1
|
Kim H, Park S, Hu R, Hoang KB, Sun PZ. 3D CEST MRI with an unevenly segmented RF irradiation scheme: A feasibility study in brain tumor imaging. Magn Reson Med 2023; 90:2400-2410. [PMID: 37526017 PMCID: PMC10586718 DOI: 10.1002/mrm.29810] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 06/17/2023] [Accepted: 07/08/2023] [Indexed: 08/02/2023]
Abstract
PURPOSE To integrate 3D CEST EPI with an unevenly segmented RF irradiation module and preliminarily demonstrate it in the clinical setting. METHODS A CEST MRI with unevenly segmented RF saturation was implemented, including a long primary RF saturation to induce the steady-state CEST effect, maintained with repetitive short secondary RF irradiation between readouts. This configuration reduces relaxation-induced blur artifacts during acquisition, allowing fast 3D spatial coverage. Numerical simulations were performed to select parameters such as flip angle (FA), short RF saturation duration (Ts2), and the number of readout segments. The sequence was validated experimentally with data from a phantom, healthy volunteers, and a brain tumor patient. RESULTS Based on the numerical simulation and l-carnosine gel phantom experiment, FA, Ts2, and the number of segments were set to 20°, 0.3 s, and the range from 4 to 8, respectively. The proposed method minimized signal modulation in the human brain images in the kz direction during the acquisition and provided the blur artifacts-free CEST contrast over the whole volume. Additionally, the CEST contrast in the tumor tissue region is higher than in the contralateral normal tissue region. CONCLUSIONS It is feasible to implement a highly accelerated 3D EPI CEST imaging with unevenly segmented RF irradiation.
Collapse
Affiliation(s)
- Hahnsung Kim
- Emory National Primate Research Center, Emory University, Atlanta GA
- Department of Radiology and Imaging Sciences, Emory University School of Medicine, Atlanta GA
| | - Suhyung Park
- Department of Computer Engineering, Chonnam National University, South Korea
- Department of ICT Convergence System Engineering, Chonnam National University, South Korea
| | - Ranliang Hu
- Department of Radiology and Imaging Sciences, Emory University School of Medicine, Atlanta GA
| | - Kimberly B Hoang
- Department of Neurosurgery, Emory University School of Medicine, Atlanta GA
| | - Phillip Zhe Sun
- Emory National Primate Research Center, Emory University, Atlanta GA
- Department of Radiology and Imaging Sciences, Emory University School of Medicine, Atlanta GA
| |
Collapse
|
2
|
Zhang Y, Zu T, Liu R, Zhou J. Acquisition sequences and reconstruction methods for fast chemical exchange saturation transfer imaging. NMR IN BIOMEDICINE 2023; 36:e4699. [PMID: 35067987 DOI: 10.1002/nbm.4699] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Revised: 01/02/2022] [Accepted: 01/17/2022] [Indexed: 05/23/2023]
Abstract
Chemical exchange saturation transfer (CEST) imaging is an emerging molecular magnetic resonance imaging (MRI) technique that has been developed and employed in numerous diseases. Based on the unique saturation transfer principle, a family of CEST-detectable biomolecules in vivo have been found capable of providing valuable diagnostic information. However, CEST MRI needs a relatively long scan time due to the common long saturation labeling module and typical acquisition of multiple frequency offsets and signal averages, limiting its widespread clinical applications. So far, a plethora of imaging schemes and techniques has been developed to accelerate CEST MRI. In this review, the key acquisition and reconstruction methods for fast CEST imaging are summarized from a practical and systematic point of view. The first acquisition sequence section describes the major development of saturation schemes, readout patterns, ultrafast z-spectroscopy, and saturation-editing techniques for rapid CEST imaging. The second reconstruction method section lists the important advances of parallel imaging, compressed sensing, sparsity in the z-spectrum, and algorithms beyond the Fourier transform for speeding up CEST MRI.
Collapse
Affiliation(s)
- Yi Zhang
- Key Laboratory for Biomedical Engineering of Ministry of Education, Department of Biomedical Engineering, College of Biomedical Engineering & Instrument Science, Zhejiang University, Hangzhou, Zhejiang, China
- Cancer Center, Zhejiang University, Hangzhou, Zhejiang, China
| | - Tao Zu
- Key Laboratory for Biomedical Engineering of Ministry of Education, Department of Biomedical Engineering, College of Biomedical Engineering & Instrument Science, Zhejiang University, Hangzhou, Zhejiang, China
| | - Ruibin Liu
- Key Laboratory for Biomedical Engineering of Ministry of Education, Department of Biomedical Engineering, College of Biomedical Engineering & Instrument Science, Zhejiang University, Hangzhou, Zhejiang, China
| | - Jinyuan Zhou
- Department of Radiology, Johns Hopkins University, Baltimore, Maryland, USA
| |
Collapse
|
3
|
Sun PZ. Generalization of quasi-steady-state reconstruction to CEST MRI with two-tiered RF saturation and gradient-echo readout-Synergistic nuclear Overhauser enhancement contribution to brain tumor amide proton transfer-weighted MRI. Magn Reson Med 2023; 89:2014-2023. [PMID: 36579767 DOI: 10.1002/mrm.29570] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 12/13/2022] [Accepted: 12/14/2022] [Indexed: 12/30/2022]
Abstract
PURPOSE While amide proton transfer-weighted (APTw) MRI has been adopted in tumor imaging, there are concurrent APT, magnetization transfer, and nuclear Overhauser enhancement changes. Also, the APTw image is confounded by relaxation changes, particularly when the relaxation delay and saturation time are not sufficiently long. Our study aimed to extend a quasi-steady-state (QUASS) solution to determine the contribution of the multipool CEST signals to the observed tumor APTw contrast. METHODS Our study derived the QUASS solution for a multislice CEST-MRI sequence with an interleaved RF saturation and gradient-echo readout between signal averaging. Multiparametric MRI scans were obtained in rat brain tumor models, including T1 , T2 , diffusion, and CEST scans. Finally, we performed spinlock model-based multipool fitting to determine multiple concurrent CEST signal changes in the tumor. RESULTS The QUASS APTw MRI showed small but significant differences in normal and tumor tissues and their contrast from the acquired asymmetry calculation. The spinlock model-based fitting showed significant differences in semisolid magnetization transfer, amide, and nuclear Overhauser enhancement effects between the apparent and QUASS CEST MRI. In addition, we determined that the tumor APTw contrast is due to synergistic APT increase (+3.5 ppm) and NOE decrease (-3.5 ppm), with their relative contribution being about one third and two thirds under a moderate B1 of 0.75 μT at 4.7 T. CONCLUSION Our study generalized QUASS analysis to gradient-echo image readout and quantified the underlying tumor CEST signal changes, providing an improved elucidation of the commonly used APTw MRI.
Collapse
Affiliation(s)
- Phillip Zhe Sun
- Emory Primate Imaging Center, Emory National Primate Research Center, Emory University, Atlanta, Georgia, USA.,Department of Radiology and Imaging Sciences, Emory University School of Medicine, Atlanta, Georgia, USA
| |
Collapse
|
4
|
Sun PZ. Quasi-steady-state amide proton transfer (QUASS APT) MRI enhances pH-weighted imaging of acute stroke. Magn Reson Med 2022; 88:2633-2644. [PMID: 36178234 PMCID: PMC9529238 DOI: 10.1002/mrm.29408] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Revised: 07/15/2022] [Accepted: 07/19/2022] [Indexed: 02/01/2023]
Abstract
PURPOSE Chemical exchange saturation transfer (CEST) imaging measurement depends not only on the labile proton concentration and pH-dependent exchange rate but also on experimental conditions, including the relaxation delay and radiofrequency (RF) saturation time. Our study aimed to extend a quasi-steady-state (QUASS) solution to a modified multi-slice CEST MRI sequence and test if it provides enhanced pH imaging after acute stroke. METHODS Our study derived the QUASS solution for a modified multislice CEST MRI sequence with an unevenly segmented RF saturation between image readout and signal averaging. Numerical simulation was performed to test if the generalized QUASS solution corrects the impact of insufficiently long relaxation delay, primary and secondary saturation times, and multi-slice readout. In addition, multiparametric MRI scans were obtained after middle cerebral artery occlusion, including relaxation and CEST Z-spectrum, to evaluate the performance of QUASS CEST MRI in a rodent acute stroke model. We also performed Lorentzian fitting to isolate multi-pool CEST contributions. RESULTS The QUASS analysis enhanced pH-weighted magnetization transfer asymmetry contrast over the routine apparent CEST measurements in both contralateral normal (-3.46% ± 0.62% (apparent) vs. -3.67% ± 0.66% (QUASS), P < 0.05) and ischemic tissue (-5.53% ± 0.68% (apparent) vs. -5.94% ± 0.73% (QUASS), P < 0.05). Lorentzian fitting also showed significant differences between routine and QUASS analysis of ischemia-induced changes in magnetization transfer, amide, amine, guanidyl CEST, and nuclear Overhauser enhancement (-1.6 parts per million) effects. CONCLUSION Our study demonstrated that generalized QUASS analysis enhanced pH MRI contrast and improved quantification of the underlying CEST contrast mechanism, promising for further in vivo applications.
Collapse
Affiliation(s)
- Phillip Zhe Sun
- Athinoula A Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, MA
- Imaging Center, Emory National Primate Research Center, Emory University, Atlanta GA
- Department of Radiology and Imaging Sciences, Emory University School of Medicine, Atlanta GA
| |
Collapse
|
5
|
Wu Y, Liu Z, Yang Q, Zou L, Zhang F, Qian L, Liu X, Zheng H, Luo D, Sun PZ. Fast and equilibrium CEST imaging of brain tumor patients at 3T. Neuroimage Clin 2021; 33:102890. [PMID: 34864285 PMCID: PMC8645967 DOI: 10.1016/j.nicl.2021.102890] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2021] [Revised: 11/10/2021] [Accepted: 11/16/2021] [Indexed: 02/01/2023]
Abstract
Chemical exchange saturation transfer (CEST) MRI, versatile for detecting endogenous mobile proteins and tissue pH, has proved valuable in tumor imaging. However, CEST MRI scans are often performed under non-equilibrium conditions, which confound tissue characterization. This study proposed a quasi-steady-state (QUASS) CEST MRI algorithm to standardize fast and accurate tumor imaging at 3 T. The CEST signal evolution was modeled by longitudinal relaxation rate during relaxation delay (Td) and spinlock relaxation during RF saturation time (Ts), from which the QUASS CEST effect is derived. Numerical simulation and human MR imaging experiments (7 healthy volunteers and 19 tumor patients) were conducted at 3 T to compare the CEST measurements obtained under two representative experimental conditions. In addition, amide proton transfer (APT), combined magnetization transfer (MT) and nuclear overhauser enhancement (NOE) effects, and direct water saturation were isolated using a 3-pool Lorentzian fitting in white matter and gray matter of healthy volunteers and for patients in the contralateral normal-appearing white matter and tumor regions. Finally, the student's t-test was performed between conventional and QUASS CEST measurements. The routine APT and combined MT & NOE measures significantly varied with Ts and Td (P < .001) and were significantly smaller than the corresponding QUASS indices (P < .001). In contrast, the results from the QUASS reconstruction showed little dependence on the scan protocol (P > .05), indicating the accuracy and robustness of QUASS CEST MRI for tumor imaging. To summarize, the QUASS CEST reconstruction algorithm enables fast and accurate tumor CEST imaging at 3 T, promising to expedite and standardize clinical CEST MRI.
Collapse
Affiliation(s)
- Yin Wu
- Paul C. Lauterbur Research Center for Biomedical Imaging, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong, China,Key Laboratory of Health Informatics, Chinese Academy of Sciences, Shenzhen, Guangdong, China
| | - Zhou Liu
- Paul C. Lauterbur Research Center for Biomedical Imaging, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong, China,Department of Radiology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital & Shenzhen Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Shenzhen, Guangdong, China
| | - Qian Yang
- Department of Radiology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital & Shenzhen Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Shenzhen, Guangdong, China
| | - Liyan Zou
- Department of Radiology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital & Shenzhen Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Shenzhen, Guangdong, China
| | - Fan Zhang
- Department of Neurosurgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital & Shenzhen Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Shenzhen, Guangdong, China
| | - Long Qian
- MR Research, GE Healthcare, Beijing, China
| | - Xin Liu
- Paul C. Lauterbur Research Center for Biomedical Imaging, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong, China,Key Laboratory of Health Informatics, Chinese Academy of Sciences, Shenzhen, Guangdong, China
| | - Hairong Zheng
- Paul C. Lauterbur Research Center for Biomedical Imaging, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong, China,Key Laboratory of Health Informatics, Chinese Academy of Sciences, Shenzhen, Guangdong, China
| | - Dehong Luo
- Department of Radiology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital & Shenzhen Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Shenzhen, Guangdong, China
| | - Phillip Zhe Sun
- Department of Radiology and Imaging Sciences, Emory University School of Medicine, Atlanta, GA, USA,Corresponding author at: Department of Radiology and Imaging Sciences, Emory University School of Medicine, 954 Gatewood Road NE, Atlanta, GA 30329, USA.
| |
Collapse
|