Rodin VV. NMR techniques in studying water in biotechnological systems.
Biophys Rev 2020;
12:683-701. [PMID:
32557162 PMCID:
PMC7311624 DOI:
10.1007/s12551-020-00694-5]
[Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2020] [Accepted: 04/16/2020] [Indexed: 02/07/2023] Open
Abstract
Different NMR methodologies have been considered in studying water as a part of the structure of heterogeneous biosystems. The current work mostly describes NMR techniques to investigate slow translational dynamics of molecules affecting anisotropic properties of polymers and biomaterials. With these approaches, information about organized structures and their stability could be obtained in conditions when external factors affect biomolecules. Such changes might include rearrangement of macromolecular conformations at fabrication of nano-scaffolds for tissue engineering applications. The changes in water-fiber interactions could be mirrored by the magnetic resonance methods in various relaxations, double-quantum filtered (DQF), 1D and 2D translational diffusion experiments. These findings effectively demonstrate the current state of NMR studies in applying these experiments to the various systems with the anisotropic properties. For fibrous materials, it is shown how NMR correlation experiments with two gradients (orthogonal or collinear) encode diffusion coefficients in anisotropic materials and how to estimate the permeability of cell walls. It is considered how the DQF NMR technique discovers anisotropic water in natural polymers with various cross-links. The findings clarify hydration sites, dynamic properties, and binding of macromolecules discovering the role of specific states in improving scaffold characteristics in tissue engineering processes. Showing the results in developing these NMR tools, this review focuses on the ways of extracting information about biophysical properties of biomaterials from the NMR data obtained.
Collapse