1
|
Karkouri J, Rodgers CT. Sequence building block for magnetic resonance spectroscopy on Siemens VE-series scanners. NMR IN BIOMEDICINE 2024; 37:e5165. [PMID: 38807311 DOI: 10.1002/nbm.5165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 03/19/2024] [Accepted: 03/28/2024] [Indexed: 05/30/2024]
Abstract
We present a sequence building block (SBB) that embeds magnetic resonance spectroscopy (MRS) into another sequence on the Siemens VE platform without any custom hardware. This enables dynamic studies such as functional MRS (fMRS), dynamic shimming and frequency correction, and acquisition of navigator images for motion correction. The SBB supports nonlocalised spectroscopy (free induction decay), STimulated Echo Acquisition Mode single voxel spectroscopy, and 1D, 2D and 3D phase-encoded chemical shift imaging. It can embed 1H or X-nuclear MRS into a 1H sequence; and 1H-MRS into an X-nuclear sequence. We demonstrate integration into the vendor's gradient-recalled echo sequence. We acquire test data in phantoms with three coils (31P/1H, 13C/1H and 2H/1H) and in two volunteers on a 7-T Terra MRI scanner. Fifteen lines of code are required to insert the SBB into a sequence. Spectra and images are acquired successfully in all cases in phantoms, and in human abdomen and calf muscle. Phantom comparison of signal-to-noise ratio and linewidth showed that the SBB has negligible effects on image and spectral quality, except that it sometimes produces a nuclear Overhauser effect (NOE) signal enhancement for multinuclear applications in line with conventional 1H NOE pulses. Our new SBB embeds MRS into a host imaging or spectroscopy sequence in 15 lines of code. It allows homonuclear and heteronuclear interleaving. The package is available through the standard C2P procedure. We hope this will lower the barrier for entry to studies applying dynamic fMRS and for online motion correction and B0-shim updating.
Collapse
Affiliation(s)
- Jabrane Karkouri
- Wolfson Brain Imaging Center, University of Cambridge, Cambridge, UK
| | | |
Collapse
|
2
|
Lopez Kolkovsky AL, Carlier PG, Marty B, Meyerspeer M. Interleaved and simultaneous multi-nuclear magnetic resonance in vivo. Review of principles, applications and potential. NMR IN BIOMEDICINE 2022; 35:e4735. [PMID: 35352440 PMCID: PMC9542607 DOI: 10.1002/nbm.4735] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Revised: 03/03/2022] [Accepted: 03/28/2022] [Indexed: 06/14/2023]
Abstract
Magnetic resonance signals from different nuclei can be excited or received at the same time,rendering simultaneous or rapidly interleaved multi-nuclear acquisitions feasible. The advan-tages are a reduction of total scan time compared to sequential multi-nuclear acquisitions or that additional information from heteronuclear data is obtained at thesame time and anatomical position. Information content can be qualitatively increased by delivering a more comprehensive MR-based picture of a transient state (such as an exercise bout). Also, combiningnon-proton MR acquisitions with 1 Hinformation (e.g., dynamic shim updates and motion correction) can be used to improve data quality during long scans and benefits image coregistration. This work reviews the literature on interleaved and simultaneous multi-nuclear MRI and MRS in vivo. Prominent use cases for this methodology in clinical and research applications are brain and muscle, but studies have also been carried out in other targets, including the lung, knee, breast and heart. Simultaneous multi-nuclear measurements in the liver and kidney have also been performed, but exclusively in rodents. In this review, a consistent nomenclature is proposed, to help clarify the terminology used for this principle throughout the literature on in-vivo MR. An overview covers the basic principles, the technical requirements on the MR scanner and the implementations realised either by MR system vendors or research groups, from the early days until today. Considerations regarding the multi-tuned RF coils required and heteronuclear polarisation interactions are briefly discussed, and fields for future in-vivo applications for interleaved multi-nuclear MR pulse sequences are identified.
Collapse
Affiliation(s)
- Alfredo L. Lopez Kolkovsky
- NMR Laboratory, Neuromuscular Investigation CenterInstitute of MyologyParisFrance
- NMR laboratoryCEA, DRF, IBFJParisFrance
| | - Pierre G. Carlier
- NMR Laboratory, Neuromuscular Investigation CenterInstitute of MyologyParisFrance
- NMR laboratoryCEA, DRF, IBFJParisFrance
| | - Benjamin Marty
- NMR Laboratory, Neuromuscular Investigation CenterInstitute of MyologyParisFrance
- NMR laboratoryCEA, DRF, IBFJParisFrance
| | - Martin Meyerspeer
- High‐Field MR Center, Center for Medical Physics and Biomedical EngineeringMedical University of ViennaViennaAustria
| |
Collapse
|
3
|
Fadel LC, Patel IV, Romero J, Tan IC, Kesler SR, Rao V, Subasinghe SAAS, Ray RS, Yustein JT, Allen MJ, Gibson BW, Verlinden JJ, Fayn S, Ruggiero N, Ortiz C, Hipskind E, Feng A, Iheanacho C, Wang A, Pautler RG. A Mouse Holder for Awake Functional Imaging in Unanesthetized Mice: Applications in 31P Spectroscopy, Manganese-Enhanced Magnetic Resonance Imaging Studies, and Resting-State Functional Magnetic Resonance Imaging. BIOSENSORS 2022; 12:616. [PMID: 36005011 PMCID: PMC9406174 DOI: 10.3390/bios12080616] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 08/01/2022] [Accepted: 08/02/2022] [Indexed: 05/28/2023]
Abstract
Anesthesia is often used in preclinical imaging studies that incorporate mouse or rat models. However, multiple reports indicate that anesthesia has significant physiological impacts. Thus, there has been great interest in performing imaging studies in awake, unanesthetized animals to obtain accurate results without the confounding physiological effects of anesthesia. Here, we describe a newly designed mouse holder that is interfaceable with existing MRI systems and enables awake in vivo mouse imaging. This holder significantly reduces head movement of the awake animal compared to previously designed holders and allows for the acquisition of improved anatomical images. In addition to applications in anatomical T2-weighted magnetic resonance imaging (MRI), we also describe applications in acquiring 31P spectra, manganese-enhanced magnetic resonance imaging (MEMRI) transport rates and resting-state functional magnetic resonance imaging (rs-fMRI) in awake animals and describe a successful conditioning paradigm for awake imaging. These data demonstrate significant differences in 31P spectra, MEMRI transport rates, and rs-fMRI connectivity between anesthetized and awake animals, emphasizing the importance of performing functional studies in unanesthetized animals. Furthermore, these studies demonstrate that the mouse holder presented here is easy to construct and use, compatible with standard Bruker systems for mouse imaging, and provides rigorous results in awake mice.
Collapse
Affiliation(s)
- Lindsay C. Fadel
- Department Integrative Physiology, Baylor College of Medicine, Houston, TX 77030, USA
- Department of Neuroscience, Baylor College of Medicine, Houston, TX 77030, USA
| | - Ivany V. Patel
- Department Integrative Physiology, Baylor College of Medicine, Houston, TX 77030, USA
- School of Humanities, Rice University, Houston, TX 77005, USA
| | - Jonathan Romero
- Department Integrative Physiology, Baylor College of Medicine, Houston, TX 77030, USA
- Small Animal Imaging Facility, Texas Children’s Hospital, Houston, TX 77030, USA
| | - I-Chih Tan
- Bioengineering Core, Advanced Technology Core, Baylor College of Medicine, Houston, TX 77030, USA
| | - Shelli R. Kesler
- School of Nursing, University of Texas at Austin, Austin, TX 78712, USA
| | - Vikram Rao
- School of Nursing, University of Texas at Austin, Austin, TX 78712, USA
| | | | - Russell S. Ray
- Department of Neuroscience, Baylor College of Medicine, Houston, TX 77030, USA
| | - Jason T. Yustein
- Cancer and Cell Biology Program, Baylor College of Medicine, Houston, TX 77030, USA
- Department of Pediatrics, Texas Children’s Cancer and Hematology Centers and The Faris D. Virani Ewing, Houston, TX 77030, USA
- Sarcoma Center, Baylor College of Medicine, Houston, TX 77030, USA
| | - Matthew J. Allen
- Department of Chemistry, Wayne State University, Detroit, MI 48202, USA
| | - Brian W. Gibson
- Department Integrative Physiology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Justin J. Verlinden
- Department Integrative Physiology, Baylor College of Medicine, Houston, TX 77030, USA
- Department of Neuroscience, Augustana College, Rock Island, IL 61201, USA
| | - Stanley Fayn
- Department Integrative Physiology, Baylor College of Medicine, Houston, TX 77030, USA
- School of Molecular and Cellular Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Nicole Ruggiero
- Department Integrative Physiology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Caitlyn Ortiz
- Department Integrative Physiology, Baylor College of Medicine, Houston, TX 77030, USA
- Small Animal Imaging Facility, Texas Children’s Hospital, Houston, TX 77030, USA
| | - Elizabeth Hipskind
- Department Integrative Physiology, Baylor College of Medicine, Houston, TX 77030, USA
- Department of Neuroscience, Baylor College of Medicine, Houston, TX 77030, USA
| | - Aaron Feng
- Department Integrative Physiology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Chijindu Iheanacho
- Department Integrative Physiology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Alex Wang
- Department Integrative Physiology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Robia G. Pautler
- Department Integrative Physiology, Baylor College of Medicine, Houston, TX 77030, USA
- Department of Neuroscience, Baylor College of Medicine, Houston, TX 77030, USA
- Small Animal Imaging Facility, Texas Children’s Hospital, Houston, TX 77030, USA
- Department of Radiology, Baylor College of Medicine, Houston, TX 77030, USA
- Huffington Center on Aging, Baylor College of Medicine, Houston, TX 77030, USA
| |
Collapse
|
4
|
Sathe AG, Tuite P, Chen C, Ma Y, Chen W, Cloyd J, Low WC, Steer CJ, Lee BY, Zhu XH, Coles LD. Pharmacokinetics, Safety, and Tolerability of Orally Administered Ursodeoxycholic Acid in Patients With Parkinson's Disease-A Pilot Study. J Clin Pharmacol 2020; 60:744-750. [PMID: 32052462 PMCID: PMC7245554 DOI: 10.1002/jcph.1575] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Accepted: 12/06/2019] [Indexed: 12/14/2022]
Abstract
Mitochondrial dysfunction is implicated in the pathogenesis of Parkinson's disease. Preliminary data have shown lower brain adenosine triphosphate (ATP) levels in Parkinson's disease versus age-matched healthy controls. Ursodeoxycholic acid (UDCA) may improve impaired mitochondrial function. Our objective was to evaluate UDCA tolerability, pharmacokinetics, and its effect on brain bioenergetics in individuals with Parkinson's disease. An open-label, prospective, multiple-ascending-dose study of oral UDCA in 5 individuals with Parkinson's disease was completed. A blood safety panel, plasma concentrations of UDCA and UDCA conjugates, and brain ATP levels were measured before and after therapy (week 1: 15 mg/kg/day; week 2: 30 mg/kg/day; and weeks 3-6: 50 mg/kg/day). UDCA and conjugates were measured using liquid chromatography-mass spectrometry. ATP levels and ATPase activity were measured using 7-Tesla 31 P magnetic resonance spectroscopy. Secondary measures included the Unified Parkinson's Disease Rating Scale and Montreal Cognitive Assessment. UDCA was generally well tolerated. The most frequent adverse event was gastrointestinal discomfort, rated by subjects as mild to moderate. Noncompartmental pharmacokinetic analysis resulted in (mean ± standard deviation) a maximum concentration of 8749 ± 2840 ng/mL and half-life of 2.1 ± 0.71 hr. Magnetic resonance spectroscopy data were obtained in 3 individuals with Parkinson's disease and showed modest increases in ATP and decreases in ATPase activity. Changes in Unified Parkinson's Disease Rating Scale (parts I-IV) and Montreal Cognitive Assessment scores (mean ± standard deviation) were -4.6 ± 6.4 and 2 ± 1.7, respectively. This is the first report of UDCA use in individuals with Parkinson's disease. Its pharmacokinetics are variable, and at high doses it appears reasonably well tolerated. Our findings warrant additional studies of its effect on brain bioenergetics.
Collapse
Affiliation(s)
- Abhishek G. Sathe
- Center for Orphan Drug Research and Department of Experimental and Clinical Pharmacology, College of Pharmacy, Minneapolis, Minnesota, USA
| | - Paul Tuite
- Department of Neurology, Medical School, University of Minnesota, Minneapolis, Minnesota, USA
| | - Chi Chen
- Department of Food Science and Nutrition, College of Food, Agricultural and Natural Resource Sciences, University of Minnesota, St. Paul, Minnesota, USA
| | - Yiwei Ma
- Department of Food Science and Nutrition, College of Food, Agricultural and Natural Resource Sciences, University of Minnesota, St. Paul, Minnesota, USA
| | - Wei Chen
- Center for Magnetic Resonance Research, Department of Radiology, Medical School, University of Minnesota, Minneapolis, Minnesota, USA
| | - James Cloyd
- Center for Orphan Drug Research and Department of Experimental and Clinical Pharmacology, College of Pharmacy, Minneapolis, Minnesota, USA
| | - Walter C. Low
- Department of Neurosurgery, Medical School, University of Minnesota, Minneapolis, Minnesota, USA
| | - Clifford J. Steer
- Departments of Medicine and Genetics, Cell Biology and Development, Medical School, University of Minnesota, Minneapolis, Minnesota, USA
| | - Byeong-Yeul Lee
- Center for Magnetic Resonance Research, Department of Radiology, Medical School, University of Minnesota, Minneapolis, Minnesota, USA
| | - Xiao-Hong Zhu
- Center for Magnetic Resonance Research, Department of Radiology, Medical School, University of Minnesota, Minneapolis, Minnesota, USA
| | - Lisa D. Coles
- Center for Orphan Drug Research and Department of Experimental and Clinical Pharmacology, College of Pharmacy, Minneapolis, Minnesota, USA
| |
Collapse
|
5
|
Lee BY, Zhu XH, Chen W. Quantitative analysis of spatial averaging effect on chemical shift imaging SNR and noise coherence with k-space sampling schemes. Magn Reson Imaging 2019; 60:85-92. [PMID: 30943436 DOI: 10.1016/j.mri.2019.03.023] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2018] [Revised: 03/25/2019] [Accepted: 03/27/2019] [Indexed: 01/19/2023]
Abstract
Spatial averaging of multiple voxels from high-resolution chemical shift imaging (hrCSI) is a common strategy for in vivo metabolic studies to achieve a better signal-to-noise ratio (SNR) for a region-of-interest. However, the mechanism about how the spatial averaging approach influences the respective spectral signal and noise and its relevance to the k-space sampling schemes remains unclear. Using three-dimension 17O CSI technique with the weighted k-space sampling method of Fourier series window, we performed quantitative SNR comparisons between a single low-resolution CSI (lrCSI) voxel (being 27 times larger than the hrCSI voxel size) and the spatially averaged hrCSI voxels with matched sampling volume and location. We demonstrated that the averaged hrCSI voxel spectrum had a large SNR loss (> 4 times) compared to the lrCSI voxel, which was resulted from unmatched increases in signal (~1.9 fold) and noise (~9.3 fold). The signal increase was caused by the spatial overlapping between the adjacent hrCSI voxels. The substantial noise increase was mainly attributed to the strong noise coherence among hrCSI voxels acquired with the weighted k-space sampling. This study presents a quantitative relation between the k-space sampling schemes to an apparent SNR penalty of the spatial averaging approach. The information could be useful for designing CSI acquisition method and determination of optimal spatial resolution for in vivo metabolic imaging studies.
Collapse
Affiliation(s)
- Byeong-Yeul Lee
- Center for Magnetic Resonance Research, Department of Radiology, University of Minnesota Medical School, MN, USA.
| | - Xiao-Hong Zhu
- Center for Magnetic Resonance Research, Department of Radiology, University of Minnesota Medical School, MN, USA
| | - Wei Chen
- Center for Magnetic Resonance Research, Department of Radiology, University of Minnesota Medical School, MN, USA.
| |
Collapse
|