1
|
Huang J, Chan KWY. Editorial for "Multi-Parametric MRI for Evaluating Variations in Renal Structure, Function, and Endogenous Metabolites in an Animal Model With Acute Kidney Injury Induced by Ischemia Reperfusion". J Magn Reson Imaging 2024; 60:256-257. [PMID: 37881885 DOI: 10.1002/jmri.29096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Accepted: 09/26/2023] [Indexed: 10/27/2023] Open
Affiliation(s)
- Jianpan Huang
- Department of Diagnostic Radiology, The University of Hong Kong, Hong Kong, China
- Hong Kong Centre for Cerebro-Cardiovascular Health Engineering, Hong Kong, China
| | - Kannie W Y Chan
- Hong Kong Centre for Cerebro-Cardiovascular Health Engineering, Hong Kong, China
- Department of Biomedical Engineering, City University of Hong Kong, Hong Kong, China
- Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
- Tung Biomedical Science Centre, City University of Hong Kong, Hong Kong, China
- City University of Hong Kong Shenzhen Research Institute, Shenzhen, China
| |
Collapse
|
2
|
Tao Q, Zhang Q, An Z, Chen Z, Feng Y. Multi-Parametric MRI for Evaluating Variations in Renal Structure, Function, and Endogenous Metabolites in an Animal Model With Acute Kidney Injury Induced by Ischemia Reperfusion. J Magn Reson Imaging 2024; 60:245-255. [PMID: 37881827 DOI: 10.1002/jmri.29094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2023] [Revised: 10/12/2023] [Accepted: 10/12/2023] [Indexed: 10/27/2023] Open
Abstract
BACKGROUND Ischemia reperfusion injury (IRI)-induced acute kidney injury (AKI) may occur after renal ischemic injury. There is a lack of an accurate and comprehensive detection technique for IRI-AKI. PURPOSE To longitudinally evaluate IRI-AKI in rats by renal structure, function, and metabolites using multi-parametric MRI (mpMRI). STUDY TYPE Prospective. ANIMAL MODEL Forty-eight rats undergoing IRI-AKI. FIELD STRENGTH/SEQUENCE 7-T, T1 mapping, and arterial spin labeling (ASL): echo planar imaging (EPI) sequence; blood oxygen level-dependent (BOLD): gradient recalled echo (GRE) sequence; T2 mapping, quantitative magnetization transfer (qMT), and chemical exchange saturation transfer (CEST): rapid acquisition with relaxation enhancement (RARE) sequence. ASSESSMENT The mpMRI for IRI-AKI was conducted at 0 (control), 1, 3, 7, 14, and 28 days, all included eight rats. The longitudinal mpMRI signal of manually outlined cortex, outer stripe of the outer medulla (OSOM), inner stripe of the outer medulla, and medulla plus pelvis were calculated and compared, their diagnosis performance for IRI-AKI also been evaluated. STATISTICAL TESTS Pearson correlations analysis for correlation between mpMRI signal and renal injury, unpaired t-tests for comparing the signal changes, and receiver operating characteristics (ROC) analysis was used to identify most sensitive indicator of mpMRI. A P-value <0.05 was considered statistically significant. RESULTS Compared with control kidneys, the T1 and T2 values of the cortex and medulla in IRI kidneys increased and reached their highest values on day 14, and the kidneys also showed the most severe edema and segments blurred. The RBF in the cortex and OSOM showed a significant decline after day 3. The BOLD signal in the OSOM largest increased on day 28. The cortical PSR and the amine-CEST both decreased with IRI-AKI progression, and amine-CEST achieved the highest AUC for the diagnosis (0.899). DATA CONCLUSION Multi-parametric MRI may show comprehensive variations in IRI-AKI, and amine-CEST may exhibit the highest accuracy for diagnosis of IRI-AKI. LEVEL OF EVIDENCE 1 TECHNICAL EFFICACY: Stage 2.
Collapse
Affiliation(s)
- Quan Tao
- Department of Rehabilitation Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Medical Image Processing, Southern Medical University, Guangzhou, China
- Guangdong Provincial Engineering Laboratory for Medical Imaging and Diagnostic Technology, Southern Medical University, Guangzhou, China
| | - Qianqian Zhang
- Guangdong Provincial Key Laboratory of Medical Image Processing, Southern Medical University, Guangzhou, China
- Guangdong Provincial Engineering Laboratory for Medical Imaging and Diagnostic Technology, Southern Medical University, Guangzhou, China
- School of Biomedical Engineering, Southern Medical University, Guangzhou, China
| | - Ziqi An
- Guangdong Provincial Key Laboratory of Medical Image Processing, Southern Medical University, Guangzhou, China
- Guangdong Provincial Engineering Laboratory for Medical Imaging and Diagnostic Technology, Southern Medical University, Guangzhou, China
- School of Biomedical Engineering, Southern Medical University, Guangzhou, China
| | - Zelong Chen
- Medical Imaging Center, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Yanqiu Feng
- Department of Rehabilitation Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Medical Image Processing, Southern Medical University, Guangzhou, China
- Guangdong Provincial Engineering Laboratory for Medical Imaging and Diagnostic Technology, Southern Medical University, Guangzhou, China
- School of Biomedical Engineering, Southern Medical University, Guangzhou, China
| |
Collapse
|
3
|
Bane O, Lewis SC, Lim RP, Carney BW, Shah A, Fananapazir G. Contemporary and Emerging MRI Strategies for Assessing Kidney Allograft Complications: Arterial Stenosis and Parenchymal Injury, From the AJR Special Series on Imaging of Fibrosis. AJR Am J Roentgenol 2024; 222:e2329418. [PMID: 37315018 PMCID: PMC11006565 DOI: 10.2214/ajr.23.29418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
MRI plays an important role in the evaluation of kidney allografts for vascular complications as well as parenchymal insults. Transplant renal artery stenosis, the most common vascular complication of kidney transplant, can be evaluated by MRA using gadolinium and nongadolinium contrast agents as well as by unenhanced MRA techniques. Parenchymal injury occurs through a variety of pathways, including graft rejection, acute tubular injury, BK polyomavirus infection, drug-induced interstitial nephritis, and pyelonephritis. Investigational MRI techniques have sought to differentiate among these causes of dysfunction as well as to assess the degree of interstitial fibrosis or tubular atrophy (IFTA)-the common end pathway for all of these processes-which is currently evaluated by invasively obtained core biopsies. Some of these MRI sequences have shown promise in not only assessing the cause of parenchymal injury but also assessing IFTA noninvasively. This review describes current clinically used MRI techniques and previews promising investigational MRI techniques for assessing complications of kidney grafts.
Collapse
Affiliation(s)
- Octavia Bane
- Department of Radiology, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Sara C Lewis
- Department of Radiology, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Ruth P Lim
- Department of Radiology and Department of Surgery, University of Melbourne, Austin Health, Melbourne, Australia
| | - Benjamin W Carney
- Department of Radiology, University of California Davis Medical Center, 4860 Y St, Ste 3100, Sacramento, CA 95816
| | - Amar Shah
- Department of Radiology, Mayo Clinic Arizona, Phoenix, AZ
| | - Ghaneh Fananapazir
- Department of Radiology, University of California Davis Medical Center, 4860 Y St, Ste 3100, Sacramento, CA 95816
| |
Collapse
|
4
|
Abstract
As a sign of chronic kidney disease (CKD) progression, renal fibrosis is an irreversible and alarming pathological change. The accurate diagnosis of renal fibrosis depends on the widely used renal biopsy, but this diagnostic modality is invasive and can easily lead to sampling error. With the development of imaging techniques, an increasing number of noninvasive imaging techniques, such as multipara meter magnetic resonance imaging (MRI) and ultrasound elastography, have gained attention in assessing kidney fibrosis. Depending on their ability to detect changes in tissue stiffness and diffusion of water molecules, ultrasound elastography and some MRI techniques can indirectly assess the degree of fibrosis. The worsening of renal tissue oxygenation and perfusion measured by blood oxygenation level-dependent MRI and arterial spin labeling MRI separately is also an indirect reflection of renal fibrosis. Objective and quantitative indices of fibrosis may be available in the future by using novel techniques, such as photoacoustic imaging and fluorescence microscopy. However, these imaging techniques are susceptible to interference or may not be convenient. Due to the lack of sufficient specificity and sensitivity, these imaging techniques are neither widely accepted nor proposed by clinicians. These obstructions must be overcome by conducting technology research and more prospective studies. In this review, we emphasize the recent advancement of these noninvasive imaging techniques and provide clinicians a continuously updated perspective on the assessment of kidney fibrosis.
Collapse
Affiliation(s)
- Buchun Jiang
- Department of Nephrology, The Children’s Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, National Children’s Regional Medical Center, Hangzhou, China
| | - Fei Liu
- Department of Nephrology, The Children’s Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, National Children’s Regional Medical Center, Hangzhou, China
| | - Haidong Fu
- Department of Nephrology, The Children’s Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, National Children’s Regional Medical Center, Hangzhou, China,CONTACT Haidong Fu
| | - Jianhua Mao
- Department of Nephrology, The Children’s Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, National Children’s Regional Medical Center, Hangzhou, China,Jianhua Mao The Children’s Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, National Children’s Regional Medical Center, 3333 Bingsheng Rd, Hangzhou, Zhejiang310052, China
| |
Collapse
|
5
|
Wang F, Lee SY, Adelnia F, Takahashi K, Harkins KD, He L, Zu Z, Ellinger P, Grundmann M, Harris RC, Takahashi T, Gore JC. Severity of polycystic kidney disease revealed by multiparametric MRI. Magn Reson Med 2023; 90:1151-1165. [PMID: 37093746 PMCID: PMC10805116 DOI: 10.1002/mrm.29679] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 03/03/2023] [Accepted: 04/03/2023] [Indexed: 04/25/2023]
Abstract
PURPOSE We aimed to compare multiple MRI parameters, including relaxation rates (R 1 $$ {R}_1 $$ ,R 2 $$ {R}_2 $$ , andR 1 ρ $$ {R}_{1\rho } $$ ), ADC from diffusion weighted imaging, pool size ratio (PSR) from quantitative magnetization transfer, and measures of exchange from spin-lock imaging (S ρ $$ {S}_{\rho } $$ ), for assessing and predicting the severity of polycystic kidney disease (PKD) over time. METHODS Pcy/Pcy mice with CD1 strain, a mouse model of autosomal dominant PKD, were imaged at 5, 9, and 26 wk of age using a 7T MRI system. Twelve-week normal CD1 mice were used as controls. Post-mortem paraffin tissue sections were stained using hematoxylin and eosin and picrosirius red to identify histological changes. RESULTS Histology detected segmental cyst formation in the early stage (week 5) and progression of PKD over time in Pcy kidneys. InT 2 $$ {T}_2 $$ -weighted images, small cysts appeared locally in cystic kidneys in week 5 and gradually extended to the whole cortex and outer stripe of outer medulla region from week 5 to week 26. Regional PSR,R 1 $$ {R}_1 $$ ,R 2 $$ {R}_2 $$ , andR 1 ρ $$ {R}_{1\rho } $$ decreased consistently over time compared to normal kidneys, with significant changes detected in week 5. Among all the MRI measures,R 2 $$ {R}_2 $$ andR 1 ρ $$ {R}_{1\rho } $$ allow highest detectability to PKD, while PSR andR 1 $$ {R}_1 $$ have highest correlation with pathological indices of PKD. Using optimum MRI parameters as regressors, multiple linear regression provides reliable prediction of PKD progression. CONCLUSION R 2 $$ {R}_2 $$ ,R 1 $$ {R}_1 $$ , and PSR are sensitive indicators of the presence of PKD. Multiparametric MRI allows a comprehensive analysis of renal changes caused by cyst formation and expansion.
Collapse
Affiliation(s)
- Feng Wang
- Vanderbilt University Institute of Imaging Science, Vanderbilt University Medical Center
- Department of Radiology and Radiological Sciences, Vanderbilt University Medical Center
- Vanderbilt O’Brien Kidney Research Center, Vanderbilt University Medical Center
| | - Seo Yeon Lee
- Division of Nephrology and Hypertension, Vanderbilt University Medical Center
| | - Fatemeh Adelnia
- Vanderbilt University Institute of Imaging Science, Vanderbilt University Medical Center
| | - Keiko Takahashi
- Vanderbilt O’Brien Kidney Research Center, Vanderbilt University Medical Center
- Division of Nephrology and Hypertension, Vanderbilt University Medical Center
| | - Kevin D. Harkins
- Vanderbilt University Institute of Imaging Science, Vanderbilt University Medical Center
- Department of Radiology and Radiological Sciences, Vanderbilt University Medical Center
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN 37232
| | - Lilly He
- Division of Nephrology and Hypertension, Vanderbilt University Medical Center
| | - Zhongliang Zu
- Vanderbilt University Institute of Imaging Science, Vanderbilt University Medical Center
- Department of Radiology and Radiological Sciences, Vanderbilt University Medical Center
| | - Philipp Ellinger
- Bayer AG Research & Development, Pharmaceuticals, 42113 Wuppertal, Germany
| | - Manuel Grundmann
- Bayer AG Research & Development, Pharmaceuticals, 42113 Wuppertal, Germany
| | - Raymond C. Harris
- Vanderbilt O’Brien Kidney Research Center, Vanderbilt University Medical Center
- Division of Nephrology and Hypertension, Vanderbilt University Medical Center
| | - Takamune Takahashi
- Vanderbilt O’Brien Kidney Research Center, Vanderbilt University Medical Center
- Division of Nephrology and Hypertension, Vanderbilt University Medical Center
| | - John C. Gore
- Vanderbilt University Institute of Imaging Science, Vanderbilt University Medical Center
- Department of Radiology and Radiological Sciences, Vanderbilt University Medical Center
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN 37232
| |
Collapse
|
6
|
Gandhi DB, Al Saeedi M, Krier JD, Jiang K, Glockner JF, Lerman LO. Evaluation of Renal Fibrosis Using Magnetization Transfer Imaging at 1.5T and 3T in a Porcine Model of Renal Artery Stenosis. J Clin Med 2023; 12:jcm12082956. [PMID: 37109291 PMCID: PMC10140905 DOI: 10.3390/jcm12082956] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 04/13/2023] [Accepted: 04/15/2023] [Indexed: 04/29/2023] Open
Abstract
Renal fibrosis is an important marker in the progression of chronic kidney disease, and renal biopsy is the current reference standard for detecting its presence. Currently, non-invasive methods have only been partially successful in detecting renal fibrosis. Magnetization transfer imaging (MTI) allows estimates of renal fibrosis but may vary with scanning conditions. We hypothesized that MTI-derived renal fibrosis would be reproducible at 1.5T and 3T MRI and over time in fibrotic kidneys. Fifteen pigs with unilateral renal artery stenosis (RAS, n = 9) or age-matched sham controls (n = 6) underwent MTI-MRI at both 1.5T and 3T 6 weeks post-surgery and again 4 weeks later. Magnetization transfer ratio (MTR) measurements of fibrosis in both kidneys were compared between 1.5T and 3T, and the reproducibility of MTI at the two timepoints was evaluated at 1.5T and 3T. MTR at 3T with 600 Hz offset frequency successfully distinguished between normal, stenotic, and contralateral kidneys. There was excellent reproducibility of MTI at 1.5T and 3T over the two timepoints and no significant differences between MTR measurements at 1.5T and 3T. Therefore, MTI is a highly reproducible technique which is sensitive to detect changes in fibrotic compared to normal kidneys in the RAS porcine model at 3T.
Collapse
Affiliation(s)
- Deep B Gandhi
- Division of Nephrology and Hypertension, Mayo Clinic, 200 First Street SW, Rochester, MN 55905, USA
| | - Mina Al Saeedi
- Division of Nephrology and Hypertension, Mayo Clinic, 200 First Street SW, Rochester, MN 55905, USA
| | - James D Krier
- Division of Nephrology and Hypertension, Mayo Clinic, 200 First Street SW, Rochester, MN 55905, USA
| | - Kai Jiang
- Division of Nephrology and Hypertension, Mayo Clinic, 200 First Street SW, Rochester, MN 55905, USA
| | - James F Glockner
- Department of Diagnostic Radiology, Mayo Clinic, Rochester, MN 55905, USA
| | - Lilach O Lerman
- Division of Nephrology and Hypertension, Mayo Clinic, 200 First Street SW, Rochester, MN 55905, USA
| |
Collapse
|
7
|
Shin SH, Wendland MF, Wang J, Velasquez M, Vandsburger MH. Noninvasively differentiating acute and chronic nephropathies via multiparametric urea-CEST, nuclear Overhauser enhancement-CEST, and quantitative magnetization transfer MRI. Magn Reson Med 2023; 89:774-786. [PMID: 36226662 PMCID: PMC11027791 DOI: 10.1002/mrm.29477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 08/26/2022] [Accepted: 09/14/2022] [Indexed: 12/13/2022]
Abstract
PURPOSE Standardized blood tests often lack adequate sensitivity and specificity to capture the gradual progression of renal injuries. We suggest a multiparametric molecular MRI approach as a noninvasive tool for monitoring renal function loss and distinguishing different types of renal injuries. METHODS CEST and quantitative magnetization transfer (qMT) imaging were performed on cisplatin (n = 16) and aristolochic acid (AA)-induced nephropathy (n = 22) mouse models at 7T with an infusion of either saline or urea. Seven-pool Lorentzian fitting was applied for the analysis of CEST Z-spectra, and the T1 -corrected CEST contrast apparent exchange-dependent relaxation (AREX) from urea (+1 ppm) and two nuclear Overhauser enhancement (NOE) pools (-1.6 and -3.5 ppm) were measured. Similarly, qMT spectra were fitted into two-pool Ramani equation and the relative semi-solid macromolecular pool-size ratio was measured. Histology of mouse kidneys was performed to validate the MR findings. RESULTS AA model showed disrupted spatial gradients of urea in the kidney and significantly decreased NOE CEST and qMT contrast. The cisplatin model showed slightly decreased qMT contrast only. The orrelation of MR parameters to histological features showed that NOE CEST and qMT imaging are sensitive to both acute and chronic injuries, whereas urea CEST shows a significant correlation only to acute injuries. CONCLUSION These results indicate that our multiparametric approach allows comprehensive and totally noninvasive monitoring of renal function and histological changes for distinguishing different nephropathies.
Collapse
Affiliation(s)
- Soo Hyun Shin
- Department of Bioengineering, University of California, Berkeley, Berkeley, CA
| | - Michael F. Wendland
- Berkeley Preclinical Imaging Core (BPIC), University of California, Berkeley, Berkeley, CA
| | - Jingshen Wang
- Department of Biostatistics, University of California, Berkeley, Berkeley, CA
| | - Mark Velasquez
- Department of Bioengineering, University of California, Berkeley, Berkeley, CA
| | | |
Collapse
|
8
|
Wang F, Otsuka T, Adelnia F, Takahashi K, Delgado R, Harkins KD, Zu Z, de Caestecker MP, Harris RC, Gore JC, Takahashi T. Multiparametric magnetic resonance imaging in diagnosis of long-term renal atrophy and fibrosis after ischemia reperfusion induced acute kidney injury in mice. NMR IN BIOMEDICINE 2022; 35:e4786. [PMID: 35704387 PMCID: PMC10805124 DOI: 10.1002/nbm.4786] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Revised: 05/31/2022] [Accepted: 06/14/2022] [Indexed: 06/15/2023]
Abstract
Tubular atrophy and fibrosis are pathological changes that determine the prognosis of kidney disease induced by acute kidney injury (AKI). We aimed to evaluate multiple magnetic resonance imaging (MRI) parameters, including pool size ratio (PSR) from quantitative magnetization transfer, relaxation rates, and measures from spin-lock imaging ( R 1 ρ and S ρ ), for assessing the pathological changes associated with AKI-induced kidney disease. Eight-week-old male C57BL/6 J mice first underwent unilateral ischemia reperfusion injury (IRI) induced by reperfusion after 45 min of ischemia. They were imaged using a 7T MRI system 56 days after the injury. Paraffin tissue sections were stained using Masson trichrome and picrosirius red to identify histopathological changes such as tubular atrophy and fibrosis. Histology detected extensive tubular atrophy and moderate fibrosis in the cortex and outer stripe of the outer medulla (CR + OSOM) and more prominent fibrosis in the inner stripe of the outer medulla (ISOM) of IRI kidneys. In the CR + OSOM region, evident decreases in PSR, R 1 , R 2 , R 1 ρ , and S ρ showed in IRI compared with contralateral kidneys, with PSR and S ρ exhibiting the most significant changes. In addition, the exchange parameter S ρ dropped by the largest degree among all the MRI parameters, whileR 2 * increased significantly. In the ISOM of IRI kidneys, PSR increased while S ρ kept decreasing. R 2 , R 1 ρ , andR 2 * all increased due to more severe fibrosis in this region. Among MRI measures, PSR and R 1 ρ showed the highest detectability of renal changes no matter whether tubular atrophy or fibrosis dominated.R 2 * and S ρ could be more specific to a single pathological event than other MRI measures because onlyR 2 * increased and S ρ decreased consistently when either fibrosis or tubular atrophy dominated, and their correlations with fibrosis scores were higher than other MRI measures. Multiparametric MRI may enable a more comprehensive analysis of histopathological changes following AKI.
Collapse
Affiliation(s)
- Feng Wang
- Vanderbilt University Institute of Imaging Science,
Vanderbilt University Medical Center, Nashville, TN 37232
- Department of Radiology and Radiological Sciences,
Vanderbilt University Medical Center, Nashville, TN 37232
- Vanderbilt O’Brien Kidney Research Center,
Vanderbilt University Medical Center, Nashville, TN 37232
| | - Tadashi Otsuka
- Division of Nephrology and Hypertension, Vanderbilt
University Medical Center, Nashville, TN 37232
| | - Fatemeh Adelnia
- Vanderbilt University Institute of Imaging Science,
Vanderbilt University Medical Center, Nashville, TN 37232
| | - Keiko Takahashi
- Division of Nephrology and Hypertension, Vanderbilt
University Medical Center, Nashville, TN 37232
- Vanderbilt O’Brien Kidney Research Center,
Vanderbilt University Medical Center, Nashville, TN 37232
| | - Rachel Delgado
- Division of Nephrology and Hypertension, Vanderbilt
University Medical Center, Nashville, TN 37232
- Vanderbilt O’Brien Kidney Research Center,
Vanderbilt University Medical Center, Nashville, TN 37232
| | - Kevin D. Harkins
- Vanderbilt University Institute of Imaging Science,
Vanderbilt University Medical Center, Nashville, TN 37232
- Department of Radiology and Radiological Sciences,
Vanderbilt University Medical Center, Nashville, TN 37232
- Department of Biomedical Engineering, Vanderbilt
University, Nashville, TN 37232
| | - Zhongliang Zu
- Vanderbilt University Institute of Imaging Science,
Vanderbilt University Medical Center, Nashville, TN 37232
- Department of Radiology and Radiological Sciences,
Vanderbilt University Medical Center, Nashville, TN 37232
| | - Mark P. de Caestecker
- Division of Nephrology and Hypertension, Vanderbilt
University Medical Center, Nashville, TN 37232
- Vanderbilt O’Brien Kidney Research Center,
Vanderbilt University Medical Center, Nashville, TN 37232
| | - Raymond C. Harris
- Division of Nephrology and Hypertension, Vanderbilt
University Medical Center, Nashville, TN 37232
- Vanderbilt O’Brien Kidney Research Center,
Vanderbilt University Medical Center, Nashville, TN 37232
| | - John C. Gore
- Vanderbilt University Institute of Imaging Science,
Vanderbilt University Medical Center, Nashville, TN 37232
- Department of Radiology and Radiological Sciences,
Vanderbilt University Medical Center, Nashville, TN 37232
- Department of Biomedical Engineering, Vanderbilt
University, Nashville, TN 37232
| | - Takamune Takahashi
- Division of Nephrology and Hypertension, Vanderbilt
University Medical Center, Nashville, TN 37232
- Vanderbilt O’Brien Kidney Research Center,
Vanderbilt University Medical Center, Nashville, TN 37232
| |
Collapse
|
9
|
Emergent players in renovascular disease. Clin Sci (Lond) 2022; 136:239-256. [PMID: 35129198 DOI: 10.1042/cs20210509] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Revised: 01/25/2022] [Accepted: 01/26/2022] [Indexed: 02/07/2023]
Abstract
Renovascular disease (RVD) remains a common etiology of secondary hypertension. Recent clinical trials revealed unsatisfactory therapeutic outcomes of renal revascularization, leading to extensive investigation to unravel key pathophysiological mechanisms underlying irreversible functional loss and structural damage in the chronically ischemic kidney. Research studies identified complex interactions among various players, including inflammation, fibrosis, mitochondrial injury, cellular senescence, and microvascular remodeling. This interplay resulted in a shift of our understanding of RVD from a mere hemodynamic disorder to a pro-inflammatory and pro-fibrotic pathology strongly influenced by systemic diseases like metabolic syndrome (MetS), hypertension, diabetes mellitus, and hyperlipidemia. Novel diagnostic approaches have been tested for early detection and follow-up of RVD progression, using new imaging techniques and biochemical markers of renal injury and dysfunction. Therapies targeting some of the pathological pathways governing the development of RVD have shown promising results in animal models, and a few have moved from bench to clinical research. This review summarizes evolving understanding in chronic ischemic kidney injury.
Collapse
|
10
|
Wang F, Otsuka T, Takahashi K, Narui C, Colvin DC, Harris RC, Takahashi T, Gore JC. Renal tubular dilation and fibrosis after unilateral ureter obstruction revealed by relaxometry and spin-lock exchange MRI. NMR IN BIOMEDICINE 2021; 34:e4539. [PMID: 33963778 PMCID: PMC10805126 DOI: 10.1002/nbm.4539] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Accepted: 04/22/2021] [Indexed: 06/12/2023]
Abstract
We evaluated the use of quantitative MRI relaxometry, including the dispersion of spin-lock relaxation with different locking fields, for detecting and assessing tubular dilation and fibrosis in a mouse model of unilateral ureter obstruction (UUO). C57BL/6 J and BALB/c mice that exhibit different levels of tubular dilation and renal fibrosis after UUO were subjected to MR imaging at 7 T. Mice were imaged before UUO surgery, and at 5, 10 and 15 days after surgery. We acquired maps of relaxation rates and fit the dispersion of spin-lock relaxation rates R1ρ at different locking fields (frequencies) to a model of exchanging water pools, and assessed the sensitivity of the derived quantities for detecting tubular dilation and fibrosis in kidney. Histological scores for tubular dilation and fibrosis, based on luminal space and positive fibrotic areas in sections, were obtained for comparison. Histology detected extensive tubular dilation and mild to moderate fibrosis in the UUO kidneys, in which enlargement of luminal space, deposition of collagen, and reductions in capillary density were observed in the cortex and outer stripe of the outer medulla. Relaxation rates R1 , R2 and R1ρ clearly decreased in these regions of UUO kidneys longitudinally. While R1 showed the highest detectability to tubular dilation and overall changes in UUO kidneys, Sρ , a parameter derived from R1ρ dispersion data, showed the highest correlation with renal fibrosis in UUO. While relaxation parameters are sensitive to tubular dilation in UUO kidneys, Sρ depends primarily on the average exchange rate between water and other chemically shifted resonances such as hydroxyls and amides, and provides additional specific information for evaluating fibrosis in kidney disease.
Collapse
Affiliation(s)
- Feng Wang
- Vanderbilt University Institute of Imaging Science, Vanderbilt University Medical Center
- Department of Radiology and Radiological Sciences, Vanderbilt University Medical Center
- Vanderbilt O’Brien Kidney Research Center, Vanderbilt University Medical Center
| | - Tadashi Otsuka
- Division of Nephrology and Hypertension, Vanderbilt University Medical Center
| | - Keiko Takahashi
- Division of Nephrology and Hypertension, Vanderbilt University Medical Center
| | - Chikage Narui
- Division of Nephrology and Hypertension, Vanderbilt University Medical Center
| | - Daniel C. Colvin
- Vanderbilt University Institute of Imaging Science, Vanderbilt University Medical Center
| | - Raymond C. Harris
- Division of Nephrology and Hypertension, Vanderbilt University Medical Center
- Vanderbilt O’Brien Kidney Research Center, Vanderbilt University Medical Center
| | - Takamune Takahashi
- Division of Nephrology and Hypertension, Vanderbilt University Medical Center
- Vanderbilt O’Brien Kidney Research Center, Vanderbilt University Medical Center
| | - John C. Gore
- Vanderbilt University Institute of Imaging Science, Vanderbilt University Medical Center
- Department of Radiology and Radiological Sciences, Vanderbilt University Medical Center
- Department of Biomedical Engineering, Vanderbilt University Nashville, TN 37232
| |
Collapse
|
11
|
Katagiri D, Wang F, Gore JC, Harris RC, Takahashi T. Clinical and experimental approaches for imaging of acute kidney injury. Clin Exp Nephrol 2021; 25:685-699. [PMID: 33835326 PMCID: PMC8154759 DOI: 10.1007/s10157-021-02055-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Accepted: 03/17/2021] [Indexed: 12/23/2022]
Abstract
Complex molecular cell dynamics in acute kidney injury and its heterogeneous etiologies in patient populations in clinical settings have revealed the potential advantages and disadvantages of emerging novel damage biomarkers. Imaging techniques have been developed over the past decade to further our understanding about diseased organs, including the kidneys. Understanding the compositional, structural, and functional changes in damaged kidneys via several imaging modalities would enable a more comprehensive analysis of acute kidney injury, including its risks, diagnosis, and prognosis. This review summarizes recent imaging studies for acute kidney injury and discusses their potential utility in clinical settings.
Collapse
Affiliation(s)
- Daisuke Katagiri
- Division of Nephrology and Hypertension, Vanderbilt University Medical Center, S-3223 MCN, Nashville, TN, 37232, USA.
- Department of Nephrology, National Center for Global Health and Medicine, 1-21-1 Toyama, Shinjuku-ku, Tokyo, 162-8655, Japan.
| | - Feng Wang
- Vanderbilt University Institute of Imaging Science, Vanderbilt University Medical Center, Nashville, TN, USA
- Vanderbilt In Vivo Mouse Kidney Imaging Core, Vanderbilt University Medical Center, Nashville, TN, USA
| | - John C Gore
- Vanderbilt In Vivo Mouse Kidney Imaging Core, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Raymond C Harris
- Division of Nephrology and Hypertension, Vanderbilt University Medical Center, S-3223 MCN, Nashville, TN, 37232, USA
| | - Takamune Takahashi
- Division of Nephrology and Hypertension, Vanderbilt University Medical Center, S-3223 MCN, Nashville, TN, 37232, USA.
- Vanderbilt In Vivo Mouse Kidney Imaging Core, Vanderbilt University Medical Center, Nashville, TN, USA.
| |
Collapse
|
12
|
Alnazer I, Bourdon P, Urruty T, Falou O, Khalil M, Shahin A, Fernandez-Maloigne C. Recent advances in medical image processing for the evaluation of chronic kidney disease. Med Image Anal 2021; 69:101960. [PMID: 33517241 DOI: 10.1016/j.media.2021.101960] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Revised: 11/18/2020] [Accepted: 12/31/2020] [Indexed: 12/31/2022]
Abstract
Assessment of renal function and structure accurately remains essential in the diagnosis and prognosis of Chronic Kidney Disease (CKD). Advanced imaging, including Magnetic Resonance Imaging (MRI), Ultrasound Elastography (UE), Computed Tomography (CT) and scintigraphy (PET, SPECT) offers the opportunity to non-invasively retrieve structural, functional and molecular information that could detect changes in renal tissue properties and functionality. Currently, the ability of artificial intelligence to turn conventional medical imaging into a full-automated diagnostic tool is widely investigated. In addition to the qualitative analysis performed on renal medical imaging, texture analysis was integrated with machine learning techniques as a quantification of renal tissue heterogeneity, providing a promising complementary tool in renal function decline prediction. Interestingly, deep learning holds the ability to be a novel approach of renal function diagnosis. This paper proposes a survey that covers both qualitative and quantitative analysis applied to novel medical imaging techniques to monitor the decline of renal function. First, we summarize the use of different medical imaging modalities to monitor CKD and then, we show the ability of Artificial Intelligence (AI) to guide renal function evaluation from segmentation to disease prediction, discussing how texture analysis and machine learning techniques have emerged in recent clinical researches in order to improve renal dysfunction monitoring and prediction. The paper gives a summary about the role of AI in renal segmentation.
Collapse
Affiliation(s)
- Israa Alnazer
- XLIM-ICONES, UMR CNRS 7252, Université de Poitiers, France; Laboratoire commune CNRS/SIEMENS I3M, Poitiers, France; AZM Center for Research in Biotechnology and its Applications, EDST, Lebanese University, Beirut, Lebanon.
| | - Pascal Bourdon
- XLIM-ICONES, UMR CNRS 7252, Université de Poitiers, France; Laboratoire commune CNRS/SIEMENS I3M, Poitiers, France
| | - Thierry Urruty
- XLIM-ICONES, UMR CNRS 7252, Université de Poitiers, France; Laboratoire commune CNRS/SIEMENS I3M, Poitiers, France
| | - Omar Falou
- AZM Center for Research in Biotechnology and its Applications, EDST, Lebanese University, Beirut, Lebanon; American University of Culture and Education, Koura, Lebanon; Lebanese University, Faculty of Science, Tripoli, Lebanon
| | - Mohamad Khalil
- AZM Center for Research in Biotechnology and its Applications, EDST, Lebanese University, Beirut, Lebanon
| | - Ahmad Shahin
- AZM Center for Research in Biotechnology and its Applications, EDST, Lebanese University, Beirut, Lebanon
| | - Christine Fernandez-Maloigne
- XLIM-ICONES, UMR CNRS 7252, Université de Poitiers, France; Laboratoire commune CNRS/SIEMENS I3M, Poitiers, France
| |
Collapse
|
13
|
Ebrahimi B. Editorial for "Quantitative Magnetization Transfer Detects Renal Fibrosis in Murine Kidneys With Renal Artery Stenosis". J Magn Reson Imaging 2020; 53:894-895. [PMID: 33029838 DOI: 10.1002/jmri.27388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Accepted: 09/24/2020] [Indexed: 11/06/2022] Open
Affiliation(s)
- Behzad Ebrahimi
- Department of Radiation and Cellular Oncology, University of Chicago, Chicago, Illinois, USA
| |
Collapse
|
14
|
Jiang K, Fang Y, Ferguson CM, Tang H, Mishra PK, Macura SI, Lerman LO. Quantitative Magnetization Transfer Detects Renal Fibrosis in Murine Kidneys With Renal Artery Stenosis. J Magn Reson Imaging 2020; 53:10.1002/jmri.27370. [PMID: 32964585 PMCID: PMC7965778 DOI: 10.1002/jmri.27370] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Revised: 09/02/2020] [Accepted: 09/03/2020] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND Renal fibrosis is a common pathway in tubulointerstitial injury and a major determinant of renal insufficiency. Collagen deposition, a key feature of renal fibrosis, may serve as an imaging biomarker to differentiate scarred from healthy kidneys. PURPOSE To test the feasibility of using quantitative magnetization transfer (qMT), which assesses tissue macromolecule content, to measure renal fibrosis. STUDY TYPE Prospective. ANIMAL MODEL Fifteen 129S1 mice were studied 4 weeks after either sham (n = 7) or unilateral renal artery stenosis (RAS, n = 8) surgeries. FIELD STRENGTH/SEQUENCE Magnetization transfer (MT)-weighted images were acquired at 16.4T using an MT-prepared fast-low-angle-shot sequence. Renal B0, B1, and T1 maps were also acquired, using a dual-echo gradient echo, an actual flip angle, and inversion recovery method, respectively. ASSESSMENT A two-pool model was used to estimate the bound water fraction (f) and other tissue imaging biomarkers. Masson's trichrome staining was subsequently performed ex vivo to evaluate renal fibrosis. STATISTICAL TESTS Comparisons of renal parameters between sham and RAS were performed using independent samples t-tests. Pearson's correlation was conducted to investigate the relationship between renal fibrosis by histology and the qMT-derived bound pool fraction f. RESULTS The two-pool model provided accurate fittings of measured MT signal. The qMT-derived f of RAS kidneys was significantly increased compared to sham in all kidney zones (renal cortex [CO], 7.6 ± 2.4% vs. 4.6 ± 0.6%; outer medulla [OM], 8.2 ± 4.2% vs. 4.2 ± 0.9%; inner medulla [IM] + P, 5.8 ± 1.6% vs. 2.9 ± 0.6%, all P < 0.05). Measured f correlated well with histological fibrosis in all kidney zones (CO, Pearson's correlation coefficient r = 0.95; OM, r = 0.93; IM + P, r = 0.94, all P < 0.05). DATA CONCLUSION The bound pool fraction f can be quantified using qMT at 16.4T in murine kidneys, increases significantly in fibrotic RAS kidneys, and correlates well with fibrosis by histology. Therefore, qMT may constitute a valuable tool for measuring renal fibrosis in RAS. LEVEL OF EVIDENCE 1 TECHNICAL EFFICACY STAGE: 3.
Collapse
Affiliation(s)
- Kai Jiang
- Division of Nephrology and Hypertension, Mayo Clinic, Rochester, Minnesota, USA
| | - Yiyuan Fang
- Division of Nephrology and Hypertension, Mayo Clinic, Rochester, Minnesota, USA
| | | | - Hui Tang
- Division of Nephrology and Hypertension, Mayo Clinic, Rochester, Minnesota, USA
| | - Prasanna K. Mishra
- Biochemistry and Molecular Biology, Mayo Clinic, Rochester, Minnesota, USA
| | - Slobodan I. Macura
- Biochemistry and Molecular Biology, Mayo Clinic, Rochester, Minnesota, USA
| | - Lilach O. Lerman
- Division of Nephrology and Hypertension, Mayo Clinic, Rochester, Minnesota, USA
| |
Collapse
|
15
|
Wang F, Colvin DC, Wang S, Li H, Zu Z, Harris RC, Zhang MZ, Gore JC. Spin-lock relaxation rate dispersion reveals spatiotemporal changes associated with tubulointerstitial fibrosis in murine kidney. Magn Reson Med 2020; 84:2074-2087. [PMID: 32141646 DOI: 10.1002/mrm.28230] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2019] [Revised: 01/09/2020] [Accepted: 02/04/2020] [Indexed: 12/14/2022]
Abstract
PURPOSE To develop and evaluate a reliable non-invasive means for assessing the severity and progression of fibrosis in kidneys. We used spin-lock MR imaging with different locking fields to detect and characterize progressive renal fibrosis in an hHB-EGFTg/Tg mouse model. METHODS Male hHB-EGFTg/Tg mice, a well-established model of progressive fibrosis, and age-matched normal wild type (WT) mice, were imaged at 7T at ages 5-7, 11-13, and 30-40 weeks. Spin-lock relaxation rates R1 ρ were measured at different locking fields (frequencies) and the resultant dispersion curves were fit to a model of exchanging water pools. The obtained MRI parameters were evaluated as potential indicators of tubulointerstitial fibrosis in kidney. Histological examinations of renal fibrosis were also carried out post-mortem after MRI. RESULTS Histology detected extensive fibrosis in the hHB-EGFTg/Tg mice, in which collagen deposition and reductions in capillary density were observed in the fibrotic regions of kidneys. R2 and R1 ρ values at different spin-lock powers clearly dropped in the fibrotic region as fibrosis progressed. There was less variation in the asymptotic locking field relaxation rate R 1 ρ ∞ between the groups. The exchange parameter Sρ and the inflection frequency ωinfl changed by larger factors. CONCLUSION Both Sρ and ωinfl depend primarily on the average exchange rate between water and other chemically shifted resonances such as hydroxyls and amides. Spin-lock relaxation rate dispersion, rather than single measurements of relaxation rates, provides more comprehensive and specific information on spatiotemporal changes associated with tubulointerstitial fibrosis in murine kidney.
Collapse
Affiliation(s)
- Feng Wang
- Vanderbilt University Institute of Imaging Science, Vanderbilt University Medical Center, Nashville, TN, USA.,Department of Radiology and Radiological Sciences, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Daniel C Colvin
- Vanderbilt University Institute of Imaging Science, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Suwan Wang
- Division of Nephrology and Hypertension, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Hua Li
- Vanderbilt University Institute of Imaging Science, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Zhongliang Zu
- Vanderbilt University Institute of Imaging Science, Vanderbilt University Medical Center, Nashville, TN, USA.,Department of Radiology and Radiological Sciences, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Raymond C Harris
- Division of Nephrology and Hypertension, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Ming-Zhi Zhang
- Division of Nephrology and Hypertension, Vanderbilt University Medical Center, Nashville, TN, USA
| | - John C Gore
- Vanderbilt University Institute of Imaging Science, Vanderbilt University Medical Center, Nashville, TN, USA.,Department of Radiology and Radiological Sciences, Vanderbilt University Medical Center, Nashville, TN, USA.,Department of Biomedical Engineering, Vanderbilt University, Nashville, TN, USA
| |
Collapse
|