1
|
Li S, Dai Y, Chen J, Yan F, Yang Y. MRI-based habitat imaging in cancer treatment: current technology, applications, and challenges. Cancer Imaging 2024; 24:107. [PMID: 39148139 PMCID: PMC11328409 DOI: 10.1186/s40644-024-00758-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Accepted: 08/07/2024] [Indexed: 08/17/2024] Open
Abstract
Extensive efforts have been dedicated to exploring the impact of tumor heterogeneity on cancer treatment at both histological and genetic levels. To accurately measure intra-tumoral heterogeneity, a non-invasive imaging technique, known as habitat imaging, was developed. The technique quantifies intra-tumoral heterogeneity by dividing complex tumors into distinct sub- regions, called habitats. This article reviews the following aspects of habitat imaging in cancer treatment, with a focus on radiotherapy: (1) Habitat imaging biomarkers for assessing tumor physiology; (2) Methods for habitat generation; (3) Efforts to combine radiomics, another imaging quantification method, with habitat imaging; (4) Technical challenges and potential solutions related to habitat imaging; (5) Pathological validation of habitat imaging and how it can be utilized to evaluate cancer treatment by predicting treatment response including survival rate, recurrence, and pathological response as well as ongoing open clinical trials.
Collapse
Affiliation(s)
- Shaolei Li
- Institute for Medical Imaging Technology, Ruijin Hospital, Shanghai, 201800, China
| | - Yongming Dai
- School of Biomedical Engineering, ShanghaiTech University, Shanghai, 201210, China
| | - Jiayi Chen
- Department of Radiation Oncology, Ruijin Hospital, Shanghai, 201800, China
| | - Fuhua Yan
- Institute for Medical Imaging Technology, Ruijin Hospital, Shanghai, 201800, China
- Department of Radiology, Ruijin Hospital, Shanghai, 201800, China
| | - Yingli Yang
- Institute for Medical Imaging Technology, Ruijin Hospital, Shanghai, 201800, China.
| |
Collapse
|
2
|
Naghavi AO, Bryant JM, Kim Y, Weygand J, Redler G, Sim AJ, Miller J, Coucoules K, Michael LT, Gloria WE, Yang G, Rosenberg SA, Ahmed K, Bui MM, Henderson-Jackson EB, Lee A, Lee CD, Gonzalez RJ, Feygelman V, Eschrich SA, Scott JG, Torres-Roca J, Latifi K, Parikh N, Costello J. Habitat escalated adaptive therapy (HEAT): a phase 2 trial utilizing radiomic habitat-directed and genomic-adjusted radiation dose (GARD) optimization for high-grade soft tissue sarcoma. BMC Cancer 2024; 24:437. [PMID: 38594603 PMCID: PMC11003059 DOI: 10.1186/s12885-024-12151-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2023] [Accepted: 03/20/2024] [Indexed: 04/11/2024] Open
Abstract
BACKGROUND Soft tissue sarcomas (STS), have significant inter- and intra-tumoral heterogeneity, with poor response to standard neoadjuvant radiotherapy (RT). Achieving a favorable pathologic response (FPR ≥ 95%) from RT is associated with improved patient outcome. Genomic adjusted radiation dose (GARD), a radiation-specific metric that quantifies the expected RT treatment effect as a function of tumor dose and genomics, proposed that STS is significantly underdosed. STS have significant radiomic heterogeneity, where radiomic habitats can delineate regions of intra-tumoral hypoxia and radioresistance. We designed a novel clinical trial, Habitat Escalated Adaptive Therapy (HEAT), utilizing radiomic habitats to identify areas of radioresistance within the tumor and targeting them with GARD-optimized doses, to improve FPR in high-grade STS. METHODS Phase 2 non-randomized single-arm clinical trial includes non-metastatic, resectable high-grade STS patients. Pre-treatment multiparametric MRIs (mpMRI) delineate three distinct intra-tumoral habitats based on apparent diffusion coefficient (ADC) and dynamic contrast enhanced (DCE) sequences. GARD estimates that simultaneous integrated boost (SIB) doses of 70 and 60 Gy in 25 fractions to the highest and intermediate radioresistant habitats, while the remaining volume receives standard 50 Gy, would lead to a > 3 fold FPR increase to 24%. Pre-treatment CT guided biopsies of each habitat along with clip placement will be performed for pathologic evaluation, future genomic studies, and response assessment. An mpMRI taken between weeks two and three of treatment will be used for biological plan adaptation to account for tumor response, in addition to an mpMRI after the completion of radiotherapy in addition to pathologic response, toxicity, radiomic response, disease control, and survival will be evaluated as secondary endpoints. Furthermore, liquid biopsy will be performed with mpMRI for future ancillary studies. DISCUSSION This is the first clinical trial to test a novel genomic-based RT dose optimization (GARD) and to utilize radiomic habitats to identify and target radioresistance regions, as a strategy to improve the outcome of RT-treated STS patients. Its success could usher in a new phase in radiation oncology, integrating genomic and radiomic insights into clinical practice and trial designs, and may reveal new radiomic and genomic biomarkers, refining personalized treatment strategies for STS. TRIAL REGISTRATION NCT05301283. TRIAL STATUS The trial started recruitment on March 17, 2022.
Collapse
Affiliation(s)
- Arash O Naghavi
- Department of Radiation Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA.
| | - J M Bryant
- Department of Radiation Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA
| | - Youngchul Kim
- Department of Bioinformatics and Biostatistics, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA
| | - Joseph Weygand
- Department of Radiation Oncology and Applied Sciences, Geisel School of Medicine, Dartmouth College, Hanover, NH, USA
| | - Gage Redler
- Department of Radiation Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA
| | - Austin J Sim
- Department of Radiation Oncology, James Cancer Hospital, The Ohio State University Comprehensive Cancer Center, Columbus, OH, USA
| | - Justin Miller
- Department of Radiation Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA
| | - Kaitlyn Coucoules
- Department of Radiation Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA
| | - Lauren Taylor Michael
- Clinical Trials Office, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA
| | - Warren E Gloria
- Department of Pathology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA
| | - George Yang
- Department of Radiation Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA
| | - Stephen A Rosenberg
- Department of Radiation Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA
| | - Kamran Ahmed
- Department of Radiation Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA
| | - Marilyn M Bui
- Department of Pathology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA
| | | | - Andrew Lee
- Department of Radiation Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA
| | - Caitlin D Lee
- Department of Radiation Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA
| | - Ricardo J Gonzalez
- Department of Sarcoma, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA
| | - Vladimir Feygelman
- Department of Radiation Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA
| | - Steven A Eschrich
- Department of Bioinformatics and Biostatistics, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA
| | - Jacob G Scott
- Translational Hematology and Oncology Research, Radiation Oncology Department, Cleveland Clinic, Cleveland, OH, USA
| | - Javier Torres-Roca
- Department of Radiation Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA
| | - Kujtim Latifi
- Department of Radiation Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA
| | - Nainesh Parikh
- Department of Diagnostic Imaging and Interventional Radiology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA
| | - James Costello
- Department of Diagnostic Imaging and Interventional Radiology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA
| |
Collapse
|
3
|
Chatziantoniou C, Schoot RA, van Ewijk R, van Rijn RR, ter Horst SAJ, Merks JHM, Leemans A, De Luca A. Methodological considerations on segmenting rhabdomyosarcoma with diffusion-weighted imaging-What can we do better? Insights Imaging 2023; 14:19. [PMID: 36720720 PMCID: PMC9889596 DOI: 10.1186/s13244-022-01351-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Accepted: 12/04/2022] [Indexed: 02/02/2023] Open
Abstract
PURPOSE Diffusion-weighted MRI is a promising technique to monitor response to treatment in pediatric rhabdomyosarcoma. However, its validation in clinical practice remains challenging. This study aims to investigate how the tumor segmentation strategy can affect the apparent diffusion coefficient (ADC) measured in pediatric rhabdomyosarcoma. MATERIALS AND METHODS A literature review was performed in PubMed using search terms relating to MRI and sarcomas to identify commonly applied segmentation strategies. Seventy-six articles were included, and their presented segmentation methods were evaluated. Commonly reported segmentation strategies were then evaluated on diffusion-weighted imaging of five pediatric rhabdomyosarcoma patients to assess their impact on ADC. RESULTS We found that studies applied different segmentation strategies to define the shape of the region of interest (ROI)(outline 60%, circular ROI 27%), to define the segmentation volume (2D 44%, multislice 9%, 3D 21%), and to define the segmentation area (excludes edge 7%, excludes other region 19%, specific area 27%, whole tumor 48%). In addition, details of the segmentation strategy are often unreported. When implementing and comparing these strategies on in-house data, we found that excluding necrotic, cystic, and hemorrhagic areas from segmentations resulted in on average 5.6% lower mean ADC. Additionally, the slice location used in 2D segmentation methods could affect ADC by as much as 66%. CONCLUSION Diffusion-weighted MRI studies in pediatric sarcoma currently employ a variety of segmentation methods. Our study shows that different segmentation strategies can result in vastly different ADC measurements, highlighting the importance to further investigate and standardize segmentation.
Collapse
Affiliation(s)
- Cyrano Chatziantoniou
- grid.7692.a0000000090126352Image Sciences Institute, UMC Utrecht, Utrecht, The Netherlands ,grid.487647.ePrincess Máxima Center for Pediatric Oncology, Utrecht, The Netherlands
| | - Reineke A. Schoot
- grid.487647.ePrincess Máxima Center for Pediatric Oncology, Utrecht, The Netherlands
| | - Roelof van Ewijk
- grid.487647.ePrincess Máxima Center for Pediatric Oncology, Utrecht, The Netherlands
| | - Rick R. van Rijn
- grid.7177.60000000084992262Department of Radiology and Nuclear Medicine, Amsterdam UMC Location University of Amsterdam, Amsterdam, The Netherlands
| | - Simone A. J. ter Horst
- grid.487647.ePrincess Máxima Center for Pediatric Oncology, Utrecht, The Netherlands ,grid.417100.30000 0004 0620 3132Department of Radiology and Nuclear Medicine, Wilhelmina Children’s Hospital UMC Utrecht, Utrecht, The Netherlands
| | - Johannes H. M. Merks
- grid.487647.ePrincess Máxima Center for Pediatric Oncology, Utrecht, The Netherlands
| | - Alexander Leemans
- grid.7692.a0000000090126352Image Sciences Institute, UMC Utrecht, Utrecht, The Netherlands
| | - Alberto De Luca
- grid.7692.a0000000090126352Image Sciences Institute, UMC Utrecht, Utrecht, The Netherlands ,grid.7692.a0000000090126352Department of Neurology, UMC Utrecht Brain Center, UMCUtrecht, Utrecht, The Netherlands
| |
Collapse
|
4
|
Waqar M, Van Houdt PJ, Hessen E, Li KL, Zhu X, Jackson A, Iqbal M, O’Connor J, Djoukhadar I, van der Heide UA, Coope DJ, Borst GR. Visualising spatial heterogeneity in glioblastoma using imaging habitats. Front Oncol 2022; 12:1037896. [PMID: 36505856 PMCID: PMC9731157 DOI: 10.3389/fonc.2022.1037896] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Accepted: 10/31/2022] [Indexed: 11/26/2022] Open
Abstract
Glioblastoma is a high-grade aggressive neoplasm characterised by significant intra-tumoral spatial heterogeneity. Personalising therapy for this tumour requires non-invasive tools to visualise its heterogeneity to monitor treatment response on a regional level. To date, efforts to characterise glioblastoma's imaging features and heterogeneity have focussed on individual imaging biomarkers, or high-throughput radiomic approaches that consider a vast number of imaging variables across the tumour as a whole. Habitat imaging is a novel approach to cancer imaging that identifies tumour regions or 'habitats' based on shared imaging characteristics, usually defined using multiple imaging biomarkers. Habitat imaging reflects the evolution of imaging biomarkers and offers spatially preserved assessment of tumour physiological processes such perfusion and cellularity. This allows for regional assessment of treatment response to facilitate personalised therapy. In this review, we explore different methodologies to derive imaging habitats in glioblastoma, strategies to overcome its technical challenges, contrast experiences to other cancers, and describe potential clinical applications.
Collapse
Affiliation(s)
- Mueez Waqar
- Department of Neurosurgery, Geoffrey Jefferson Brain Research Centre, Manchester Centre for Clinical Neurosciences, Northern Care Alliance NHS Foundation Trust, Manchester Academic Health Sciences Centre, Manchester, United Kingdom
- Division of Cancer Sciences, School of Medical Sciences, Faculty of Biology, Medicine and Health and Manchester Cancer Research Centre, University of Manchester, Manchester, United Kingdom
| | - Petra J. Van Houdt
- Department of Radiation Oncology, the Netherlands Cancer Institute, Amsterdam, Netherlands
| | - Eline Hessen
- Department of Radiation Oncology, the Netherlands Cancer Institute, Amsterdam, Netherlands
| | - Ka-Loh Li
- Division of Cancer Sciences, School of Medical Sciences, Faculty of Biology, Medicine and Health and Manchester Cancer Research Centre, University of Manchester, Manchester, United Kingdom
| | - Xiaoping Zhu
- Division of Cancer Sciences, School of Medical Sciences, Faculty of Biology, Medicine and Health and Manchester Cancer Research Centre, University of Manchester, Manchester, United Kingdom
| | - Alan Jackson
- Division of Cancer Sciences, School of Medical Sciences, Faculty of Biology, Medicine and Health and Manchester Cancer Research Centre, University of Manchester, Manchester, United Kingdom
- Department of Neuroradiology, Geoffrey Jefferson Brain Research Centre, Manchester Centre for Clinical Neurosciences, Northern Care Alliance NHS Foundation Trust, Manchester Academic Health Sciences Centre, Manchester, United Kingdom
| | - Mudassar Iqbal
- Division of Informatics, Imaging and Data Sciences, Faculty of Biology, Medicine and Health and Manchester Cancer Research Centre, University of Manchester, Manchester, United Kingdom
| | - James O’Connor
- Division of Cancer Sciences, School of Medical Sciences, Faculty of Biology, Medicine and Health and Manchester Cancer Research Centre, University of Manchester, Manchester, United Kingdom
- Department of Radiology, The Christie NHS Foundation Trust, Manchester, United Kingdom
| | - Ibrahim Djoukhadar
- Department of Neuroradiology, Geoffrey Jefferson Brain Research Centre, Manchester Centre for Clinical Neurosciences, Northern Care Alliance NHS Foundation Trust, Manchester Academic Health Sciences Centre, Manchester, United Kingdom
| | - Uulke A. van der Heide
- Department of Radiation Oncology, the Netherlands Cancer Institute, Amsterdam, Netherlands
| | - David J. Coope
- Department of Neurosurgery, Geoffrey Jefferson Brain Research Centre, Manchester Centre for Clinical Neurosciences, Northern Care Alliance NHS Foundation Trust, Manchester Academic Health Sciences Centre, Manchester, United Kingdom
- Division of Cancer Sciences, School of Medical Sciences, Faculty of Biology, Medicine and Health and Manchester Cancer Research Centre, University of Manchester, Manchester, United Kingdom
| | - Gerben R. Borst
- Division of Cancer Sciences, School of Medical Sciences, Faculty of Biology, Medicine and Health and Manchester Cancer Research Centre, University of Manchester, Manchester, United Kingdom
- Department of Clinical Oncology, The Christie NHS Foundation Trust, Manchester, United Kingdom
| |
Collapse
|
5
|
Raghunand N, Gatenby RA. Bridging Spatial Scales From Radiographic Images to Cellular and Molecular Properties in Cancers. Mol Imaging 2021. [DOI: 10.1016/b978-0-12-816386-3.00053-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
|
6
|
Cerdá Alberich L, Sangüesa Nebot C, Alberich-Bayarri A, Carot Sierra JM, Martínez de las Heras B, Veiga Canuto D, Cañete A, Martí-Bonmatí L. A Confidence Habitats Methodology in MR Quantitative Diffusion for the Classification of Neuroblastic Tumors. Cancers (Basel) 2020; 12:cancers12123858. [PMID: 33371218 PMCID: PMC7767170 DOI: 10.3390/cancers12123858] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Revised: 12/15/2020] [Accepted: 12/18/2020] [Indexed: 12/11/2022] Open
Abstract
Simple Summary There is growing interest in applying quantitative diffusion techniques to magnetic resonance imaging for cancer diagnosis and treatment. These measurements are used as a surrogate marker of tumor cellularity and aggressiveness, although there may be factors that introduce some bias to these approaches. Thus, we explored a novel methodology based on confidence habitats and voxel uncertainty to improve the power of the apparent diffusion coefficient to discriminate between benign and malignant neuroblastic tumor profiles in children. We were able to show this offered an improved sensitivity and negative predictive value relative to standard voxel-based methodologies. Abstract Background/Aim: In recent years, the apparent diffusion coefficient (ADC) has been used in many oncology applications as a surrogate marker of tumor cellularity and aggressiveness, although several factors may introduce bias when calculating this coefficient. The goal of this study was to develop a novel methodology (Fit-Cluster-Fit) based on confidence habitats that could be applied to quantitative diffusion-weighted magnetic resonance images (DWIs) to enhance the power of ADC values to discriminate between benign and malignant neuroblastic tumor profiles in children. Methods: Histogram analysis and clustering-based algorithms were applied to DWIs from 33 patients to perform tumor voxel discrimination into two classes. Voxel uncertainties were quantified and incorporated to obtain a more reproducible and meaningful estimate of ADC values within a tumor habitat. Computational experiments were performed by smearing the ADC values in order to obtain confidence maps that help identify and remove noise from low-quality voxels within high-signal clustered regions. The proposed Fit-Cluster-Fit methodology was compared with two other methods: conventional voxel-based and a cluster-based strategy. Results: The cluster-based and Fit-Cluster-Fit models successfully differentiated benign and malignant neuroblastic tumor profiles when using values from the lower ADC habitat. In particular, the best sensitivity (91%) and specificity (89%) of all the combinations and methods explored was achieved by removing uncertainties at a 70% confidence threshold, improving standard voxel-based sensitivity and negative predictive values by 4% and 10%, respectively. Conclusions: The Fit-Cluster-Fit method improves the performance of imaging biomarkers in classifying pediatric solid tumor cancers and it can probably be adapted to dynamic signal evaluation for any tumor.
Collapse
Affiliation(s)
- Leonor Cerdá Alberich
- Grupo de Investigación Biomédica en Imagen, Instituto de Investigación Sanitaria La Fe, Avenida Fernando Abril Martorell, 106 Torre A 7planta, 46026 Valencia, Spain;
- Correspondence: ; Tel.: +34-615224988
| | - Cinta Sangüesa Nebot
- Área Clínica de Imagen Médica, Hospital Universitario y Politécnico La Fe, Avenida Fernando Abril Martorell, 106 Torre A 7planta, 46026 Valencia, Spain; (C.S.N.); (D.V.C.)
| | - Angel Alberich-Bayarri
- Quantitative Imaging Biomarkers in Medicine, QUIBIM SL. Edificio Europa, Av. d’Aragó, 30, Planta 12, 46021 Valencia, Spain;
| | - José Miguel Carot Sierra
- Departamento de Estadística e Investigación Operativa Aplicadas y Calidad, Universitat Politècnica de València, Camí de Vera s/n, 46022 Valencia, Spain;
| | - Blanca Martínez de las Heras
- Unidad de Oncohematología Pediátrica, Hospital Universitario y Politécnico La Fe, Avenida Fernando Abril Martorell, 106 Torre A 7planta, 46026 Valencia, Spain; (B.M.d.l.H.); (A.C.)
| | - Diana Veiga Canuto
- Área Clínica de Imagen Médica, Hospital Universitario y Politécnico La Fe, Avenida Fernando Abril Martorell, 106 Torre A 7planta, 46026 Valencia, Spain; (C.S.N.); (D.V.C.)
| | - Adela Cañete
- Unidad de Oncohematología Pediátrica, Hospital Universitario y Politécnico La Fe, Avenida Fernando Abril Martorell, 106 Torre A 7planta, 46026 Valencia, Spain; (B.M.d.l.H.); (A.C.)
| | - Luis Martí-Bonmatí
- Grupo de Investigación Biomédica en Imagen, Instituto de Investigación Sanitaria La Fe, Avenida Fernando Abril Martorell, 106 Torre A 7planta, 46026 Valencia, Spain;
- Área Clínica de Imagen Médica, Hospital Universitario y Politécnico La Fe, Avenida Fernando Abril Martorell, 106 Torre A 7planta, 46026 Valencia, Spain; (C.S.N.); (D.V.C.)
| |
Collapse
|
7
|
McHugh DJ, Lipowska‐Bhalla G, Babur M, Watson Y, Peset I, Mistry HB, Hubbard Cristinacce PL, Naish JH, Honeychurch J, Williams KJ, O'Connor JPB, Parker GJM. Diffusion model comparison identifies distinct tumor sub-regions and tracks treatment response. Magn Reson Med 2020; 84:1250-1263. [PMID: 32057115 PMCID: PMC7317874 DOI: 10.1002/mrm.28196] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Revised: 01/13/2020] [Accepted: 01/13/2020] [Indexed: 12/11/2022]
Abstract
PURPOSE MRI biomarkers of tumor response to treatment are typically obtained from parameters derived from a model applied to pre-treatment and post-treatment data. However, as tumors are spatially and temporally heterogeneous, different models may be necessary in different tumor regions, and model suitability may change over time. This work evaluates how the suitability of two diffusion-weighted (DW) MRI models varies spatially within tumors at the voxel level and in response to radiotherapy, potentially allowing inference of qualitatively different tumor microenvironments. METHODS DW-MRI data were acquired in CT26 subcutaneous allografts before and after radiotherapy. Restricted and time-independent diffusion models were compared, with regions well-described by the former hypothesized to reflect cellular tissue, and those well-described by the latter expected to reflect necrosis or oedema. Technical and biological validation of the percentage of tissue described by the restricted diffusion microstructural model (termed %MM) was performed through simulations and histological comparison. RESULTS Spatial and radiotherapy-related variation in model suitability was observed. %MM decreased from a mean of 64% at baseline to 44% 6 days post-radiotherapy in the treated group. %MM correlated negatively with the percentage of necrosis from histology, but overestimated it due to noise. Within MM regions, microstructural parameters were sensitive to radiotherapy-induced changes. CONCLUSIONS There is spatial and radiotherapy-related variation in different models' suitability for describing diffusion in tumor tissue, suggesting the presence of different and changing tumor sub-regions. The biological and technical validation of the proposed %MM cancer imaging biomarker suggests it correlates with, but overestimates, the percentage of necrosis.
Collapse
Affiliation(s)
- Damien J. McHugh
- Quantitative Biomedical Imaging LaboratoryThe University of ManchesterManchesterUK
- Division of Cancer SciencesThe University of ManchesterManchesterUK
| | - Grazyna Lipowska‐Bhalla
- Quantitative Biomedical Imaging LaboratoryThe University of ManchesterManchesterUK
- Division of Cancer SciencesThe University of ManchesterManchesterUK
| | - Muhammad Babur
- Division of Pharmacy & OptometryThe University of ManchesterManchesterUK
| | - Yvonne Watson
- Quantitative Biomedical Imaging LaboratoryThe University of ManchesterManchesterUK
| | - Isabel Peset
- Imaging and Flow CytometryCancer Research UK Manchester InstituteManchesterUK
| | - Hitesh B. Mistry
- Division of Cancer SciencesThe University of ManchesterManchesterUK
| | | | - Josephine H. Naish
- Division of Cardiovascular SciencesThe University of ManchesterManchesterUK
- Bioxydyn Ltd.ManchesterUK
| | | | - Kaye J. Williams
- Division of Pharmacy & OptometryThe University of ManchesterManchesterUK
| | - James P. B. O'Connor
- Quantitative Biomedical Imaging LaboratoryThe University of ManchesterManchesterUK
- Division of Cancer SciencesThe University of ManchesterManchesterUK
| | - Geoffrey J. M. Parker
- Bioxydyn Ltd.ManchesterUK
- Division of Neuroscience and Experimental PsychologyThe University of ManchesterManchesterUK
- Centre for Medical Image ComputingUniversity College LondonLondonUK
| |
Collapse
|
8
|
An Automated Segmentation Pipeline for Intratumoural Regions in Animal Xenografts Using Machine Learning and Saturation Transfer MRI. Sci Rep 2020; 10:8063. [PMID: 32415137 PMCID: PMC7228927 DOI: 10.1038/s41598-020-64912-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Accepted: 04/24/2020] [Indexed: 11/16/2022] Open
Abstract
Saturation transfer MRI can be useful in the characterization of different tumour types. It is sensitive to tumour metabolism, microstructure, and microenvironment. This study aimed to use saturation transfer to differentiate between intratumoural regions, demarcate tumour boundaries, and reduce data acquisition times by identifying the imaging scheme with the most impact on segmentation accuracy. Saturation transfer-weighted images were acquired over a wide range of saturation amplitudes and frequency offsets along with T1 and T2 maps for 34 tumour xenografts in mice. Independent component analysis and Gaussian mixture modelling were used to segment the images and identify intratumoural regions. Comparison between the segmented regions and histopathology indicated five distinct clusters: three corresponding to intratumoural regions (active tumour, necrosis/apoptosis, and blood/edema) and two extratumoural (muscle and a mix of muscle and connective tissue). The fraction of tumour voxels segmented as necrosis/apoptosis quantitatively matched those calculated from TUNEL histopathological assays. An optimal protocol was identified providing reasonable qualitative agreement between MRI and histopathology and consisting of T1 and T2 maps and 22 magnetization transfer (MT)-weighted images. A three-image subset was identified that resulted in a greater than 90% match in positive and negative predictive value of tumour voxels compared to those found using the entire 24-image dataset. The proposed algorithm can potentially be used to develop a robust intratumoural segmentation method.
Collapse
|