen
- Department of Circulation and Medical Imaging, Norwegian University of Technology and Science, Trondheim, Norway
- Department of radiology and nuclear medicine, St. Olavs Hospital - Trondheim University Hospital, Trondheim, Norway
| | - Arend Heerschap
- Department of Medical Imaging, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Tom W J Scheenen
- Department of Medical Imaging, Radboud University Medical Center, Nijmegen, The Netherlands
| |
Collapse
|
3
|
Bai X, Huo H, Liu J. Analysis of mechanical characteristics of walking and running foot functional units based on non-negative matrix factorization. Front Bioeng Biotechnol 2023; 11:1201421. [PMID: 37545892 PMCID: PMC10402733 DOI: 10.3389/fbioe.2023.1201421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Accepted: 07/13/2023] [Indexed: 08/08/2023] Open
Abstract
Objective: To explore the characteristics of Non-Negative Matrix Factorization (NNMF) in analyzing the mechanical characteristics of foot functional units during walking and running. Methods: Eighteen subjects (9 males and 9 females) were recruited, and the ground reaction force curves of each foot region during walking and running were collected using a plantar pressure measurement system. NNMF was used to extract the mechanical features of different foot regions and to determine the number of foot functional units. The differences between the base matrices of walking and running were compared by traditional t-tests, and the differences in coefficient matrices were compared by one-dimensional statistical parameter mapping. Results: 1) When the number of foot functional units for walking and running were both 2, the Variability Accounted For (VAF) by the matrix exceeded 0.90 (VAF walk = 0.96 ± 0.02, VAF run = 0.95 ± 0.04); 2) In foot functional unit 1, both walking and running exhibited buffering function, with the heel region being the main force-bearing area and the forefoot also participating in partial buffering; 3) In foot functional unit 2, both walking and running exhibited push-off function, with the middle part of the forefoot having a higher contribution weight; 4) In foot functional unit 1, compared to walking, the overall force characteristics of the running foot were greater during the support phase of the 0%-20% stage, with the third and fourth metatarsal areas having higher contribution weights and the lateral heel area having lower weights; 5) In foot functional unit 2, compared to walking, the overall force was higher during the beginning and 11%-69% stages of running, and lower during the 4%-5% and 73%-92% stages. During running, the thumb area, the first metatarsal area and the midfoot area had higher contribution weights than during walking; in the third and fourth metatarsal areas, the contribution weights were lower during running than during walking. Conclusion: Based on the mechanical characteristics of the foot, walking and running can both be decomposed into two foot functional units: buffering and push-off. The forefoot occupies a certain weight in both buffering and push-off functions, indicating that there may be a complex foot function transformation mechanism in the transverse arch of foot. Compared to walking, running completes push-off earlier, and the force region is more inclined towards the inner side of the foot, with the hallux area having a greater weight during push-off. This study suggests that NNMF is feasible for analyzing foot mechanical characteristics.
Collapse
Affiliation(s)
- Xiaotian Bai
- Department of Physical Education, Tsinghua University, Beijing, China
- College of Physical Education, Hebei Normal University, Shijiazhuang, China
- Key Laboratory of Bioinformatics Evaluation of Human Movement, Hebei Normal University, Shijiazhuang, China
| | - Hongfeng Huo
- College of Physical Education, Hebei Normal University, Shijiazhuang, China
- Key Laboratory of Bioinformatics Evaluation of Human Movement, Hebei Normal University, Shijiazhuang, China
| | - Jingmin Liu
- Department of Physical Education, Tsinghua University, Beijing, China
| |
Collapse
|
4
|
Julià-Sapé M, Candiota AP, Arús C. Cancer metabolism in a snapshot: MRS(I). NMR IN BIOMEDICINE 2019; 32:e4054. [PMID: 30633389 DOI: 10.1002/nbm.4054] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2018] [Revised: 11/02/2018] [Accepted: 11/05/2018] [Indexed: 06/09/2023]
Abstract
The contribution of MRS(I) to the in vivo evaluation of cancer-metabolism-derived metrics, mostly since 2016, is reviewed here. Increased carbon consumption by tumour cells, which are highly glycolytic, is now being sampled by 13 C magnetic resonance spectroscopic imaging (MRSI) following the injection of hyperpolarized [1-13 C] pyruvate (Pyr). Hot-spots of, mostly, increased lactate dehydrogenase activity or flow between Pyr and lactate (Lac) have been seen with cancer progression in prostate (preclinical and in humans), brain and pancreas (both preclinical) tumours. Therapy response is usually signalled by decreased Lac/Pyr 13 C-labelled ratio with respect to untreated or non-responding tumour. For therapeutic agents inducing tumour hypoxia, the 13 C-labelled Lac/bicarbonate ratio may be a better metric than the Lac/Pyr ratio. 31 P MRSI may sample intracellular pH changes from brain tumours (acidification upon antiangiogenic treatment, basification at fast proliferation and relapse). The steady state tumour metabolome pattern is still in use for cancer evaluation. Metrics used for this range from quantification of single oncometabolites (such as 2-hydroxyglutarate in mutant IDH1 glial brain tumours) to selected metabolite ratios (such as total choline to N-acetylaspartate (plain ratio or CNI index)) or the whole 1 H MRSI(I) pattern through pattern recognition analysis. These approaches have been applied to address different questions such as tumour subtype definition, following/predicting the response to therapy or defining better resection or radiosurgery limits.
Collapse
Affiliation(s)
- Margarida Julià-Sapé
- Centro de Investigación Biomédica en Red en Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Cerdanyola del Vallès, Spain
- Departament de Bioquímica i Biologia Molecular, Unitat de Bioquímica de Biociències, Universitat Autònoma de Barcelona (UAB), Cerdanyola del Vallès, Spain
- Institut de Biotecnologia i de Biomedicina (IBB), Universitat Autònoma de Barcelona (UAB), Cerdanyola del Vallès, Spain
| | - Ana Paula Candiota
- Centro de Investigación Biomédica en Red en Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Cerdanyola del Vallès, Spain
- Departament de Bioquímica i Biologia Molecular, Unitat de Bioquímica de Biociències, Universitat Autònoma de Barcelona (UAB), Cerdanyola del Vallès, Spain
- Institut de Biotecnologia i de Biomedicina (IBB), Universitat Autònoma de Barcelona (UAB), Cerdanyola del Vallès, Spain
| | - Carles Arús
- Centro de Investigación Biomédica en Red en Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Cerdanyola del Vallès, Spain
- Departament de Bioquímica i Biologia Molecular, Unitat de Bioquímica de Biociències, Universitat Autònoma de Barcelona (UAB), Cerdanyola del Vallès, Spain
- Institut de Biotecnologia i de Biomedicina (IBB), Universitat Autònoma de Barcelona (UAB), Cerdanyola del Vallès, Spain
| |
Collapse
|
5
|
Pedrosa de Barros N, Meier R, Pletscher M, Stettler S, Knecht U, Reyes M, Gralla J, Wiest R, Slotboom J. Analysis of metabolic abnormalities in high-grade glioma using MRSI and convex NMF. NMR IN BIOMEDICINE 2019; 32:e4109. [PMID: 31131943 DOI: 10.1002/nbm.4109] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2017] [Revised: 03/30/2019] [Accepted: 04/01/2019] [Indexed: 06/09/2023]
Abstract
Clinical use of MRSI is limited by the level of experience required to properly translate MRSI examinations into relevant clinical information. To solve this, several methods have been proposed to automatically recognize a predefined set of reference metabolic patterns. Given the variety of metabolic patterns seen in glioma patients, the decision on the optimal number of patterns that need to be used to describe the data is not trivial. In this paper, we propose a novel framework to (1) separate healthy from abnormal metabolic patterns and (2) retrieve an optimal number of reference patterns describing the most important types of abnormality. Using 41 MRSI examinations (1.5 T, PRESS, TE 135 ms) from 22 glioma patients, four different patterns describing different types of abnormality were detected: edema, healthy without Glx, active tumor and necrosis. The identified patterns were then evaluated on 17 MRSI examinations from nine different glioma patients. The results were compared against BraTumIA, an automatic segmentation method trained to identify different tumor compartments on structural MRI data. Finally, the ability to predict future contrast enhancement using the proposed approach was also evaluated.
Collapse
Affiliation(s)
- Nuno Pedrosa de Barros
- Support Center for Advanced Neuroimaging (SCAN), Neuroradiology, University Hospital Inselspital, Bern, Switzerland
| | - Raphael Meier
- Support Center for Advanced Neuroimaging (SCAN), Neuroradiology, University Hospital Inselspital, Bern, Switzerland
| | - Martin Pletscher
- Support Center for Advanced Neuroimaging (SCAN), Neuroradiology, University Hospital Inselspital, Bern, Switzerland
| | - Samuel Stettler
- Support Center for Advanced Neuroimaging (SCAN), Neuroradiology, University Hospital Inselspital, Bern, Switzerland
| | - Urspeter Knecht
- Support Center for Advanced Neuroimaging (SCAN), Neuroradiology, University Hospital Inselspital, Bern, Switzerland
| | - Mauricio Reyes
- Institute for Surgical Technology and Biomechanics (ISTB), University of Bern, Bern, Switzerland
| | - Jan Gralla
- Support Center for Advanced Neuroimaging (SCAN), Neuroradiology, University Hospital Inselspital, Bern, Switzerland
| | - Roland Wiest
- Support Center for Advanced Neuroimaging (SCAN), Neuroradiology, University Hospital Inselspital, Bern, Switzerland
| | - Johannes Slotboom
- Support Center for Advanced Neuroimaging (SCAN), Neuroradiology, University Hospital Inselspital, Bern, Switzerland
| |
Collapse
|
6
|
|