1
|
Dudka I, Lundquist K, Wikström P, Bergh A, Gröbner G. Metabolomic profiles of intact tissues reflect clinically relevant prostate cancer subtypes. J Transl Med 2023; 21:860. [PMID: 38012666 PMCID: PMC10683247 DOI: 10.1186/s12967-023-04747-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Accepted: 11/21/2023] [Indexed: 11/29/2023] Open
Abstract
BACKGROUND Prostate cancer (PC) is a heterogenous multifocal disease ranging from indolent to lethal states. For improved treatment-stratification, reliable approaches are needed to faithfully differentiate between high- and low-risk tumors and to predict therapy response at diagnosis. METHODS A metabolomic approach based on high resolution magic angle spinning nuclear magnetic resonance (HR MAS NMR) analysis was applied on intact biopsies samples (n = 111) obtained from patients (n = 31) treated by prostatectomy, and combined with advanced multi- and univariate statistical analysis methods to identify metabolomic profiles reflecting tumor differentiation (Gleason scores and the International Society of Urological Pathology (ISUP) grade) and subtypes based on tumor immunoreactivity for Ki67 (cell proliferation) and prostate specific antigen (PSA, marker for androgen receptor activity). RESULTS Validated metabolic profiles were obtained that clearly distinguished cancer tissues from benign prostate tissues. Subsequently, metabolic signatures were identified that further divided cancer tissues into two clinically relevant groups, namely ISUP Grade 2 (n = 29) and ISUP Grade 3 (n = 17) tumors. Furthermore, metabolic profiles associated with different tumor subtypes were identified. Tumors with low Ki67 and high PSA (subtype A, n = 21) displayed metabolite patterns significantly different from tumors with high Ki67 and low PSA (subtype B, n = 28). In total, seven metabolites; choline, peak for combined phosphocholine/glycerophosphocholine metabolites (PC + GPC), glycine, creatine, combined signal of glutamate/glutamine (Glx), taurine and lactate, showed significant alterations between PC subtypes A and B. CONCLUSIONS The metabolic profiles of intact biopsies obtained by our non-invasive HR MAS NMR approach together with advanced chemometric tools reliably identified PC and specifically differentiated highly aggressive tumors from less aggressive ones. Thus, this approach has proven the potential of exploiting cancer-specific metabolites in clinical settings for obtaining personalized treatment strategies in PC.
Collapse
Affiliation(s)
- Ilona Dudka
- Department of Chemistry, Umeå University, Umeå, Sweden
| | | | - Pernilla Wikström
- Department of Medical Biosciences, Pathology, Umeå University, Umeå, Sweden.
| | - Anders Bergh
- Department of Medical Biosciences, Pathology, Umeå University, Umeå, Sweden
| | | |
Collapse
|
2
|
Li X, Li C, Chen M. Patients With "Gray Zone" PSA Levels: Application of Prostate MRI and MRS in the Diagnosis of Prostate Cancer. J Magn Reson Imaging 2023; 57:992-1010. [PMID: 36326563 DOI: 10.1002/jmri.28505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 10/13/2022] [Accepted: 10/14/2022] [Indexed: 11/06/2022] Open
Abstract
Improving the detection rates of prostate cancer (PCa) and avoiding unnecessary prostate biopsies in men with prostate-specific antigen (PSA) levels within the gray zone require urgent attention. In this context, rapid advances in MR technology in recent years may offer a promising possibility. A systematic review to evaluate the applications of magnetic resonance imaging (MRI) and magnetic resonance spectroscopy (MRS) in detecting PCa and clinically significant PCa (csPCa) in men with PSA levels within the gray zone. The study type is defined as systematic review. In July 2022, out of 229 studies identified by the database search and from other sources, 23 articles related to the selected topic of interest were included in this review. No field strength or sequence restrictions. The data including the study population, study characteristics, as well as basic MRI characteristics, from the final studies included in this review, were extracted independently by two reviewers. The major results of the original study were summarized and no additional statistical analysis was performed. Among the 23 studies included in this review, 17 focused on the applications of MRS and MRI for the prebiopsy diagnosis of PCa. Nine of these 17 articles used Prostate Imaging Reporting and Data System (PI-RADS) score to interpret MRI results, thereby confirming the practicality of the PI-RADS score in predicting PCa and csPCa. The remaining six articles evaluated the applications of MRI and MRS in guiding prostate biopsy. Although there was a variation in the biopsy modalities used in these studies, both MRI- and MRS-guided prostate biopsies were observed to improve the detection rates of PCa and csPCa in patients with PSA levels within the gray zone. MRS and MRI showed good performance in the detection of PCa and csPCa before biopsy. In addition, MRS- or MRI-guided prostate-targeted biopsies were able to improve the detection rates of PCa and csPCa. EVIDENCE LEVEL: 3 TECHNICAL EFFICACY: Stage 2.
Collapse
Affiliation(s)
- Xue Li
- Department of Radiology, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, China.,Graduate School of Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| | - Chunmei Li
- Department of Radiology, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, China.,Graduate School of Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| | - Min Chen
- Department of Radiology, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, China.,Graduate School of Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| |
Collapse
|
3
|
Tressler CM, Ayyappan V, Nakuchima S, Yang E, Sonkar K, Tan Z, Glunde K. A multimodal pipeline using NMR spectroscopy and MALDI-TOF mass spectrometry imaging from the same tissue sample. NMR IN BIOMEDICINE 2023; 36:e4770. [PMID: 35538020 PMCID: PMC9867920 DOI: 10.1002/nbm.4770] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/06/2021] [Revised: 05/05/2022] [Accepted: 05/07/2022] [Indexed: 06/14/2023]
Abstract
NMR spectroscopy and matrix assisted laser desorption ionization mass spectrometry imaging (MALDI MSI) are both commonly used to detect large numbers of metabolites and lipids in metabolomic and lipidomic studies. We have demonstrated a new workflow, highlighting the benefits of both techniques to obtain metabolomic and lipidomic data, which has realized for the first time the combination of these two complementary and powerful technologies. NMR spectroscopy is frequently used to obtain quantitative metabolite information from cells and tissues. Lipid detection is also possible with NMR spectroscopy, with changes being visible across entire classes of molecules. Meanwhile, MALDI MSI provides relative measures of metabolite and lipid concentrations, mapping spatial information of many specific metabolite and lipid molecules across cells or tissues. We have used these two complementary techniques in combination to obtain metabolomic and lipidomic measurements from triple-negative human breast cancer cells and tumor xenograft models. We have emphasized critical experimental procedures that ensured the success of achieving NMR spectroscopy and MALDI MSI in a combined workflow from the same sample. Our data show that several phospholipid metabolite species were differentially distributed in viable and necrotic regions of breast tumor xenografts. This study emphasizes the power of combined NMR spectroscopy-MALDI imaging to advance metabolomic and lipidomic studies.
Collapse
Affiliation(s)
- Caitlin M. Tressler
- The Russell H. Morgan Department of Radiology and Radiological Science, Division of Cancer Imaging Research, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Vinay Ayyappan
- The Russell H. Morgan Department of Radiology and Radiological Science, Division of Cancer Imaging Research, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Sofia Nakuchima
- The Russell H. Morgan Department of Radiology and Radiological Science, Division of Cancer Imaging Research, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Ethan Yang
- The Russell H. Morgan Department of Radiology and Radiological Science, Division of Cancer Imaging Research, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Kanchan Sonkar
- The Russell H. Morgan Department of Radiology and Radiological Science, Division of Cancer Imaging Research, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Zheqiong Tan
- The Russell H. Morgan Department of Radiology and Radiological Science, Division of Cancer Imaging Research, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Kristine Glunde
- The Russell H. Morgan Department of Radiology and Radiological Science, Division of Cancer Imaging Research, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
- Department of Biological Chemistry, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
- The Sidney Kimmel Comprehensive Cancer Center, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| |
Collapse
|
4
|
Cheng LL. High-resolution magic angle spinning NMR for intact biological specimen analysis: Initial discovery, recent developments, and future directions. NMR IN BIOMEDICINE 2023; 36:e4684. [PMID: 34962004 DOI: 10.1002/nbm.4684] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Revised: 12/15/2021] [Accepted: 12/20/2021] [Indexed: 06/14/2023]
Abstract
High-resolution magic angle spinning (HRMAS) NMR, an approach for intact biological material analysis discovered more than 25 years ago, has been advanced by many technical developments and applied to many biomedical uses. This article provides a history of its discovery, first by explaining the key scientific advances that paved the way for HRMAS NMR's invention, and then by turning to recent developments that have profited from applying and advancing the technique during the last 5 years. Developments aimed at directly impacting healthcare include HRMAS NMR metabolomics applications within studies of human disease states such as cancers, brain diseases, metabolic diseases, transplantation medicine, and adiposity. Here, the discussion describes recent HRMAS NMR metabolomics studies of breast cancer and prostate cancer, as well as of matching tissues with biofluids, multimodality studies, and mechanistic investigations, all conducted to better understand disease metabolic characteristics for diagnosis, opportune windows for treatment, and prognostication. In addition, HRMAS NMR metabolomics studies of plants, foods, and cell structures, along with longitudinal cell studies, are reviewed and discussed. Finally, inspired by the technique's history of discoveries and recent successes, future biomedical arenas that stand to benefit from HRMAS NMR-initiated scientific investigations are presented.
Collapse
Affiliation(s)
- Leo L Cheng
- Departments of Radiology and Pathology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
5
|
Penet MF, Sharma RK, Bharti S, Mori N, Artemov D, Bhujwalla ZM. Cancer insights from magnetic resonance spectroscopy of cells and excised tumors. NMR IN BIOMEDICINE 2023; 36:e4724. [PMID: 35262263 PMCID: PMC9458776 DOI: 10.1002/nbm.4724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 03/03/2022] [Accepted: 03/04/2022] [Indexed: 06/14/2023]
Abstract
Multinuclear ex vivo magnetic resonance spectroscopy (MRS) of cancer cells, xenografts, human cancer tissue, and biofluids is a rapidly expanding field that is providing unique insights into cancer. Starting from the 1970s, the field has continued to evolve as a stand-alone technology or as a complement to in vivo MRS to characterize the metabolome of cancer cells, cancer-associated stromal cells, immune cells, tumors, biofluids and, more recently, changes in the metabolome of organs induced by cancers. Here, we review some of the insights into cancer obtained with ex vivo MRS and provide a perspective of future directions. Ex vivo MRS of cells and tumors provides opportunities to understand the role of metabolism in cancer immune surveillance and immunotherapy. With advances in computational capabilities, the integration of artificial intelligence to identify differences in multinuclear spectral patterns, especially in easily accessible biofluids, is providing exciting advances in detection and monitoring response to treatment. Metabolotheranostics to target cancers and to normalize metabolic changes in organs induced by cancers to prevent cancer-induced morbidity are other areas of future development.
Collapse
Affiliation(s)
- Marie-France Penet
- Division of Cancer Imaging Research, The Russell H. Morgan Department of Radiology and Radiological Science, Baltimore, Maryland, USA
- Sidney Kimmel Comprehensive Cancer Center, Baltimore, Maryland, USA
| | - Raj Kumar Sharma
- Division of Cancer Imaging Research, The Russell H. Morgan Department of Radiology and Radiological Science, Baltimore, Maryland, USA
| | - Santosh Bharti
- Division of Cancer Imaging Research, The Russell H. Morgan Department of Radiology and Radiological Science, Baltimore, Maryland, USA
| | - Noriko Mori
- Division of Cancer Imaging Research, The Russell H. Morgan Department of Radiology and Radiological Science, Baltimore, Maryland, USA
| | - Dmitri Artemov
- Division of Cancer Imaging Research, The Russell H. Morgan Department of Radiology and Radiological Science, Baltimore, Maryland, USA
- Sidney Kimmel Comprehensive Cancer Center, Baltimore, Maryland, USA
| | - Zaver M. Bhujwalla
- Division of Cancer Imaging Research, The Russell H. Morgan Department of Radiology and Radiological Science, Baltimore, Maryland, USA
- Sidney Kimmel Comprehensive Cancer Center, Baltimore, Maryland, USA
- Department of Radiation Oncology and Molecular Radiation Sciences, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| |
Collapse
|
6
|
Abstract
Nuclear Magnetic Resonance (NMR) spectroscopy is one of the two major analytical platforms in the field of metabolomics, the other being mass spectrometry (MS). NMR is less sensitive than MS and hence it detects a relatively small number of metabolites. However, NMR exhibits numerous unique characteristics including its high reproducibility and non-destructive nature, its ability to identify unknown metabolites definitively, and its capabilities to obtain absolute concentrations of all detected metabolites, sometimes even without an internal standard. These characteristics outweigh the relatively low sensitivity and resolution of NMR in metabolomics applications. Since biological mixtures are highly complex, increased demand for new methods to improve detection, better identify unknown metabolites, and provide more accurate quantitation continues unabated. Technological and methodological advances to date have helped to improve the resolution and sensitivity and detection of a larger number of metabolite signals. Efforts focused on measuring unknown metabolite signals have resulted in the identification and quantitation of an expanded pool of metabolites including labile metabolites such as cellular redox coenzymes, energy coenzymes, and antioxidants. This chapter describes quantitative NMR methods in metabolomics with an emphasis on recent methodological developments, while highlighting the benefits and challenges of NMR-based metabolomics.
Collapse
Affiliation(s)
- G A Nagana Gowda
- Northwest Metabolomics Research Center, University of Washington, Seattle, WA, USA.
- Mitochondria and Metabolism Center, Anesthesiology and Pain Medicine, University of Washington, Seattle, WA, USA.
| | - Daniel Raftery
- Northwest Metabolomics Research Center, University of Washington, Seattle, WA, USA.
- Mitochondria and Metabolism Center, Anesthesiology and Pain Medicine, University of Washington, Seattle, WA, USA.
- Fred Hutchinson Cancer Research Center, Seattle, WA, USA.
| |
Collapse
|
7
|
Sanchez-Dahl Gonzalez M, Muti IH, Cheng LL. High resolution magic angle spinning MRS in prostate cancer. MAGMA (NEW YORK, N.Y.) 2022; 35:695-705. [PMID: 35318537 DOI: 10.1007/s10334-022-01005-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Revised: 02/15/2022] [Accepted: 02/21/2022] [Indexed: 06/14/2023]
Abstract
INTRODUCTION Prostate cancer (PCa) is one of the leading causes of death among men worldwide. The current methods utilized to screen for prostate cancer may not have sufficient sensitivity in distinguishing aggressive from indolent diseases, which affect the quality of life of patients in the short and long term. The overdiagnosis of cases and overtreatment are prevalent due to the heterogeneity of the disease in terms of latent and progressive variants, as well as in the tissue types present in biopsy samples. METHODS The purpose of this review is to discuss the potential clinical benefits of incorporating high-resolution magic angle spinning (HRMAS) magnetic resonance spectroscopy (MRS) modalities to overcome the current challenges in the diagnosis, prognostication, and monitoring of PCa.
Collapse
Affiliation(s)
| | - Isabella H Muti
- Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Leo L Cheng
- Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
8
|
New Advances in Tissue Metabolomics: A Review. Metabolites 2021; 11:metabo11100672. [PMID: 34677387 PMCID: PMC8541552 DOI: 10.3390/metabo11100672] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2021] [Revised: 09/21/2021] [Accepted: 09/28/2021] [Indexed: 12/20/2022] Open
Abstract
Metabolomics offers a hypothesis-generating approach for biomarker discovery in clinical medicine while also providing better understanding of the underlying mechanisms of chronic diseases. Clinical metabolomic studies largely rely on human biofluids (e.g., plasma, urine) as a more convenient specimen type for investigation. However, biofluids are non-organ specific reflecting complex biochemical processes throughout the body, which may complicate biochemical interpretations. For these reasons, tissue metabolomic studies enable deeper insights into aberrant metabolism occurring at the direct site of disease pathogenesis. This review highlights new advances in metabolomics for ex vivo analysis, as well as in situ imaging of tissue specimens, including diverse tissue types from animal models and human participants. Moreover, we discuss key pre-analytical and post-analytical challenges in tissue metabolomics for robust biomarker discovery with a focus on new methodological advances introduced over the past six years, including innovative clinical applications for improved screening, diagnostic testing, and therapeutic interventions for cancer.
Collapse
|
9
|
Lucas-Torres C, Roumes H, Bouchaud V, Bouzier-Sore AK, Wong A. Metabolic NMR mapping with microgram tissue biopsy. NMR IN BIOMEDICINE 2021; 34:e4477. [PMID: 33491269 DOI: 10.1002/nbm.4477] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 12/08/2020] [Accepted: 12/31/2020] [Indexed: 06/12/2023]
Abstract
This study explores the potential of profiling a microgram-scale soft tissue biopsy by NMR spectroscopy. The important elements of high resolution and high sensitivity for the spectral data are achieved through a unique probe, HR-μMAS, which allowed comprehensive profiling to be performed on microgram tissue for the first time under MAS conditions. Thorough spatially resolved metabolic maps were acquired across a coronal brain slice of rat C6 gliomas, which rendered the delineation of the tumor lesion. The results present a unique ex vivo NMR possibility to analyze tissue pathology that cannot be fully explored by the conventional approach, HR-MAS and in vivo MRS. Aside from the capability of analyzing a small localized region to track its specific metabolism, it could also offer the possibility to carry out longitudinal investigations on live animals due to the feasibility of minimally invasive tissue excision.
Collapse
Affiliation(s)
| | - Hélène Roumes
- Centre de Résonance Magnétique des Systèmes Biologiques, CNRS-Université de Bordeaux, UMR5536, Bordeaux, France
| | - Véronique Bouchaud
- Centre de Résonance Magnétique des Systèmes Biologiques, CNRS-Université de Bordeaux, UMR5536, Bordeaux, France
| | - Anne-Karine Bouzier-Sore
- Centre de Résonance Magnétique des Systèmes Biologiques, CNRS-Université de Bordeaux, UMR5536, Bordeaux, France
| | - Alan Wong
- NIMBE, CEA, CNRS, Université Paris-Saclay, CEA Saclay, Gif-sur-Yvette, France
| |
Collapse
|
10
|
Understanding metabolomic characteristics of pancreatic ductal adenocarcinoma by HR-MAS NMR detection of pancreatic tissues. J Pharm Biomed Anal 2020; 190:113546. [DOI: 10.1016/j.jpba.2020.113546] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Revised: 08/07/2020] [Accepted: 08/08/2020] [Indexed: 12/13/2022]
|
11
|
|
12
|
Cheng LL. Response to re: Metabolomic prostate cancer fields in HRMAS MRS-profiled histologically benign tissue vary with cancer status and distance from cancer. Dinges et al., NBM 2019. NMR IN BIOMEDICINE 2019; 32:e4120. [PMID: 31172612 DOI: 10.1002/nbm.4120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Accepted: 04/30/2019] [Indexed: 06/09/2023]
Affiliation(s)
- Leo L Cheng
- Massachusetts General Hospital, Harvard Medical School, 149, 13th Street, Rm 4227, Charlestown, MA, U.S.A
| |
Collapse
|
13
|
Bourne R. Re: Metabolomic prostate cancer fields in HRMAS MRS-profiled histologically benign tissue vary with cancer status and distance from cancer. Dinges et al, NBM 2019. NMR IN BIOMEDICINE 2019; 32:e4121. [PMID: 31184774 DOI: 10.1002/nbm.4121] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2019] [Revised: 03/17/2019] [Accepted: 03/18/2019] [Indexed: 06/09/2023]
|