1
|
Iqbal Z, Albuquerque K, Chan KL. Magnetic Resonance Spectroscopy for Cervical Cancer: Review and Potential Prognostic Applications. Cancers (Basel) 2024; 16:2141. [PMID: 38893260 PMCID: PMC11171343 DOI: 10.3390/cancers16112141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 05/28/2024] [Accepted: 06/04/2024] [Indexed: 06/21/2024] Open
Abstract
This review article investigates the utilization of MRS in the setting of cervical cancer. A variety of different techniques have been used in this space including single-voxel techniques such as point-resolved spectroscopy (PRESS) and stimulated echo acquisition mode spectroscopy (STEAM). Furthermore, the experimental parameters for these acquisitions including field strength, repetition times (TR), and echo times (TE) vary greatly. This study critically examines eleven MRS studies that focus on cervical cancer. Out of the eleven studies, ten studies utilized PRESS acquisition, while the remaining study used STEAM acquisition. These studies generally showed that the choline signal is altered in cervical cancer (4/11 studies), the lipid signal is generally increased in cervical cancer or the lipid distribution is changed (5/11 studies), and that diffusion-weighted imaging (DWI) can quantitatively detect lower apparent diffusion coefficient (ADC) values in cervical cancer (2/11 studies). Two studies also investigated the role of MRS for monitoring treatment response and demonstrated mixed results regarding choline signal, and one of these studies showed increased lipid signal for non-responders. There are several new MRS technologies that have yet to be implemented for cervical cancer including advanced spectroscopic imaging and artificial intelligence, and those technologies are also discussed in the article.
Collapse
Affiliation(s)
- Zohaib Iqbal
- Department of Radiation Oncology, UT Southwestern Medical Center, Dallas, TX 75235, USA;
| | - Kevin Albuquerque
- Department of Radiation Oncology, UT Southwestern Medical Center, Dallas, TX 75235, USA;
| | - Kimberly L. Chan
- Advanced Imaging Research Center, UT Southwestern Medical Center, Dallas, TX 75235, USA;
| |
Collapse
|
2
|
Ciulla S, Celli V, Aiello AA, Gigli S, Ninkova R, Miceli V, Ercolani G, Dolciami M, Ricci P, Palaia I, Catalano C, Manganaro L. Post treatment imaging in patients with local advanced cervical carcinoma. Front Oncol 2022; 12:1003930. [PMID: 36465360 PMCID: PMC9710522 DOI: 10.3389/fonc.2022.1003930] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Accepted: 09/26/2022] [Indexed: 10/29/2023] Open
Abstract
Cervical cancer (CC) is the fourth leading cause of death in women worldwide and despite the introduction of screening programs about 30% of patients presents advanced disease at diagnosis and 30-50% of them relapse in the first 5-years after treatment. According to FIGO staging system 2018, stage IB3-IVA are classified as locally advanced cervical cancer (LACC); its correct therapeutic choice remains still controversial and includes neoadjuvant chemo-radiotherapy, external beam radiotherapy, brachytherapy, hysterectomy or a combination of these modalities. In this review we focus on the most appropriated therapeutic options for LACC and imaging protocols used for its correct follow-up. We explore the imaging findings after radiotherapy and surgery and discuss the role of imaging in evaluating the response rate to treatment, selecting patients for salvage surgery and evaluating recurrence of disease. We also introduce and evaluate the advances of the emerging imaging techniques mainly represented by spectroscopy, PET-MRI, and radiomics which have improved diagnostic accuracy and are approaching to future direction.
Collapse
Affiliation(s)
- S Ciulla
- Department of Radiological, Oncological and Pathological Sciences, Sapienza, University of Rome, Rome, Italy
| | - V Celli
- Department of Radiological, Oncological and Pathological Sciences, Sapienza, University of Rome, Rome, Italy
| | - A A Aiello
- Department of Medical Sciences, University of Cagliari, Cagliari, Italy
| | - S Gigli
- Department of Radiological, Oncological and Pathological Sciences, Sapienza, University of Rome, Rome, Italy
| | - R Ninkova
- Department of Radiological, Oncological and Pathological Sciences, Sapienza, University of Rome, Rome, Italy
| | - V Miceli
- Department of Radiological, Oncological and Pathological Sciences, Sapienza, University of Rome, Rome, Italy
| | - G Ercolani
- Department of Radiological, Oncological and Pathological Sciences, Sapienza, University of Rome, Rome, Italy
| | - M Dolciami
- Department of Radiological, Oncological and Pathological Sciences, Sapienza, University of Rome, Rome, Italy
| | - P Ricci
- Department of Radiological, Oncological and Pathological Sciences, Sapienza, University of Rome, Rome, Italy
| | - I Palaia
- Department of Maternal and Child Health and Urological Sciences, Sapienza, University of Rome, Rome, Italy
| | - C Catalano
- Department of Radiological, Oncological and Pathological Sciences, Sapienza, University of Rome, Rome, Italy
| | - L Manganaro
- Department of Radiological, Oncological and Pathological Sciences, Sapienza, University of Rome, Rome, Italy
| |
Collapse
|
3
|
Dolciami M, Canese R, Testa C, Pernazza A, Santangelo G, Palaia I, Rocca CD, Catalano C, Manganaro L. The contribution of the 1H-MRS lipid signal to cervical cancer prognosis: a preliminary study. Eur Radiol Exp 2022; 6:47. [PMID: 36184731 PMCID: PMC9527268 DOI: 10.1186/s41747-022-00300-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Accepted: 08/02/2022] [Indexed: 12/24/2022] Open
Abstract
Background The aim of this study was to investigate the role of the lipid peak derived from 1H magnetic resonance (MR) spectroscopy in assessing cervical cancer prognosis, particularly in assessing response to neoadjuvant chemotherapy (NACT) of locally advanced cervical cancer (LACC). Methods We enrolled 17 patients with histologically proven cervical cancer who underwent 3-T MR imaging at baseline. In addition to conventional imaging sequences for pelvic assessment, the protocol included a single-voxel point-resolved spectroscopy (PRESS) sequence, with repetition time of 1,500 ms and echo times of 28 and 144 ms. Spectra were analysed using the LCModel fitting routine, thus extracting multiple metabolites, including lipids (Lip) and total choline (tCho). Patients with LACC were treated with NACT and reassessed by MRI at term. Based on tumour volume reduction, patients were classified as good responder (GR; tumour volume reduction > 50%) and poor responder or nonresponder (PR-or-NR; tumour volume reduction ≤ 50%). Results Of 17 patients, 11 were LACC. Of these 11, only 6 had both completed NACT and had good-quality 1H-MR spectra; 3 GR and 3 PR-or-NR. A significant difference in lipid values was observed in the two groups of patients, particularly with higher Lip values and higher Lip/tCho ratio in PR-NR patients (p =0.040). A significant difference was also observed in choline distribution (tCho), with higher values in GR patients (p = 0.040). Conclusions Assessment of lipid peak at 1H-MR spectroscopy could be an additional quantitative parameter in predicting the response to NACT in patients with LACC. Supplementary Information The online version contains supplementary material available at 10.1186/s41747-022-00300-1.
Collapse
Affiliation(s)
- Miriam Dolciami
- Department of Radiological, Oncological and Pathological Sciences, Policlinico Umberto I, Sapienza University of Rome, Rome, Italy
| | - Rossella Canese
- Core Facilities, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161, Rome, Italy.
| | - Claudia Testa
- Department of Physics and Astronomy, University of Bologna, Bologna, Italy
| | - Angelina Pernazza
- Department of Radiological, Oncological and Pathological Sciences, Policlinico Umberto I, Sapienza University of Rome, Rome, Italy
| | - Giusi Santangelo
- Department of Maternal and Child Health and Urological Sciences, Umberto I Hospital, "Sapienza" University of Rome, Rome, Italy
| | - Innocenza Palaia
- Department of Maternal and Child Health and Urological Sciences, Umberto I Hospital, "Sapienza" University of Rome, Rome, Italy
| | - Carlo Della Rocca
- Department of Radiological, Oncological and Pathological Sciences, Policlinico Umberto I, Sapienza University of Rome, Rome, Italy
| | - Carlo Catalano
- Department of Radiological, Oncological and Pathological Sciences, Policlinico Umberto I, Sapienza University of Rome, Rome, Italy
| | - Lucia Manganaro
- Department of Radiological, Oncological and Pathological Sciences, Policlinico Umberto I, Sapienza University of Rome, Rome, Italy
| |
Collapse
|
4
|
Erturk MA, Li X, Van de Moortele PF, Ugurbil K, Metzger GJ. Evolution of UHF Body Imaging in the Human Torso at 7T: Technology, Applications, and Future Directions. Top Magn Reson Imaging 2019; 28:101-124. [PMID: 31188271 PMCID: PMC6587233 DOI: 10.1097/rmr.0000000000000202] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/13/2023]
Abstract
The potential value of ultrahigh field (UHF) magnetic resonance imaging (MRI) and spectroscopy to biomedical research and in clinical applications drives the development of technologies to overcome its many challenges. The increased difficulties of imaging the human torso compared with the head include its overall size, the dimensions and location of its anatomic targets, the increased prevalence and magnitude of physiologic effects, the limited availability of tailored RF coils, and the necessary transmit chain hardware. Tackling these issues involves addressing notoriously inhomogeneous transmit B1 (B1) fields, limitations in peak B1, larger spatial variations of the static magnetic field B0, and patient safety issues related to implants and local RF power deposition. However, as research institutions and vendors continue to innovate, the potential gains are beginning to be realized. Solutions overcoming the unique challenges associated with imaging the human torso are reviewed as are current studies capitalizing on the benefits of UHF in several anatomies and applications. As the field progresses, strategies associated with the RF system architecture, calibration methods, RF pulse optimization, and power monitoring need to be further integrated into the MRI systems making what are currently complex processes more streamlined. Meanwhile, the UHF MRI community must seize the opportunity to build upon what have been so far proof of principle and feasibility studies and begin to further explore the true impact in both research and the clinic.
Collapse
Affiliation(s)
- M Arcan Erturk
- Center for Magnetic Resonance Research, University of Minnesota, Minneapolis, MN
| | | | | | | | | |
Collapse
|