1
|
Li G, Lan L, He T, Tang Z, Liu S, Li Y, Huang Z, Guan Y, Li X, Zhang Y, Lai HY. Comprehensive Assessment of Ischemic Stroke in Nonhuman Primates: Neuroimaging, Behavioral, and Serum Proteomic Analysis. ACS Chem Neurosci 2024; 15:1548-1559. [PMID: 38527459 PMCID: PMC10996879 DOI: 10.1021/acschemneuro.3c00826] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 03/06/2024] [Accepted: 03/07/2024] [Indexed: 03/27/2024] Open
Abstract
Ischemic strokes, prevalence and impactful, underscore the necessity of advanced research models closely resembling human physiology. Our study utilizes nonhuman primates (NHPs) to provide a detailed exploration of ischemic stroke, integrating neuroimaging data, behavioral outcomes, and serum proteomics to elucidate the complex interplay of factors involved in stroke pathophysiology. We observed a consistent pattern in infarct volume, peaking at 1-month postmiddle cerebral artery occlusion (MCAO) and then stabilized. This pattern was strongly correlated to notable changes in motor function and working memory performance. Using diffusion tensor imaging (DTI), we detected significant alterations in fractional anisotropy (FA) and mean diffusivity (MD) values, signaling microstructural changes in the brain. These alterations closely correlated with the neurological and cognitive deficits that we observed, highlighting the sensitivity of DTI metrics in stroke assessment. Behaviorally, the monkeys exhibited a reliance on their unaffected limb for compensatory movements, a common response to stroke impairment. This adaptation, along with consistent DTI findings, suggests a significant impact of stroke on motor function and spatial perception. Proteomic analysis through MS/MS functional enrichment identified two distinct groups of proteins with significant changes post-MCAO. Notably, MMP9, THBS1, MB, PFN1, and YWHAZ were identified as potential biomarkers and therapeutic targets for ischemic stroke. Our results underscore the complex nature of stroke and advocate for an integrated approach, combining neuroimaging, behavioral studies, and proteomics, for advancing our understanding and treatment of this condition.
Collapse
Affiliation(s)
- Ge Li
- Guangdong
Provincial Key Laboratory of Laboratory Animals, Guangdong Laboratory Animals Monitoring Institute, Guangzhou 510663, China
| | - Lan Lan
- Department
of Neurology of the Second Affiliated Hospital, Interdisciplinary Institute of Neuroscience and Technology, Zhejiang
University School of Medicine, Hangzhou 310029, China
- Department
of Psychology and Behavior Science, Zhejiang
University, Hangzhou 310029, China
| | - Tingting He
- Department
of Neurology of the Second Affiliated Hospital, Interdisciplinary Institute of Neuroscience and Technology, Zhejiang
University School of Medicine, Hangzhou 310029, China
- College
of Biomedical Engineering and Instrument Science, Zhejiang University, Hangzhou 310029, China
| | - Zheng Tang
- Department
of Neurology of the Second Affiliated Hospital, Interdisciplinary Institute of Neuroscience and Technology, Zhejiang
University School of Medicine, Hangzhou 310029, China
| | - Shuhua Liu
- Guangdong
Provincial Key Laboratory of Laboratory Animals, Guangdong Laboratory Animals Monitoring Institute, Guangzhou 510663, China
| | - Yunfeng Li
- Guangdong
Provincial Key Laboratory of Laboratory Animals, Guangdong Laboratory Animals Monitoring Institute, Guangzhou 510663, China
| | - Zhongqiang Huang
- Guangdong
Provincial Key Laboratory of Laboratory Animals, Guangdong Laboratory Animals Monitoring Institute, Guangzhou 510663, China
| | - Yalun Guan
- Guangdong
Provincial Key Laboratory of Laboratory Animals, Guangdong Laboratory Animals Monitoring Institute, Guangzhou 510663, China
| | - Xuejiao Li
- Guangdong
Provincial Key Laboratory of Laboratory Animals, Guangdong Laboratory Animals Monitoring Institute, Guangzhou 510663, China
| | - Yu Zhang
- Guangdong
Provincial Key Laboratory of Laboratory Animals, Guangdong Laboratory Animals Monitoring Institute, Guangzhou 510663, China
| | - Hsin-Yi Lai
- Department
of Neurology of the Second Affiliated Hospital, Interdisciplinary Institute of Neuroscience and Technology, Zhejiang
University School of Medicine, Hangzhou 310029, China
- College
of Biomedical Engineering and Instrument Science, Zhejiang University, Hangzhou 310029, China
- Liangzhu
Laboratory, MOE Frontier Science Center for Brain Science and Brain-Machine
Integration, State Key Laboratory of Brain-machine Intelligence, School
of Brain Science and Brain Medicine, Zhejiang
University, Hangzhou 310029, China
- Affiliated
Mental Health Center & Hangzhou Seventh People’s Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou 310029, China
| |
Collapse
|
2
|
Feng X, Li M, Lin Z, Lu Y, Zhuang Y, Lei J, Liu X, Zhao H. Tetramethylpyrazine promotes axonal remodeling and modulates microglial polarization via JAK2-STAT1/3 and GSK3-NFκB pathways in ischemic stroke. Neurochem Int 2023; 170:105607. [PMID: 37657766 DOI: 10.1016/j.neuint.2023.105607] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 08/18/2023] [Accepted: 08/30/2023] [Indexed: 09/03/2023]
Abstract
Ischemic stroke results in demyelination that underlies neurological disfunction. Promoting oligodendrogenesis will rescue the injured axons and accelerate remyelination after stroke. Microglia react to ischemia/hypoxia and polarize to M1/M2 phenotypes influencing myelin injury and repair. Tetramethylpyrazine (TMP) has neuroprotective effects in treating cerebrovascular disorders. This study aims to evaluate whether TMP promotes the renovation of damaged brain tissues especially on remyelination and modulates microglia phenotypes following ischemic stroke. Here magnetic resonance imaging (MRI)-diffusion tensor imaging (DTI) and histopathological evaluation are performed to characterize the process of demyelination and remyelination. Immunofluorescence staining is used to prove oligodendrogenesis and microglial polarization. Western blotting is conducted to examine interleukin (IL)-6, IL-10, transforming growth factor β (TGF-β) and Janus protein tyrosine kinase (JAK) 2-signal transducer and activator of transcription (STAT) 1/3-glycogen synthase kinase (GSK) 3-nuclear transcription factor κB (NFκB) signals. Results show TMP alleviates the injury of axons and myelin sheath, increases NG2+, Ki67+/NG2+, CNPase+, Ki67+/CNPase+, Iba1+/Arg-1+ cells and decreases Iba1+ and Iba1+/CD16+ cells in periinfarctions of rats. Particularly, TMP downregulates IL-6 and upregulates IL-10 and TGF-β expressions, besides, enhances JAK2-STAT3 and suppresses STAT1-GSK3-NFκB activation in middle cerebral artery occlusion (MCAo) rats. Then we demonstrate that TMP reverses M1/M2 phenotype via JAK2-STAT1/3 and GSK3-NFκB pathways in lipopolysaccharide (LPS) plus interferon-γ (IFN-γ)-stimulated BV2 microglia. Blocking JAK2 with AG490 counteracts TMP's facilitation on M2 polarization of microglia. This study warrants the promising therapy for stroke with TMP treatment.
Collapse
Affiliation(s)
- Xuefeng Feng
- Department of Pharmacy, The First Affiliated Hospital of Anhui University of Chinese Medicine, Hefei, 230031, China; School of Traditional Chinese Medicine, Capital Medical University, Beijing, 100069, China
| | - Mingcong Li
- School of Traditional Chinese Medicine, Capital Medical University, Beijing, 100069, China; Beijing Key Lab of TCM Collateral Disease Theory Research, Beijing, 100069, China
| | - Ziyue Lin
- School of Traditional Chinese Medicine, Capital Medical University, Beijing, 100069, China; Beijing Key Lab of TCM Collateral Disease Theory Research, Beijing, 100069, China
| | - Yun Lu
- School of Traditional Chinese Medicine, Capital Medical University, Beijing, 100069, China; Beijing Key Lab of TCM Collateral Disease Theory Research, Beijing, 100069, China
| | - Yuming Zhuang
- School of Traditional Chinese Medicine, Capital Medical University, Beijing, 100069, China; Beijing Key Lab of TCM Collateral Disease Theory Research, Beijing, 100069, China
| | - Jianfeng Lei
- Medical Imaging Laboratory of Core Facility Center, Capital Medical University, Beijing, 100069, China
| | - Xiaonan Liu
- Department of Laboratory Animal, Capital Medical University, Beijing, 100069, China
| | - Hui Zhao
- School of Traditional Chinese Medicine, Capital Medical University, Beijing, 100069, China; Beijing Key Lab of TCM Collateral Disease Theory Research, Beijing, 100069, China.
| |
Collapse
|
3
|
Jia J, Zheng L, Ye L, Chen J, Shu S, Xu S, Bao X, Xia S, Liu R, Xu Y, Zhang M. CD11c + microglia promote white matter repair after ischemic stroke. Cell Death Dis 2023; 14:156. [PMID: 36828819 PMCID: PMC9958101 DOI: 10.1038/s41419-023-05689-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2022] [Revised: 02/14/2023] [Accepted: 02/15/2023] [Indexed: 02/26/2023]
Abstract
Ischemic stroke leads to white matter damage and neurological deficits. However, the characteristics of white matter injury and repair after stroke are unclear. Additionally, the precise molecular communications between microglia and white matter repair during the stroke rehabilitation phase remain elusive. In this current study, MRI DTI scan and immunofluorescence staining were performed to trace white matter and microglia in the mouse transient middle cerebral artery occlusion (tMCAO) stroke model. We found that the most serious white matter damage was on Day 7 after the ischemic stroke, then it recovered gradually from Day 7 to Day 30. Parallel to white matter recovery, we observed that microglia centered around the damaged myelin sheath and swallowed myelin debris in the ischemic areas. Then, microglia of the ischemic hemisphere were sorted by flow cytometry for RNA sequencing and subpopulation analysis. We found that CD11c+ microglia increased from Day 7 to Day 30, demonstrating high phagocytotic capabilities, myelin-supportive genes, and lipid metabolism associated genes. CD11c+ microglia population was partly depleted by the stereotactic injecting of rAAV2/6M-taCasp3 (rAAV2/6M-CMV-DIO-taCasp3-TEVp) into CD11c-cre mice. Selective depletion of CD11c+ microglia disrupted white matter repair, oligodendrocyte maturation, and functional recovery after stroke by Rotarod test, Adhesive Removal test, and Morris Water Maze test. These findings suggest that spontaneous white matter repair occurs after ischemic stroke, while CD11c+ microglia play critical roles in this white matter restorative progress.
Collapse
Affiliation(s)
- Junqiu Jia
- Department of Neurology, Drum Tower Hospital, The State Key Laboratory of Pharmaceutical Biotechnology, Institute of Brain Science, Medical School, Nanjing University, Nanjing, China
| | - Lili Zheng
- Department of Neurology, Drum Tower Hospital, The State Key Laboratory of Pharmaceutical Biotechnology, Institute of Brain Science, Medical School, Nanjing University, Nanjing, China
| | - Lei Ye
- Department of Neurology, Drum Tower Hospital, The State Key Laboratory of Pharmaceutical Biotechnology, Institute of Brain Science, Medical School, Nanjing University, Nanjing, China
| | - Jian Chen
- Department of Neurology, Drum Tower Hospital, The State Key Laboratory of Pharmaceutical Biotechnology, Institute of Brain Science, Medical School, Nanjing University, Nanjing, China
| | - Shu Shu
- Department of Neurology, Drum Tower Hospital, The State Key Laboratory of Pharmaceutical Biotechnology, Institute of Brain Science, Medical School, Nanjing University, Nanjing, China
| | - Siyi Xu
- Department of Neurology, Nanjing Drum Tower Hospital Clinical College of Jiangsu University, Zhenjiang, China
| | - Xinyu Bao
- Department of Neurology, Drum Tower Hospital, The State Key Laboratory of Pharmaceutical Biotechnology, Institute of Brain Science, Medical School, Nanjing University, Nanjing, China
| | - Shengnan Xia
- Department of Neurology, Drum Tower Hospital, The State Key Laboratory of Pharmaceutical Biotechnology, Institute of Brain Science, Medical School, Nanjing University, Nanjing, China
| | - Renyuan Liu
- Department of Radiology, Affiliated Nanjing Drum Tower Hospital of Nanjing University Medical School, Nanjing, China
| | - Yun Xu
- Department of Neurology, Drum Tower Hospital, The State Key Laboratory of Pharmaceutical Biotechnology, Institute of Brain Science, Medical School, Nanjing University, Nanjing, China.
- Jiangsu Key Laboratory for Molecular Medicine, Medical School of Nanjing University, Nanjing, China.
- Jiangsu Province Stroke Center for Diagnosis and Therapy, Nanjing, China.
- Nanjing Neuropsychiatry Clinic Medical Center, Nanjing, China.
| | - Meijuan Zhang
- Department of Neurology, Drum Tower Hospital, The State Key Laboratory of Pharmaceutical Biotechnology, Institute of Brain Science, Medical School, Nanjing University, Nanjing, China.
- Jiangsu Key Laboratory for Molecular Medicine, Medical School of Nanjing University, Nanjing, China.
- Jiangsu Province Stroke Center for Diagnosis and Therapy, Nanjing, China.
- Nanjing Neuropsychiatry Clinic Medical Center, Nanjing, China.
| |
Collapse
|
4
|
Li CX, Meng Y, Yan Y, Kempf D, Howell L, Tong F, Zhang X. Investigation of white matter and grey matter alteration in the monkey brain following ischemic stroke by using diffusion tensor imaging. INVESTIGATIVE MAGNETIC RESONANCE IMAGING 2022; 26:275-283. [PMID: 36698483 PMCID: PMC9873195 DOI: 10.13104/imri.2022.26.4.275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Background Investigation of stroke lesion has mostly focused on grey matter (GM) in previous studies and white matter (WM) degeneration during acute stroke is understudied. In the present study, monkeys were utilized to investigate the alterations of GM and WM in the brain following ischemic occlusion using diffusion tensor imaging (DTI). Methods Permanent middle cerebral artery occlusion (pMCAO) was induced in rhesus monkeys (n=6) with an interventional approach. Serial DTI was conducted on a clinical 3T in the hyperacute phase (2-6 hours), 48, and 96 hours post occlusion. Regions of interest in GM and WM of lesion areas were selected for data analysis. Results Mean diffusivity (MD), radial diffusivity (RD), and axial Diffusivity (AD) in WM decreased substantially during hyperacute stroke, as similar as those seen in GM. No obvious fractional anasotropy (FA) changes were seen in GM and WM during hyper acute phase. until 48 hours post stroke when significant fiber losses were oberved also. Pseudo-normalization of MD, AD, and RD was seen at 96 hours. Pathological changes of WM and GM were observed in ischemic areas at 8, 48, and 96 hours post stroke. Relative changes of MD, AD and RD of WM were correlated negatively with infarction volumes at 6 hours post stroke. Conclusion The present study revealed the microstructural changes in gray matter and white matter of monkey brains during acute stroke by using DTI. The preliminary results suggest axial and radial diffusivity (AD and RD) may be sensitive surrogate markers to assess specific microstructural changes in white matter during hyper-acute stroke.
Collapse
Affiliation(s)
- Chun-Xia Li
- Emory National Primate Research Center, Emory University, Atlanta, Georgia 30329
| | - Yuguang Meng
- Emory National Primate Research Center, Emory University, Atlanta, Georgia 30329
| | - Yumei Yan
- Emory National Primate Research Center, Emory University, Atlanta, Georgia 30329
| | - Doty Kempf
- Emory National Primate Research Center, Emory University, Atlanta, Georgia 30329
| | - Leonard Howell
- Emory National Primate Research Center, Emory University, Atlanta, Georgia 30329
| | - Frank Tong
- Department of Radiology, Emory University School of Medicine, Atlanta, Georgia 30322
| | - Xiaodong Zhang
- Emory National Primate Research Center, Emory University, Atlanta, Georgia 30329
| |
Collapse
|
5
|
Syeda W, Ermine CM, Khilf MS, Wright D, Brait VH, Nithianantharajah J, Kolbe S, Johnston LA, Thompson LH, Brodtmann A. Long-term structural brain changes in adult rats after mild ischaemic stroke. Brain Commun 2022; 4:fcac185. [PMID: 35898722 PMCID: PMC9309495 DOI: 10.1093/braincomms/fcac185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2021] [Revised: 03/09/2022] [Accepted: 07/20/2022] [Indexed: 11/13/2022] Open
Abstract
Preclinical studies of remote degeneration have largely focused on brain changes over the first few days or weeks after stroke. Accumulating evidence suggests that neurodegeneration occurs in other brain regions remote to the site of infarction for months and even years following ischaemic stroke. Brain atrophy appears to be driven by both axonal degeneration and widespread brain inflammation. The evolution and duration of these changes are increasingly being described in human studies, using advanced brain imaging techniques. Here, we sought to investigate long-term structural brain changes in a model of mild focal ischaemic stroke following injection of endothlin-1 in adult Long–Evans rats (n = 14) compared with sham animals (n = 10), over a clinically relevant time-frame of 48 weeks. Serial structural and diffusion-weighted MRI data were used to assess dynamic volume and white matter trajectories. We observed dynamic regional brain volume changes over the 48 weeks, reflecting both normal changes with age in sham animals and neurodegeneration in regions connected to the infarct following ischaemia. Ipsilesional cortical volume loss peaked at 24 weeks but was less prominent at 36 and 48 weeks. We found significantly reduced fractional anisotropy in both ipsi- and contralesional motor cortex and cingulum bundle regions of infarcted rats (P < 0.05) from 4 to 36 weeks, suggesting ongoing white matter degeneration in tracts connected to but distant from the stroke. We conclude that there is evidence of significant cortical atrophy and white matter degeneration up to 48 weeks following infarct, consistent with enduring, pervasive stroke-related degeneration.
Collapse
Affiliation(s)
- Warda Syeda
- The Florey Institute of Neuroscience and Mental Health , Parkville, Victoria , Australia
- Melbourne Neuropsychiatry Centre, The University of Melbourne , Parkville, Victoria , Australia
| | - Charlotte M Ermine
- The Florey Institute of Neuroscience and Mental Health , Parkville, Victoria , Australia
| | - Mohamed Salah Khilf
- The Florey Institute of Neuroscience and Mental Health , Parkville, Victoria , Australia
| | - David Wright
- Department of Neuroscience, Monash University , Clayton , Australia
| | - Vanessa H Brait
- The Florey Institute of Neuroscience and Mental Health , Parkville, Victoria , Australia
| | - Jess Nithianantharajah
- The Florey Institute of Neuroscience and Mental Health , Parkville, Victoria , Australia
| | - Scott Kolbe
- Department of Neuroscience, Monash University , Clayton , Australia
| | - Leigh A Johnston
- The Melbourne Brain Centre Imaging Unit, The University of Melbourne , Parkville, Victoria , Australia
- Department of Biomedical Engineering, The University of Melbourne , Parkville, Victoria , Australia
| | - Lachlan H Thompson
- The Florey Institute of Neuroscience and Mental Health , Parkville, Victoria , Australia
| | - Amy Brodtmann
- The Florey Institute of Neuroscience and Mental Health , Parkville, Victoria , Australia
| |
Collapse
|
6
|
Feng XF, Lei JF, Li MZ, Zhan Y, Yang L, Lu Y, Li MC, Zhuang YM, Wang L, Zhao H. Magnetic Resonance Imaging Investigation of Neuroplasticity After Ischemic Stroke in Tetramethylpyrazine-Treated Rats. Front Pharmacol 2022; 13:851746. [PMID: 35559236 PMCID: PMC9086494 DOI: 10.3389/fphar.2022.851746] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Accepted: 03/24/2022] [Indexed: 11/17/2022] Open
Abstract
Ischemic stroke elicits white matter injury typically signed by axonal disintegration and demyelination; thus, the development of white matter reorganization is needed. 2,3,5,6-Tetramethylpyrazine (TMP) is widely used to treat ischemic stroke. This study was aimed to investigate whether TMP could protect the white matter and promote axonal repair after cerebral ischemia. Male Sprague–Dawley rats were subjected to permanent middle cerebral artery occlusion (MCAO) and treated with TMP (10, 20, 40 mg/kg) intraperitoneally for 14 days. The motor function related to gait was evaluated by the gait analysis system. Multiparametric magnetic resonance imaging (MRI) was conducted to noninvasively identify gray-white matter structural integrity, axonal reorganization, and cerebral blood flow (CBF), followed by histological analysis. The expressions of axonal growth-associated protein 43 (GAP-43), synaptophysin (SYN), axonal growth-inhibitory signals, and guidance factors were measured by Western blot. Our results showed TMP reduced infarct volume, relieved gray-white matter damage, promoted axonal remodeling, and restored CBF along the peri-infarct cortex, external capsule, and internal capsule. These MRI findings were confirmed by histopathological data. Moreover, motor function, especially gait impairment, was improved by TMP treatment. Notably, TMP upregulated GAP-43 and SYN and enhanced axonal guidance cues such as Netrin-1/DCC and Slit-2/Robo-1 but downregulated intrinsic growth-inhibitory signals NogoA/NgR/RhoA/ROCK-2. Taken together, our data indicated that TMP facilitated poststroke axonal remodeling and motor functional recovery. Moreover, our findings suggested that TMP restored local CBF, augmented guidance cues, and restrained intrinsic growth-inhibitory signals, all of which might improve the intracerebral microenvironment of ischemic areas and then benefit white matter remodeling.
Collapse
Affiliation(s)
- Xue-Feng Feng
- School of Traditional Chinese Medicine, Capital Medical University, Beijing, China.,Beijing Key Lab of TCM Collateral Disease Theory Research, Beijing, China
| | - Jian-Feng Lei
- Medical Imaging Laboratory of Core Facility Center, Capital Medical University, Beijing, China
| | - Man-Zhong Li
- School of Traditional Chinese Medicine, Capital Medical University, Beijing, China.,Beijing Key Lab of TCM Collateral Disease Theory Research, Beijing, China
| | - Yu Zhan
- School of Traditional Chinese Medicine, Capital Medical University, Beijing, China.,Beijing Key Lab of TCM Collateral Disease Theory Research, Beijing, China
| | - Le Yang
- School of Traditional Chinese Medicine, Capital Medical University, Beijing, China.,Beijing Key Lab of TCM Collateral Disease Theory Research, Beijing, China
| | - Yun Lu
- School of Traditional Chinese Medicine, Capital Medical University, Beijing, China.,Beijing Key Lab of TCM Collateral Disease Theory Research, Beijing, China
| | - Ming-Cong Li
- School of Traditional Chinese Medicine, Capital Medical University, Beijing, China.,Beijing Key Lab of TCM Collateral Disease Theory Research, Beijing, China
| | - Yu-Ming Zhuang
- School of Traditional Chinese Medicine, Capital Medical University, Beijing, China.,Beijing Key Lab of TCM Collateral Disease Theory Research, Beijing, China
| | - Lei Wang
- School of Traditional Chinese Medicine, Capital Medical University, Beijing, China.,Beijing Key Lab of TCM Collateral Disease Theory Research, Beijing, China
| | - Hui Zhao
- School of Traditional Chinese Medicine, Capital Medical University, Beijing, China.,Beijing Key Lab of TCM Collateral Disease Theory Research, Beijing, China
| |
Collapse
|
7
|
Xia Y, Huang G, Quan X, Qin Q, Li H, Xu C, Liang Z. Dynamic Structural and Functional Reorganizations Following Motor Stroke. Med Sci Monit 2021; 27:e929092. [PMID: 33707406 PMCID: PMC7962416 DOI: 10.12659/msm.929092] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Background The combined effects of bilateral corticospinal tract (CST) reorganization and interhemispheric functional connectivity (FC) reorganization on motor recovery of upper and lower limbs after stroke remain unknown. Material/Methods A total of 34 patients underwent magnetic resonance imaging (MRI) examination at weeks 1, 4, and 12 after stroke, with a control group of 34 healthy subjects receiving 1 MRI examination. Interhemispheric FC in the somatomotor network (SMN) was calculated using the resting-state functional MRI (rs-fMRI). Fractional anisotropy (FA) of bilateral CST was recorded as a measure of reorganization obtained from diffusion tensor imaging (DTI). After intergroup comparisons, multiple linear regression analysis was used to explore the effects of altered FA and interhemispheric FC on motor recovery. Results Interhemispheric FC restoration mostly occurred within 4 weeks after stroke, and FA in ipsilesional remained CST consistently elevated within 12 weeks. Multivariate linear regression analysis showed that the increase in both interhemispheric FC and ipsilesional CST-FA were significantly correlated with greater motor recovery from week 1 to week 4 following stroke. Moreover, only increased FA of ipsilesional CST was significantly correlated with greater motor recovery during weeks 4 to 12 after stroke compared to interhemispheric FC. Conclusions Our results show dynamic structural and functional reorganizations following motor stroke, and structure reorganization may be more related to motor recovery at the late subacute phase. These results may play a role in guiding neurological rehabilitation.
Collapse
Affiliation(s)
- Yumei Xia
- Department of Neurology, The First Affiliated Hospital of Guangxi Medical University and Guangxi Key Laboratory of Precision Medicine in Cardio-Cerebrovascular Diseases Control and Prevention and Guangxi Clinical Research Center for Cardio-Cerebrovascular Diseases, Nanning, Guangxi, China (mainland)
| | - Gelun Huang
- Department of Neurology, The First Affiliated Hospital of Guangxi Medical University and Guangxi Key Laboratory of Precision Medicine in Cardio-Cerebrovascular Diseases Control and Prevention and Guangxi Clinical Research Center for Cardio-Cerebrovascular Diseases, Nanning, Guangxi, China (mainland)
| | - Xuemei Quan
- Department of Neurology, The First Affiliated Hospital of Guangxi Medical University and Guangxi Key Laboratory of Precision Medicine in Cardio-Cerebrovascular Diseases Control and Prevention and Guangxi Clinical Research Center for Cardio-Cerebrovascular Diseases, Nanning, Guangxi, China (mainland)
| | - Qixiong Qin
- Department of Neurology, The First Affiliated Hospital of Guangxi Medical University and Guangxi Key Laboratory of Precision Medicine in Cardio-Cerebrovascular Diseases Control and Prevention and Guangxi Clinical Research Center for Cardio-Cerebrovascular Diseases, Nanning, Guangxi, China (mainland)
| | - Hui Li
- Department of Neurology, The First Affiliated Hospital of Guangxi Medical University and Guangxi Key Laboratory of Precision Medicine in Cardio-Cerebrovascular Diseases Control and Prevention and Guangxi Clinical Research Center for Cardio-Cerebrovascular Diseases, Nanning, Guangxi, China (mainland)
| | - Ci Xu
- Department of Neurology, The First Affiliated Hospital of Guangxi Medical University and Guangxi Key Laboratory of Precision Medicine in Cardio-Cerebrovascular Diseases Control and Prevention and Guangxi Clinical Research Center for Cardio-Cerebrovascular Diseases, Nanning, Guangxi, China (mainland)
| | - Zhijian Liang
- Department of Neurology, The First Affiliated Hospital of Guangxi Medical University and Guangxi Key Laboratory of Precision Medicine in Cardio-Cerebrovascular Diseases Control and Prevention and Guangxi Clinical Research Center for Cardio-Cerebrovascular Diseases, Nanning, Guangxi, China (mainland)
| |
Collapse
|
8
|
Brain morphological and connectivity changes on MRI after stem cell therapy in a rat stroke model. PLoS One 2021; 16:e0246817. [PMID: 33592008 PMCID: PMC7886198 DOI: 10.1371/journal.pone.0246817] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Accepted: 01/26/2021] [Indexed: 01/01/2023] Open
Abstract
In animal models of stroke, behavioral assessments could be complemented by a variety of neuroimaging studies to correlate them with recovery and better understand mechanisms of improvement after stem cell therapy. We evaluated morphological and connectivity changes after treatment with human mesenchymal stem cells (hMSCs) in a rat stroke model, through quantitative measurement of T2-weighted images and diffusion tensor imaging (DTI). Transient middle cerebral artery occlusion rats randomly received PBS (PBS-only), FBS cultured hMSCs (FBS-hMSCs), or stroke patients’ serum cultured hMSCs (SS-hMSCs). Functional improvement was assessed using a modified neurological severity score (mNSS). Quantitative analyses of T2-weighted ischemic lesion and ventricular volume changes were performed. Brain microstructure/connectivity changes were evaluated in the ischemic recovery area by DTI-derived microstructural indices such as relative fractional anisotropy (rFA), relative axial diffusivity (rAD), and relative radial diffusivity (rRD), and relative fiber density (rFD) analyses. According to mNSS results, the SS-hMSCs group showed the most prominent functional improvement. Infarct lesion volume of the SS-hMSCs group was significantly decreased at 2 weeks when compared to the PBS-only groups, but there were no differences between the FBS-hMSCs and SS-hMSCs groups. Brain atrophy was significantly decreased in the SS-hMSCs group compared to the other groups. In DTI, rFA and rFD values were significantly higher and rRD value was significant lower in the SS-hMSCs group and these microstructure/connectivity changes were correlated with T2-weighted morphological changes. T2-weighted volume alterations (ischemic lesion and brain atrophy), and DTI microstructural indices and rFD changes, were well matched with the results of behavioral assessment. These quantitative MRI measurements could be potential outcome predictors of functional recovery after treatment with stem cells for stroke.
Collapse
|
9
|
Li Z, Gao H, Zeng P, Jia Y, Kong X, Xu K, Bai R. Secondary Degeneration of White Matter After Focal Sensorimotor Cortical Ischemic Stroke in Rats. Front Neurosci 2021; 14:611696. [PMID: 33536869 PMCID: PMC7848148 DOI: 10.3389/fnins.2020.611696] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Accepted: 12/14/2020] [Indexed: 12/13/2022] Open
Abstract
Ischemic lesions could lead to secondary degeneration in remote regions of the brain. However, the spatial distribution of secondary degeneration along with its role in functional deficits is not well understood. In this study, we explored the spatial and connectivity properties of white matter (WM) secondary degeneration in a focal unilateral sensorimotor cortical ischemia rat model, using advanced microstructure imaging on a 14 T MRI system. Significant axonal degeneration was observed in the ipsilateral external capsule and even remote regions including the contralesional external capsule and corpus callosum. Further fiber tractography analysis revealed that only fibers having direct axonal connections with the primary lesion exhibited a significant degeneration. These results suggest that focal ischemic lesions may induce remote WM degeneration, but limited to fibers tied to the primary lesion. These “direct” fibers mainly represent perilesional, interhemispheric, and subcortical axonal connections. At last, we found that primary lesion volume might be the determining factor of motor function deficits.
Collapse
Affiliation(s)
- Zhaoqing Li
- Interdisciplinary Institute of Neuroscience and Technology, School of Medicine, Zhejiang University, Hangzhou, China.,Key Laboratory of Biomedical Engineering of Education Ministry, College of Biomedical Engineering and Instrument Science, Zhejiang University, Hangzhou, China
| | - Huan Gao
- Key Laboratory of Biomedical Engineering of Education Ministry, College of Biomedical Engineering and Instrument Science, Zhejiang University, Hangzhou, China.,Qiushi Academy for Advanced Studies (QAAS), Zhejiang University, Hangzhou, China
| | - Pingmei Zeng
- Department of Chemistry, Zhejiang University, Hangzhou, China
| | - Yinhang Jia
- Interdisciplinary Institute of Neuroscience and Technology, School of Medicine, Zhejiang University, Hangzhou, China.,Department of Physical Medicine and Rehabilitation, The Affiliated Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Xueqian Kong
- Department of Chemistry, Zhejiang University, Hangzhou, China
| | - Kedi Xu
- Key Laboratory of Biomedical Engineering of Education Ministry, College of Biomedical Engineering and Instrument Science, Zhejiang University, Hangzhou, China.,Qiushi Academy for Advanced Studies (QAAS), Zhejiang University, Hangzhou, China.,Zhejiang Provincial Key Laboratory of Cardio-Cerebral Vascular Detection Technology and Medicinal Effectiveness Appraisal, Zhejiang University, Hangzhou, China
| | - Ruiliang Bai
- Interdisciplinary Institute of Neuroscience and Technology, School of Medicine, Zhejiang University, Hangzhou, China.,Key Laboratory of Biomedical Engineering of Education Ministry, College of Biomedical Engineering and Instrument Science, Zhejiang University, Hangzhou, China.,Department of Physical Medicine and Rehabilitation, The Affiliated Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, China.,Zhejiang Provincial Key Laboratory of Cardio-Cerebral Vascular Detection Technology and Medicinal Effectiveness Appraisal, Zhejiang University, Hangzhou, China
| |
Collapse
|
10
|
Sun C, Liu X, Bao C, Wei F, Gong Y, Li Y, Liu J. Advanced non-invasive MRI of neuroplasticity in ischemic stroke: Techniques and applications. Life Sci 2020; 261:118365. [PMID: 32871181 DOI: 10.1016/j.lfs.2020.118365] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Revised: 08/26/2020] [Accepted: 08/27/2020] [Indexed: 12/27/2022]
Abstract
Ischemic stroke represents a serious medical condition which could cause survivors suffer from long-term and even lifetime disabilities. After a stroke attack, the brain would undergo varying degrees of recovery, in which the central nervous system could be reorganized spontaneously or with the help of appropriate rehabilitation. Magnetic resonance imaging (MRI) is a non-invasive technique which can provide comprehensive information on structural, functional and metabolic features of brain tissue. In the last decade, there has been an increased technical advancement in MR techniques such as voxel-based morphological analysis (VBM), diffusion magnetic resonance imaging (dMRI), functional magnetic resonance imaging (fMRI), arterial spin-labeled perfusion imaging (ASL), magnetic sensitivity weighted imaging (SWI), quantitative sensitivity magnetization (QSM) and magnetic resonance spectroscopy (MRS) which have been proven to be a valuable tool to study the brain tissue reorganization. Due to MRI indices of neuroplasticity related to neurological outcome could be translated to the clinic. The ultimate goal of this review is to equip readers with a fundamental understanding of advanced MR techniques and their corresponding clinical application for improving the ability to predict neuroplasticity that are most suitable for stroke management.
Collapse
Affiliation(s)
- Chao Sun
- Graduate School, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, PR China
| | - Xuehuan Liu
- Department of Radiology, Tianjin Union Medical Center, Tianjin 300121, PR China
| | - Cuiping Bao
- Department of Radiology, Tianjin Union Medical Center, Tianjin 300121, PR China
| | - Feng Wei
- Department of Radiology, Tianjin Union Medical Center, Tianjin 300121, PR China
| | - Yi Gong
- Department of Radiology, Tianjin Union Medical Center, Tianjin 300121, PR China
| | - Yiming Li
- Department of Radiology, Tianjin Union Medical Center, Tianjin 300121, PR China
| | - Jun Liu
- Department of Radiology, Tianjin Union Medical Center, Tianjin 300121, PR China.
| |
Collapse
|
11
|
Li M, Zhao Y, Zhan Y, Yang L, Feng X, Lu Y, Lei J, Zhao T, Wang L, Zhao H. Enhanced white matter reorganization and activated brain glucose metabolism by enriched environment following ischemic stroke: Micro PET/CT and MRI study. Neuropharmacology 2020; 176:108202. [DOI: 10.1016/j.neuropharm.2020.108202] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Revised: 06/09/2020] [Accepted: 06/12/2020] [Indexed: 12/13/2022]
|
12
|
Lubart A, Benbenishty A, Har-Gil H, Laufer H, Gdalyahu A, Assaf Y, Blinder P. Single Cortical Microinfarcts Lead to Widespread Microglia/Macrophage Migration Along the White Matter. Cereb Cortex 2020; 31:248-266. [PMID: 32954425 DOI: 10.1093/cercor/bhaa223] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2018] [Revised: 05/13/2020] [Accepted: 06/08/2020] [Indexed: 12/31/2022] Open
Abstract
Loss of cognitive function with aging is a complex and poorly understood process. Recently, clinical research has linked the occurrence of cortical microinfarcts to cognitive decline. Cortical microinfarcts form following the occlusion of penetrating vessels and are considered to be restricted to the proximity of the occluded vessel. Whether and how such local events propagate and affect remote brain regions remain unknown. To this end, we combined histological analysis and longitudinal diffusion tensor imaging (DTI), following the targeted-photothrombotic occlusion of single cortical penetrating vessels. Occlusions resulted in distant tissue reorganization across the mouse brain. This remodeling co-occurred with the formation of a microglia/macrophage migratory path along subcortical white matter tracts, reaching the contralateral hemisphere through the corpus callosum and leaving a microstructural signature detected by DTI-tractography. CX3CR1-deficient mice exhibited shorter trail lengths, differential remodeling, and only ipsilateral white matter tract changes. We concluded that microinfarcts lead to brain-wide remodeling in a microglial CX3CR1-dependent manner.
Collapse
Affiliation(s)
- Alisa Lubart
- Sagol School of Neuroscience, Tel Aviv University, Tel Aviv-Yafo, Israel
| | - Amit Benbenishty
- Sagol School of Neuroscience, Tel Aviv University, Tel Aviv-Yafo, Israel.,Biological Regulation Department, The Weizmann Institute of Science, Rehovot, Israel
| | - Hagai Har-Gil
- Sagol School of Neuroscience, Tel Aviv University, Tel Aviv-Yafo, Israel
| | - Hadas Laufer
- Sagol School of Neuroscience, Tel Aviv University, Tel Aviv-Yafo, Israel
| | - Amos Gdalyahu
- Neurobiology, Biochemistry and Biophysics School, Tel Aviv University, Tel Aviv-Yafo, Israel
| | - Yaniv Assaf
- Sagol School of Neuroscience, Tel Aviv University, Tel Aviv-Yafo, Israel.,Neurobiology, Biochemistry and Biophysics School, Tel Aviv University, Tel Aviv-Yafo, Israel
| | - Pablo Blinder
- Sagol School of Neuroscience, Tel Aviv University, Tel Aviv-Yafo, Israel.,Neurobiology, Biochemistry and Biophysics School, Tel Aviv University, Tel Aviv-Yafo, Israel
| |
Collapse
|
13
|
Li MZ, Zhan Y, Yang L, Feng XF, Zou HY, Lei JF, Zhao T, Wang L, Zhao H. MRI Evaluation of Axonal Remodeling After Combination Treatment With Xiaoshuan Enteric-Coated Capsule and Enriched Environment in Rats After Ischemic Stroke. Front Physiol 2019; 10:1528. [PMID: 31920724 PMCID: PMC6930913 DOI: 10.3389/fphys.2019.01528] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2019] [Accepted: 12/04/2019] [Indexed: 12/24/2022] Open
Abstract
Xiaoshuan enteric-coated capsule (XSEC) is a compound Chinese medicine widely used for the treatment of ischemic stroke. Enriched environment (EE) is a rehabilitative intervention designed to facilitate physical, cognitive, and social activity after brain injury. This study aimed to assess whether the XSEC and EE combination could provide synergistic efficacy in axonal remodeling compared to that with a single treatment after ischemic stroke using magnetic resonance imaging (MRI) followed by histological analysis. Rats were subjected to permanent middle cerebral artery occlusion and treated with XSEC and EE alone or in combination for 30 days. T2-weighted imaging and diffusion tensor imaging (DTI) were performed to examine the infarct volume and axonal remodeling, respectively. The co-localization of Ki67 with NG2 or CNPase was examined by immunofluorescence staining to assess oligodendrogenesis. The expressions of growth associated protein-43 (GAP-43) and growth inhibitors NogoA/Nogo receptor (NgR)/RhoA/Rho-associated kinase2 (ROCK2) were measured using western blot and qRT-PCR. The Morris water maze (MWM) was performed to evaluate the cognitive function. MRI and histological measurements indicated XSEC and EE individually benefited axonal reorganization after stroke. Notably, XSEC + EE decreased infarct volume compared with XSEC or EE monotherapy and increased ipsilateral residual volume compared with vehicle group. DTI showed XSEC + EE robustly increased fractional anisotropy while decreased axial diffusivity and radial diffusivity in the injured cortex, striatum, and external capsule. Meanwhile, diffusion tensor tractography revealed XSEC + EE elevated fiber density in the cortex and external capsule and increased fiber length in the striatum and external capsule compared with the monotherapies. These MRI measurements, confirmed by histology, showed that XSEC + EE promoted axonal restoration. Additionally, XSEC + EE amplified oligodendrogenesis, decreased the expressions of NogoA/NgR/RhoA/ROCK2, and increased the expression of GAP-43 in the peri-infarct tissues. In parallel to these findings, rats treated with XSEC + EE exhibited higher cognitive recovery than those treated with XSEC or EE monotherapy, as evidenced by MWM test. Taken together, our data implicated that XSEC + EE exerted synergistic effects on alleviating atrophy and encouraging axonal reorganization partially by promoting oligodendrogenesis and overcoming intrinsic growth-inhibitory signaling, thereby facilitating higher cognitive recovery.
Collapse
Affiliation(s)
- Man-Zhong Li
- School of Traditional Chinese Medicine, Capital Medical University, Beijing, China.,Beijing Key Lab of TCM Collateral Disease Theory Research, Beijing, China
| | - Yu Zhan
- School of Traditional Chinese Medicine, Capital Medical University, Beijing, China.,Beijing Key Lab of TCM Collateral Disease Theory Research, Beijing, China
| | - Le Yang
- School of Traditional Chinese Medicine, Capital Medical University, Beijing, China.,Beijing Key Lab of TCM Collateral Disease Theory Research, Beijing, China
| | - Xue-Feng Feng
- School of Traditional Chinese Medicine, Capital Medical University, Beijing, China.,Beijing Key Lab of TCM Collateral Disease Theory Research, Beijing, China
| | - Hai-Yan Zou
- School of Traditional Chinese Medicine, Capital Medical University, Beijing, China.,Beijing Key Lab of TCM Collateral Disease Theory Research, Beijing, China
| | - Jian-Feng Lei
- Medical Imaging Laboratory of Core Facility Center, Capital Medical University, Beijing, China
| | - Ting Zhao
- School of Traditional Chinese Medicine, Capital Medical University, Beijing, China.,Beijing Key Lab of TCM Collateral Disease Theory Research, Beijing, China
| | - Lei Wang
- School of Traditional Chinese Medicine, Capital Medical University, Beijing, China.,Beijing Key Lab of TCM Collateral Disease Theory Research, Beijing, China
| | - Hui Zhao
- School of Traditional Chinese Medicine, Capital Medical University, Beijing, China.,Beijing Key Lab of TCM Collateral Disease Theory Research, Beijing, China
| |
Collapse
|
14
|
Wei XE, Shang K, Zhou J, Zhou YJ, Li YH. Acute Subcortical Infarcts Cause Secondary Degeneration in the Remote Non-involved Cortex and Connecting Fiber Tracts. Front Neurol 2019; 10:860. [PMID: 31440202 PMCID: PMC6693082 DOI: 10.3389/fneur.2019.00860] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2019] [Accepted: 07/25/2019] [Indexed: 11/13/2022] Open
Abstract
Background and Purpose: Remote white matter and cortex reorganization may contribute to functional reorganization and clinical outcome after acute infarcts. To determine the microstructural changes in the remote intact corticospinal tract (CST) and precentral gyrus cortex connected to the acute infarct after subcortical stroke involving the CST over 6 months. Methods: Twenty-two patients with subcortical stroke involving the CST underwent magnetic resonance imaging (MRI) and clinical assessment in the acute phase (baseline) and 6 months (follow-up) after the stroke. The MRI sequences included T1-weighted imaging, T2-weighted imaging, fluid-attenuated inversion recovery, diffusion tensor imaging (DTI), and diffusion kurtosis imaging. Fractional anisotropy (FA) and track-density imaging (TDI) values were generated using DTI data for the centrum semiovale, corona radiata, posterior limb of internal capsule, and cerebral peduncle. The mean kurtosis (MK) value of the precentral gyrus cortex was calculated. Changes in the FA, TDI, and MK values between the baseline and follow-up and the relationship between these changes were analyzed. Results: The TDI and FA values of all parts of the ipsilesional (IL) CST, including the noninvolved upper and lower parts, decreased at the 6-month follow-up (P < 0.001). The MK values of the stroke lesion (P < 0.001) and IL precentral gyrus cortex (P = 0.002) were lower at follow-up than at the baseline. The ΔTDI (r = 0.689, P < 0.001) and Δ FA values (r = 0.463, P = 0.03) of the noninvolved upper part of the IL CST were positively correlated with the ΔMK value of the IL precentral gyrus cortex. Conclusion: Secondary degeneration occurred in the remote part of the CST and the remote IL precentral gyrus cortex after subcortical stroke involving the CST. The secondary degeneration in the upper part of the CST was correlated with that in the IL precentral gyrus cortex.
Collapse
Affiliation(s)
- Xiao-Er Wei
- Institute of Diagnostic and Interventional Radiology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Kai Shang
- Institute of Diagnostic and Interventional Radiology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Jia Zhou
- Institute of Diagnostic and Interventional Radiology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Ya-Jun Zhou
- Department of Neurology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Yue-Hua Li
- Institute of Diagnostic and Interventional Radiology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| |
Collapse
|
15
|
Zhang X, Yan Y, Tong F, Li CX, Jones B, Wang S, Meng Y, Muly EC, Kempf D, Howell L. Progressive Assessment of Ischemic Injury to White Matter Using Diffusion Tensor Imaging: A Preliminary Study of a Macaque Model of Stroke. Open Neuroimag J 2018; 12:30-41. [PMID: 29785226 PMCID: PMC5897992 DOI: 10.2174/1874440001812010030] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2017] [Revised: 02/10/2018] [Accepted: 03/05/2018] [Indexed: 01/20/2023] Open
Abstract
Background: Previous Diffusion Tensor Imaging (DTI) studies have demonstrated the temporal evolution of stroke injury in grey matter and white matter can be characterized by DTI indices. However, it still remains not fully understood how the DTI indices of white matter are altered progressively during the hyperacute (first 6 hours) and acute stage of stroke (≤ 1 week). In the present study, DTI was employed to characterize the temporal evolution of infarction and white matter injury after stroke insult using a macaque model with permanent ischemic occlusion. Methods and materials: Permanent middle cerebral artery (MCA) occlusion was induced in rhesus monkeys (n=4, 10-21 years old). The brain lesion was examined longitudinally with DTI during the hyperacute phase (2-6 hours, n=4), 48 hours (n=4) and 96 hours (n=3) post-occlusion. Results: Cortical infarction was seen in all animals. The Mean Diffusivity (MD) in lesion regions decreased substantially at the first time point (2 hours post stroke) (35%, p <0.05, compared to the contralateral side) and became pseudo-normalized at 96 hours. In contrast, evident FA reduction was seen at 48 hours (39%, p <0.10) post-stroke. MD reduction in white matter bundles of the lesion area was much less than that in the grey matter during the hyper-acute phase but significant change was observed 4 hours (4.2%, p < 0.05) post stroke . Also, MD pseudonormalisation was seen at 96 hours post stroke. There was a significant correlation between the temporal changes of MD in white matter bundles and those in whole lesion areas during the entire study period. Meanwhile, no obvious fractional anisotropy (FA) changes were seen during the hyper-acute phase in either the entire infarct region or white matter bundles. Significant FA alteration was observed in entire lesion areas and injured white matter bundles 48 and 96 hours post stroke. The stroke lesion in grey matter and white matter was validated by pathological findings. Conclusion:
The temporal evolution of ischemic injury to the grey matter and white matter from 2 to 96 hours after stroke onset was characterized using a macaque model and DTI. Progressive MD changes in white matter bundles are seen from hyperacute phase to acute phase after permanent MCA occlusion and temporally correlated with the MD changes in entire infarction regions. MD reduction in white matter bundles is mild in comparison with that in the grey matter but significant and progressive, indicating it may be useful to detect early white matter degeneration after stroke.
Collapse
Affiliation(s)
- Xiaodong Zhang
- Yerkes National Primate Research Center, Emory University, Atlanta, Georgia 30329
| | - Yumei Yan
- Yerkes National Primate Research Center, Emory University, Atlanta, Georgia 30329
| | - Frank Tong
- Department of Radiology, School of Medicine, Emory University, Atlanta, Georgia 30322
| | - Chun-Xia Li
- Yerkes National Primate Research Center, Emory University, Atlanta, Georgia 30329
| | - Benjamin Jones
- Yerkes National Primate Research Center, Emory University, Atlanta, Georgia 30329
| | - Silun Wang
- Yerkes National Primate Research Center, Emory University, Atlanta, Georgia 30329
| | - Yuguang Meng
- Yerkes National Primate Research Center, Emory University, Atlanta, Georgia 30329
| | - E Chris Muly
- Department of Psychiatry and Behavioral Sciences, School of Medicine, Emory University, Atlanta, Georgia 30322
| | - Doty Kempf
- Yerkes National Primate Research Center, Emory University, Atlanta, Georgia 30329
| | - Leonard Howell
- Yerkes National Primate Research Center, Emory University, Atlanta, Georgia 30329.,Department of Psychiatry and Behavioral Sciences, School of Medicine, Emory University, Atlanta, Georgia 30322
| |
Collapse
|