1
|
Just N. Validity and specificity of BOLD effects and their correction in 1H-fMRS. Front Neurosci 2024; 18:1433468. [PMID: 39347531 PMCID: PMC11438475 DOI: 10.3389/fnins.2024.1433468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Accepted: 08/08/2024] [Indexed: 10/01/2024] Open
Abstract
Purpose This study aimed to characterize blood oxygen level-dependent (BOLD) effects in proton magnetic resonance (1H-MR) spectra obtained during optogenetic activation of the rat forelimb cortex to correct and estimate the accurate changes in metabolite concentration. Methods For a more comprehensive understanding of BOLD effects detected with functional magnetic resonance spectroscopy (fMRS) and to optimize the correction method, a 1 Hz line-narrowing effect was simulated. Then, proton functional magnetic resonance spectroscopy (1H-fMRS) data acquired using stimulated echo acquisition mode (STEAM) at 9.4T in rats (n = 8) upon optogenetic stimulation of the primary somatosensory cortex were utilized. The data were analyzed using MATLAB routines and LCModel. Uncorrected and corrected 1H-MR spectra from the simulated and in vivo data were quantified and compared. BOLD-corrected difference spectra were also calculated and analyzed. Additionally, the effects of stimulated and non-stimulated water on the quantification of metabolite concentration swere investigated. Results Significant mean increases in water and N-acetylaspartate (NAA) peak heights (+1.1% and +4.5%, respectively) were found to be accompanied by decreased linewidths (-0.5 Hz and -2.8%) upon optogenetic stimulation. These estimates were used for further defining an accurate line-broadening (lb) factor. The usage of a non-data-driven lb introduced false-positive errors in the metabolite concentration change estimates, thereby altering the specificity of the findings. The water and metabolite BOLD contributions were separated using different water scalings within LCModel. Conclusion The linewidth-matching procedure using a precise lb factor remains the most effective approach for accurately quantifying small (±0.3 μmol/g) metabolic changes in 1H-fMRS studies. A simple and preliminary compartmentation of BOLD effects was proposed, but it will require validation.
Collapse
Affiliation(s)
- Nathalie Just
- Danish Research Centre for Magnetic Resonance, Copenhagen University Hospital, Copenhagen, Denmark
| |
Collapse
|
2
|
Duarte JMN. Concentrations of glutamate and N-acetylaspartate detected by magnetic resonance spectroscopy in the rat hippocampus correlate with hippocampal-dependent spatial memory performance. Front Mol Neurosci 2024; 17:1458070. [PMID: 39219740 PMCID: PMC11362093 DOI: 10.3389/fnmol.2024.1458070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Accepted: 08/07/2024] [Indexed: 09/04/2024] Open
Abstract
Magnetic resonance spectroscopy (MRS) has been employed to investigate brain metabolite concentrations in vivo, and they vary during neuronal activation, across brain activity states, or upon disease with neurological impact. Whether resting brain metabolites correlate with functioning in behavioral tasks remains to be demonstrated in any of the widely used rodent models. This study tested the hypothesis that, in the absence of neurological disease or injury, the performance in a hippocampal-dependent memory task is correlated with the hippocampal levels of metabolites that are mainly synthesized in neurons, namely N-acetylaspartate (NAA), glutamate and GABA. Experimentally naïve rats were tested for hippocampal-dependent spatial memory performance by measuring spontaneous alternation in the Y-maze, followed by anatomical magnetic resonance imaging (MRI) and magnetic resonance spectroscopy (MRS) in the hippocampus and cortex. Memory performance correlated with hippocampal concentrations of NAA (p = 0.024) and glutamate (p = 0.014) but not GABA. Concentrations of glutamate in the cortex also correlated with spatial memory (p = 0.035). In addition, memory performance was also correlated with the relative volume of the hippocampus (p = 0.041). Altogether, this exploratory study suggests that levels of the neuronal maker NAA and the main excitatory neurotransmitter glutamate are associated with physiological functional capacity.
Collapse
Affiliation(s)
- João M. N. Duarte
- Diabetes and Brain Function Unit, Department of Experimental Medical Science, Faculty of Medicine, Lund University, Lund, Sweden
- Wallenberg Centre for Molecular Medicine, Lund University, Lund, Sweden
| |
Collapse
|
3
|
Koolschijn RS, Clarke WT, Ip IB, Emir UE, Barron HC. Event-related functional magnetic resonance spectroscopy. Neuroimage 2023; 276:120194. [PMID: 37244321 PMCID: PMC7614684 DOI: 10.1016/j.neuroimage.2023.120194] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Accepted: 05/24/2023] [Indexed: 05/29/2023] Open
Abstract
Proton-Magnetic Resonance Spectroscopy (MRS) is a non-invasive brain imaging technique used to measure the concentration of different neurochemicals. "Single-voxel" MRS data is typically acquired across several minutes, before individual transients are averaged through time to give a measurement of neurochemical concentrations. However, this approach is not sensitive to more rapid temporal dynamics of neurochemicals, including those that reflect functional changes in neural computation relevant to perception, cognition, motor control and ultimately behaviour. In this review we discuss recent advances in functional MRS (fMRS) that now allow us to obtain event-related measures of neurochemicals. Event-related fMRS involves presenting different experimental conditions as a series of trials that are intermixed. Critically, this approach allows spectra to be acquired at a time resolution in the order of seconds. Here we provide a comprehensive user guide for event-related task designs, choice of MRS sequence, analysis pipelines, and appropriate interpretation of event-related fMRS data. We raise various technical considerations by examining protocols used to quantify dynamic changes in GABA, the primary inhibitory neurotransmitter in the brain. Overall, we propose that although more data is needed, event-related fMRS can be used to measure dynamic changes in neurochemicals at a temporal resolution relevant to computations that support human cognition and behaviour.
Collapse
Affiliation(s)
- Renée S Koolschijn
- Wellcome Centre for Integrative Neuroimaging, University of Oxford, FMRIB, John Radcliffe Hospital, Oxford, United Kingdom; Donders Institute for Brain, Cognition and Behavior, Radboud University, Nijmegen, The Netherlands.
| | - William T Clarke
- Wellcome Centre for Integrative Neuroimaging, University of Oxford, FMRIB, John Radcliffe Hospital, Oxford, United Kingdom; Medical Research Council Brain Network Dynamics Unit, University of Oxford, Oxford, United Kingdom
| | - I Betina Ip
- Wellcome Centre for Integrative Neuroimaging, University of Oxford, FMRIB, John Radcliffe Hospital, Oxford, United Kingdom
| | - Uzay E Emir
- School of Health Sciences, Purdue University, West Lafayette, United States
| | - Helen C Barron
- Wellcome Centre for Integrative Neuroimaging, University of Oxford, FMRIB, John Radcliffe Hospital, Oxford, United Kingdom; Medical Research Council Brain Network Dynamics Unit, University of Oxford, Oxford, United Kingdom.
| |
Collapse
|
4
|
Dorst J, Borbath T, Landheer K, Avdievich N, Henning A. Simultaneous detection of metabolite concentration changes, water BOLD signal and pH changes during visual stimulation in the human brain at 9.4T. J Cereb Blood Flow Metab 2022; 42:1104-1119. [PMID: 35060409 PMCID: PMC9121534 DOI: 10.1177/0271678x221075892] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/22/2021] [Revised: 12/14/2021] [Accepted: 12/22/2021] [Indexed: 12/15/2022]
Abstract
This study presents a method to directly link metabolite concentration changes and BOLD response in the human brain during visual stimulation by measuring the water and metabolite signals simultaneously. Therefore, the metabolite-cycling (MC) non-water suppressed semiLASER localization technique was optimized for functional 1H MRS in the human brain at 9.4 T. Data of 13 volunteers were acquired during a 26:40 min visual stimulation block-design paradigm. Activation-induced BOLD signal was observed in the MC water signal as well as in the NAA-CH3 and tCr-CH3 singlets. During stimulation, glutamate concentration increased 2.3 ± 2.0% to a new steady-state, while a continuous increase over the whole stimulation period could be observed in lactate with a mean increase of 35.6 ± 23.1%. These increases of Lac and Glu during brain activation confirm previous findings reported in literature. A positive correlation of the MC water BOLD signal with glutamate and lactate concentration changes was found. In addition, a pH decrease calculated from a change in the ratio of PCr to Cr was observed during brain activation, particularly at the onset of the stimulation.
Collapse
Affiliation(s)
- Johanna Dorst
- High-Field MR Center, Max Planck Institute for Biological Cybernetics, Tübingen, Germany
- IMPRS for Cognitive and Systems Neuroscience, University of Tübingen, University of Tübingen, Tübingen, Germany
| | - Tamas Borbath
- High-Field MR Center, Max Planck Institute for Biological Cybernetics, Tübingen, Germany
- Faculty of Science, University of Tübingen, University of Tübingen, Tübingen, Germany
| | | | - Nikolai Avdievich
- High-Field MR Center, Max Planck Institute for Biological Cybernetics, Tübingen, Germany
| | - Anke Henning
- High-Field MR Center, Max Planck Institute for Biological Cybernetics, Tübingen, Germany
- Advanced Imaging Research Center, UT Southwestern Medical Center, Dallas, TX, USA
| |
Collapse
|
5
|
Takado Y, Takuwa H, Sampei K, Urushihata T, Takahashi M, Shimojo M, Uchida S, Nitta N, Shibata S, Nagashima K, Ochi Y, Ono M, Maeda J, Tomita Y, Sahara N, Near J, Aoki I, Shibata K, Higuchi M. MRS-measured glutamate versus GABA reflects excitatory versus inhibitory neural activities in awake mice. J Cereb Blood Flow Metab 2022; 42:197-212. [PMID: 34515548 PMCID: PMC8721779 DOI: 10.1177/0271678x211045449] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
To assess if magnetic resonance spectroscopy (MRS)-measured Glutamate (Glu) and GABA reflect excitatory and inhibitory neural activities, respectively, we conducted MRS measurements along with two-photon mesoscopic imaging of calcium signals in excitatory and inhibitory neurons of living, unanesthetized mice. For monitoring stimulus-driven activations of a brain region, MRS signals and mesoscopic neural activities were measured during two consecutive sessions of 15-min prolonged sensory stimulations. In the first session, putative excitatory neuronal activities were increased, while inhibitory neuronal activities remained at the baseline level. In the second half, while excitatory neuronal activities remained elevated, inhibitory neuronal activities were significantly enhanced. We assessed regional neurochemical statuses by measuring MRS signals, which were overall in accordance with the neural activities, and neuronal activities and neurochemical statuses in a mouse model of Dravet syndrome under resting condition. Mesoscopic assessments showed that activities of inhibitory neurons in the cortex were diminished relative to wild-type mice in contrast to spared activities of excitatory neurons. Consistent with these observations, the Dravet model exhibited lower concentrations of GABA than wild-type controls. Collectively, the current investigations demonstrate that MRS-measured Glu and GABA can reflect spontaneous and stimulated activities of neurons producing and releasing these neurotransmitters in an awake condition.
Collapse
Affiliation(s)
- Yuhei Takado
- Department of Functional Brain Imaging, Institute of Quantum Medical Sciences, National Institutes for Quantum and Radiological Science and Technology, Chiba, Japan
- Yuhei Takado, Department of Functional Brain Imaging, Institute of Quantum Medical Sciences, National Institutes for Quantum and Radiological Science and Technology, Chiba, Japan.
| | - Hiroyuki Takuwa
- Department of Functional Brain Imaging, Institute of Quantum Medical Sciences, National Institutes for Quantum and Radiological Science and Technology, Chiba, Japan
- Hiroyuki Takuwa, Department of Functional Brain Imaging, Institute of Quantum Medical Sciences, National Institutes for Quantum and Radiological Science and Technology, Chiba, Japan.
| | - Kazuaki Sampei
- Department of Functional Brain Imaging, Institute of Quantum Medical Sciences, National Institutes for Quantum and Radiological Science and Technology, Chiba, Japan
| | - Takuya Urushihata
- Department of Functional Brain Imaging, Institute of Quantum Medical Sciences, National Institutes for Quantum and Radiological Science and Technology, Chiba, Japan
| | - Manami Takahashi
- Department of Functional Brain Imaging, Institute of Quantum Medical Sciences, National Institutes for Quantum and Radiological Science and Technology, Chiba, Japan
| | - Masafumi Shimojo
- Department of Functional Brain Imaging, Institute of Quantum Medical Sciences, National Institutes for Quantum and Radiological Science and Technology, Chiba, Japan
| | - Shoko Uchida
- Department of Functional Brain Imaging, Institute of Quantum Medical Sciences, National Institutes for Quantum and Radiological Science and Technology, Chiba, Japan
| | - Nobuhiro Nitta
- Department of Molecular Imaging and Theranostics, Institute of Quantum Medical Sciences, National Institutes for Quantum and Radiological Science and Technology, Chiba, Japan
| | - Sayaka Shibata
- Department of Molecular Imaging and Theranostics, Institute of Quantum Medical Sciences, National Institutes for Quantum and Radiological Science and Technology, Chiba, Japan
| | - Keisuke Nagashima
- Kansai Photon Science Institute, National Institutes for Quantum and Radiological Science and Technology, Kyoto, Japan
| | - Yoshihiro Ochi
- Kansai Photon Science Institute, National Institutes for Quantum and Radiological Science and Technology, Kyoto, Japan
| | - Maiko Ono
- Department of Functional Brain Imaging, Institute of Quantum Medical Sciences, National Institutes for Quantum and Radiological Science and Technology, Chiba, Japan
| | - Jun Maeda
- Department of Functional Brain Imaging, Institute of Quantum Medical Sciences, National Institutes for Quantum and Radiological Science and Technology, Chiba, Japan
| | - Yutaka Tomita
- Department of Neurology, Keio University School of Medicine, Tokyo, Japan
| | - Naruhiko Sahara
- Department of Functional Brain Imaging, Institute of Quantum Medical Sciences, National Institutes for Quantum and Radiological Science and Technology, Chiba, Japan
| | - Jamie Near
- Douglas Mental Health University Institute and Department of Psychiatry, McGill University, Montreal, Canada
| | - Ichio Aoki
- Department of Molecular Imaging and Theranostics, Institute of Quantum Medical Sciences, National Institutes for Quantum and Radiological Science and Technology, Chiba, Japan
| | - Kazuhisa Shibata
- Department of Functional Brain Imaging, Institute of Quantum Medical Sciences, National Institutes for Quantum and Radiological Science and Technology, Chiba, Japan
- Laboratory for Human Cognition and Learning, Center for Brain Science, RIKEN, Saitama, Japan
| | - Makoto Higuchi
- Department of Functional Brain Imaging, Institute of Quantum Medical Sciences, National Institutes for Quantum and Radiological Science and Technology, Chiba, Japan
- Makoto Higuchi, Department of Functional Brain Imaging, Institute of Quantum Medical Sciences, National Institutes for Quantum and Radiological Science and Technology, Chiba, Japan.
| |
Collapse
|
6
|
Markicevic M, Savvateev I, Grimm C, Zerbi V. Emerging imaging methods to study whole-brain function in rodent models. Transl Psychiatry 2021; 11:457. [PMID: 34482367 PMCID: PMC8418612 DOI: 10.1038/s41398-021-01575-5] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Revised: 08/05/2021] [Accepted: 08/23/2021] [Indexed: 02/07/2023] Open
Abstract
In the past decade, the idea that single populations of neurons support cognition and behavior has gradually given way to the realization that connectivity matters and that complex behavior results from interactions between remote yet anatomically connected areas that form specialized networks. In parallel, innovation in brain imaging techniques has led to the availability of a broad set of imaging tools to characterize the functional organization of complex networks. However, each of these tools poses significant technical challenges and faces limitations, which require careful consideration of their underlying anatomical, physiological, and physical specificity. In this review, we focus on emerging methods for measuring spontaneous or evoked activity in the brain. We discuss methods that can measure large-scale brain activity (directly or indirectly) with a relatively high temporal resolution, from milliseconds to seconds. We further focus on methods designed for studying the mammalian brain in preclinical models, specifically in mice and rats. This field has seen a great deal of innovation in recent years, facilitated by concomitant innovation in gene-editing techniques and the possibility of more invasive recordings. This review aims to give an overview of currently available preclinical imaging methods and an outlook on future developments. This information is suitable for educational purposes and for assisting scientists in choosing the appropriate method for their own research question.
Collapse
Affiliation(s)
- Marija Markicevic
- Neural Control of Movement Lab, HEST, ETH Zürich, Zürich, Switzerland
- Neuroscience Center Zurich, University and ETH Zürich, Zürich, Switzerland
| | - Iurii Savvateev
- Neural Control of Movement Lab, HEST, ETH Zürich, Zürich, Switzerland
- Neuroscience Center Zurich, University and ETH Zürich, Zürich, Switzerland
- Decision Neuroscience Lab, HEST, ETH Zürich, Zürich, Switzerland
| | - Christina Grimm
- Neural Control of Movement Lab, HEST, ETH Zürich, Zürich, Switzerland
- Neuroscience Center Zurich, University and ETH Zürich, Zürich, Switzerland
| | - Valerio Zerbi
- Neural Control of Movement Lab, HEST, ETH Zürich, Zürich, Switzerland.
- Neuroscience Center Zurich, University and ETH Zürich, Zürich, Switzerland.
| |
Collapse
|
7
|
Ip IB, Bridge H. Investigating the neurochemistry of the human visual system using magnetic resonance spectroscopy. Brain Struct Funct 2021; 227:1491-1505. [PMID: 33900453 PMCID: PMC9046312 DOI: 10.1007/s00429-021-02273-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Accepted: 04/09/2021] [Indexed: 11/29/2022]
Abstract
Biochemical processes underpin the structure and function of the visual cortex, yet our understanding of the fundamental neurochemistry of the visual brain is incomplete. Proton magnetic resonance spectroscopy (1H-MRS) is a non-invasive brain imaging tool that allows chemical quantification of living tissue by detecting minute differences in the resonant frequency of molecules. Application of MRS in the human brain in vivo has advanced our understanding of how the visual brain consumes energy to support neural function, how its neural substrates change as a result of disease or dysfunction, and how neural populations signal during perception and plasticity. The aim of this review is to provide an entry point to researchers interested in investigating the neurochemistry of the visual system using in vivo measurements. We provide a basic overview of MRS principles, and then discuss recent findings in four topics of vision science: (i) visual perception, plasticity in the (ii) healthy and (iii) dysfunctional visual system, and (iv) during visual stimulation. Taken together, evidence suggests that the neurochemistry of the visual system provides important novel insights into how we perceive the world.
Collapse
Affiliation(s)
- I Betina Ip
- Wellcome Centre for Integrative Neuroimaging, FMRIB Building, Nuffield Department of Clinical Neurosciences, University of Oxford, John Radcliffe Hospital, Oxford, OX3 9DU, UK
| | - Holly Bridge
- Wellcome Centre for Integrative Neuroimaging, FMRIB Building, Nuffield Department of Clinical Neurosciences, University of Oxford, John Radcliffe Hospital, Oxford, OX3 9DU, UK.
| |
Collapse
|
8
|
Dwyer GE, Craven AR, Bereśniewicz J, Kazimierczak K, Ersland L, Hugdahl K, Grüner R. Simultaneous Measurement of the BOLD Effect and Metabolic Changes in Response to Visual Stimulation Using the MEGA-PRESS Sequence at 3 T. Front Hum Neurosci 2021; 15:644079. [PMID: 33841118 PMCID: PMC8024522 DOI: 10.3389/fnhum.2021.644079] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2020] [Accepted: 02/26/2021] [Indexed: 11/13/2022] Open
Abstract
The blood oxygen level dependent (BOLD) effect that provides the contrast in functional magnetic resonance imaging (fMRI) has been demonstrated to affect the linewidth of spectral peaks as measured with magnetic resonance spectroscopy (MRS) and through this, may be used as an indirect measure of cerebral blood flow related to neural activity. By acquiring MR-spectra interleaved with frames without water suppression, it may be possible to image the BOLD effect and associated metabolic changes simultaneously through changes in the linewidth of the unsuppressed water peak. The purpose of this study was to implement this approach with the MEGA-PRESS sequence, widely considered to be the standard sequence for quantitative measurement of GABA at field strengths of 3 T and lower, to observe how changes in both glutamate (measured as Glx) and GABA levels may relate to changes due to the BOLD effect. MR-spectra and fMRI were acquired from the occipital cortex (OCC) of 20 healthy participants whilst undergoing intrascanner visual stimulation in the form of a red and black radial checkerboard, alternating at 8 Hz, in 90 s blocks comprising 30 s of visual stimulation followed by 60 s of rest. Results show very strong agreement between the changes in the linewidth of the unsuppressed water signal and the canonical haemodynamic response function as well as a strong, negative, but not statistically significant, correlation with the Glx signal as measured from the OFF spectra in MEGA-PRESS pairs. Findings from this experiment suggest that the unsuppressed water signal provides a reliable measure of the BOLD effect and that correlations with associated changes in GABA and Glx levels may also be measured. However, discrepancies between metabolite levels as measured from the difference and OFF spectra raise questions regarding the reliability of the respective methods.
Collapse
Affiliation(s)
- Gerard Eric Dwyer
- Department of Biological and Medical Psychology, University of Bergen, Bergen, Norway.,NORMENT Centre of Excellence, Haukeland University Hospital, Bergen, Norway
| | - Alexander R Craven
- Department of Biological and Medical Psychology, University of Bergen, Bergen, Norway.,NORMENT Centre of Excellence, Haukeland University Hospital, Bergen, Norway.,Department of Clinical Engineering, Haukeland University Hospital, Bergen, Norway
| | - Justyna Bereśniewicz
- Department of Biological and Medical Psychology, University of Bergen, Bergen, Norway.,NORMENT Centre of Excellence, Haukeland University Hospital, Bergen, Norway
| | - Katarzyna Kazimierczak
- Department of Biological and Medical Psychology, University of Bergen, Bergen, Norway.,Mohn Medical Imaging and Visualization Centre, Haukeland University Hospital, University of Bergen, Bergen, Norway
| | - Lars Ersland
- Department of Biological and Medical Psychology, University of Bergen, Bergen, Norway.,NORMENT Centre of Excellence, Haukeland University Hospital, Bergen, Norway.,Department of Clinical Engineering, Haukeland University Hospital, Bergen, Norway
| | - Kenneth Hugdahl
- Department of Biological and Medical Psychology, University of Bergen, Bergen, Norway.,Department of Radiology, Haukeland University Hospital, Bergen, Norway.,Division of Psychiatry, Haukeland University Hospital, Bergen, Norway
| | - Renate Grüner
- NORMENT Centre of Excellence, Haukeland University Hospital, Bergen, Norway.,Mohn Medical Imaging and Visualization Centre, Haukeland University Hospital, University of Bergen, Bergen, Norway.,Department of Radiology, Haukeland University Hospital, Bergen, Norway.,Department of Physics and Technology, University of Bergen, Bergen, Norway
| |
Collapse
|