1
|
Waks M, Lagore RL, Auerbach E, Grant A, Sadeghi‐Tarakameh A, DelaBarre L, Jungst S, Tavaf N, Lattanzi R, Giannakopoulos I, Moeller S, Wu X, Yacoub E, Vizioli L, Schmidt S, Metzger GJ, Eryaman Y, Adriany G, Uğurbil K. RF coil design strategies for improving SNR at the ultrahigh magnetic field of 10.5T. Magn Reson Med 2025; 93:873-888. [PMID: 39415477 PMCID: PMC11604834 DOI: 10.1002/mrm.30315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 08/15/2024] [Accepted: 09/05/2024] [Indexed: 10/18/2024]
Abstract
PURPOSE Toward pushing the boundaries of ultrahigh fields for human brain imaging, we wish to evaluate experimentally achievable SNR relative to ultimate intrinsic SNR (uiSNR) at 10.5T, develop design strategies toward approaching the latter, quantify magnetic field-dependent SNR gains, and demonstrate the feasibility of whole-brain, high-resolution human brain imaging at this uniquely high field strength. METHODS A dual row 16-channel self-decoupled transmit (Tx) and receive (Rx) array was developed for 10.5T using custom Tx/Rx switches. A 64-channel receive-only array was built to fit into the 16-channel Tx/Rx array. Electromagnetic modeling and experiments were used to define safe operational power limits. Experimental SNR was evaluated relative to uiSNR at 10.5T and 7T. RESULTS The 64-channel Rx array alone captured approximately 50% of the central uiSNR at 10.5T, while an identical array developed for 7T captured about 76% of uiSNR at 7T. The 16-channel Tx/80-channel Rx configuration brought the fraction of uiSNR captured at 10.5T to levels comparable to the 64-channel Rx array at 7T. SNR data displayed an approximateB 0 2 $$ {\mathrm{B}}_0^2 $$ dependence over a large central region when evaluated in the context of uiSNR. Whole-brain, high-resolutionT 2 * $$ {\mathrm{T}}_2^{\ast } $$ -weighted and T1-weighted anatomical and gradient-recalled-echo BOLD-EPI functional MRI images were obtained at 10.5T for the first time with such an advanced array. CONCLUSION We demonstrated the ability to approach the uiSNR at 10.5T over the human brain, achieving large SNR gains over 7T, currently the most commonly used ultrahigh-field platform. Whole-brain, high-resolution anatomical and EPI-based functional MRI data were obtained at 10.5T, illustrating the promise of greater than 10T fields in studying the human brain.
Collapse
Affiliation(s)
- Matt Waks
- Center for Magnetic Resonance Research (CMRR)University of MinnesotaMinneapolisMinnesotaUSA
| | - Russell L. Lagore
- Center for Magnetic Resonance Research (CMRR)University of MinnesotaMinneapolisMinnesotaUSA
| | - Edward Auerbach
- Center for Magnetic Resonance Research (CMRR)University of MinnesotaMinneapolisMinnesotaUSA
| | - Andrea Grant
- Center for Magnetic Resonance Research (CMRR)University of MinnesotaMinneapolisMinnesotaUSA
| | | | - Lance DelaBarre
- Center for Magnetic Resonance Research (CMRR)University of MinnesotaMinneapolisMinnesotaUSA
| | - Steve Jungst
- Center for Magnetic Resonance Research (CMRR)University of MinnesotaMinneapolisMinnesotaUSA
| | - Nader Tavaf
- Center for Magnetic Resonance Research (CMRR)University of MinnesotaMinneapolisMinnesotaUSA
| | - Riccardo Lattanzi
- Center for Advanced Imaging Innovation and Research (CAIR) and Bernard and Irene Schwartz Center for Biomedical Imaging, Department of RadiologyNew York University Grossman School of MedicineNew YorkNew YorkUSA
| | - Ilias Giannakopoulos
- Center for Advanced Imaging Innovation and Research (CAIR) and Bernard and Irene Schwartz Center for Biomedical Imaging, Department of RadiologyNew York University Grossman School of MedicineNew YorkNew YorkUSA
| | - Steen Moeller
- Center for Magnetic Resonance Research (CMRR)University of MinnesotaMinneapolisMinnesotaUSA
| | - Xiaoping Wu
- Center for Magnetic Resonance Research (CMRR)University of MinnesotaMinneapolisMinnesotaUSA
| | - Essa Yacoub
- Center for Magnetic Resonance Research (CMRR)University of MinnesotaMinneapolisMinnesotaUSA
| | - Luca Vizioli
- Center for Magnetic Resonance Research (CMRR)University of MinnesotaMinneapolisMinnesotaUSA
| | - Simon Schmidt
- Center for Magnetic Resonance Research (CMRR)University of MinnesotaMinneapolisMinnesotaUSA
| | - Gregory J. Metzger
- Center for Magnetic Resonance Research (CMRR)University of MinnesotaMinneapolisMinnesotaUSA
| | - Yigitcan Eryaman
- Center for Magnetic Resonance Research (CMRR)University of MinnesotaMinneapolisMinnesotaUSA
| | - Gregor Adriany
- Center for Magnetic Resonance Research (CMRR)University of MinnesotaMinneapolisMinnesotaUSA
| | - Kamil Uğurbil
- Center for Magnetic Resonance Research (CMRR)University of MinnesotaMinneapolisMinnesotaUSA
| |
Collapse
|
2
|
Kim J, Sun C, Moon CH, Hetherington H, Pan J. Evaluation of the performance of a 7-T 8 × 2 transceiver array. NMR IN BIOMEDICINE 2024; 37:e5146. [PMID: 38533593 DOI: 10.1002/nbm.5146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 02/16/2024] [Accepted: 02/21/2024] [Indexed: 03/28/2024]
Abstract
The decoupled 8 × 2 transceiver array has been shown to achieve a mean B1 + of 11.7 uT with a coefficient of variation of ~11% over the intracranial brain volume for 7-T MR imaging. However, this array may be thought to give lower signal-to-noise ratio (SNR) and higher g-factors for parallel imaging compared with a radio frequency (RF) receive-only coil due to the latter's higher coil count and use of coil overlap to reduce the mutual impedance. Nonetheless, because the transceiver's highly decoupled design (pertinent for transmission) should also be constructive for reception, we measured the noise correlation, g-factors, and SNR for the decoupled transceiver in comparison with a commercial reference coil. We found that although the transceiver has half the number of receive elements in comparison with the reference coil (16 vs. 32), comparable g-factors and SNR over the head were obtained. From five subjects, the transceiver versus reference coil SNR was 65 ± 10 versus 67 ± 15. The mean noise correlation for all coil pairs was 10% ± 5% and 12% ± 9% (transceiver and reference coil, respectively). As changes in load impedance may alter the S parameters, we also examined the performance of the transceiver with tuned and matched (TM) versus untuned and unmatched (UTM) conditions on five subjects. We found that the noise correlation and SNR are robust to load variation; a noise correlation of 10% ± 5% and 10% ± 6% was determined with TM versus UTM conditions (SNRUTM/SNRTM = 0.97 ± 0.08). Finally, we demonstrate the performance of the array in human brain using T2-weighted turbo spin echo imaging, finding excellent SNR performance in both caudal and rostral brain regions.
Collapse
Affiliation(s)
- Junghwan Kim
- Department of Radiology, University of Missouri, Columbia, Missouri, USA
- Department of Electrical Engineering and Computer Science, University of Missouri, Columbia, Missouri, USA
| | - Changyu Sun
- Department of Radiology, University of Missouri, Columbia, Missouri, USA
- Department of Chemical and Biomedical Engineering, University of Missouri, Columbia, Missouri, USA
| | - Chan Hong Moon
- Department of Radiology, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Hoby Hetherington
- Department of Radiology, University of Missouri, Columbia, Missouri, USA
- Resonance Research Inc., Billerica, Massachusetts, USA
| | - Jullie Pan
- Department of Radiology, University of Missouri, Columbia, Missouri, USA
| |
Collapse
|
3
|
Waks M, Lagore RL, Auerbach E, Grant A, Sadeghi-Tarakameh A, DelaBarre L, Jungst S, Tavaf N, Lattanzi R, Giannakopoulos I, Moeller S, Wu X, Yacoub E, Vizioli L, Schmidt S, Metzger GJ, Eryaman Y, Adriany G, Uğurbil K. RF coil design strategies for improving SNR at the ultrahigh magnetic field of 10.5 Tesla. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.23.595628. [PMID: 38826245 PMCID: PMC11142186 DOI: 10.1101/2024.05.23.595628] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2024]
Abstract
Purpose To develop multichannel transmit and receive arrays towards capturing the ultimate-intrinsic-SNR (uiSNR) at 10.5 Tesla (T) and to demonstrate the feasibility and potential of whole-brain, high-resolution human brain imaging at this high field strength. Methods A dual row 16-channel self-decoupled transmit (Tx) array was converted to a 16Tx/Rx transceiver using custom transmit/receive switches. A 64-channel receive-only (64Rx) array was built to fit into the 16Tx/Rx array. Electromagnetic modeling and experiments were employed to define safe operation limits of the resulting 16Tx/80Rx array and obtain FDA approval for human use. Results The 64Rx array alone captured approximately 50% of the central uiSNR at 10.5T while the identical 7T 64Rx array captured ∼76% of uiSNR at this lower field strength. The 16Tx/80Rx configuration brought the fraction of uiSNR captured at 10.5T to levels comparable to the performance of the 64Rx array at 7T. SNR data obtained at the two field strengths with these arrays displayed dependent increases over a large central region. Whole-brain high resolution T 2 * and T 1 weighted anatomical and gradient-recalled echo EPI BOLD fMRI images were obtained at 10.5T for the first time with such an advanced array, illustrating the promise of >10T fields in studying the human brain. Conclusion We demonstrated the ability to approach the uiSNR at 10.5T over the human brain with a novel, high channel count array, achieving large SNR gains over 7T, currently the most commonly employed ultrahigh field platform, and demonstrate high resolution and high contrast anatomical and functional imaging at 10.5T.
Collapse
|
4
|
Solomakha GA, Glang F, Bosch D, Steffen T, Scheffler K, Avdievich NI. Dynamic parallel imaging at 9.4 T using reconfigurable receive coaxial dipoles. NMR IN BIOMEDICINE 2024; 37:e5118. [PMID: 38342102 DOI: 10.1002/nbm.5118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 01/09/2024] [Accepted: 01/17/2024] [Indexed: 02/13/2024]
Abstract
Parallel imaging is one of the key MRI technologies that allow reduction of image acquisition time. However, the parallel imaging reconstruction commonly leads to a signal-to-noise ratio (SNR) drop evaluated using a so-called geometrical factor (g-factor). The g-factor is minimized by increasing the number of array elements and their spatial diversity. At the same time, increasing the element count requires a decrease in their size. This may lead to insufficient coil loading, an increase in the relative noise contribution from the RF coil itself, and hence SNR reduction. Previously, instead of increasing the channel number, we introduced the concept of electronically switchable time-varying sensitivities, which was shown to improve parallel imaging performance. In this approach, each reconfigurable receive element supports two spatially distinct sensitivity profiles. In this work, we developed and evaluated a novel eight-element human head receive-only reconfigurable coaxial dipole array for human head imaging at 9.4 T. In contrast to the previously reported reconfigurable dipole array, the new design does not include direct current (DC) control wires connected directly to the dipoles. The coaxial cable itself is used to deliver DC voltage to the PIN diodes located at the ends of the antennas. Thus, the novel reconfigurable coaxial dipole design opens a way to scale the dynamic parallel imaging up to a realistic number of channels, that is, 32 and above. The novel array was optimized and tested experimentally, including in vivo studies. It was found that dynamic sensitivity switching provided an 8% lower mean and 33% lower maximum g-factor (for Ry × Rz = 2 × 2 acceleration) compared with conventional static sensitivities.
Collapse
Affiliation(s)
- Georgiy A Solomakha
- Magnetic Resonance Center, Max Planck Institute for Biological Cybernetics, Tübingen, Germany
| | - Felix Glang
- Magnetic Resonance Center, Max Planck Institute for Biological Cybernetics, Tübingen, Germany
| | - Dario Bosch
- Magnetic Resonance Center, Max Planck Institute for Biological Cybernetics, Tübingen, Germany
- Department of Biomedical Magnetic Resonance, Eberhard Karls University Tübingen, Tübingen, Germany
| | - Theodor Steffen
- Magnetic Resonance Center, Max Planck Institute for Biological Cybernetics, Tübingen, Germany
| | - Klaus Scheffler
- Magnetic Resonance Center, Max Planck Institute for Biological Cybernetics, Tübingen, Germany
- Department of Biomedical Magnetic Resonance, Eberhard Karls University Tübingen, Tübingen, Germany
| | - Nikolai I Avdievich
- Magnetic Resonance Center, Max Planck Institute for Biological Cybernetics, Tübingen, Germany
| |
Collapse
|
5
|
Gao Y, Liu T, Hong T, Fang Y, Jiang W, Zhang X. Subwavelength dielectric waveguide for efficient travelling-wave magnetic resonance imaging. Nat Commun 2024; 15:2298. [PMID: 38485742 PMCID: PMC10940709 DOI: 10.1038/s41467-024-46638-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Accepted: 03/05/2024] [Indexed: 03/18/2024] Open
Abstract
Magnetic resonance imaging (MRI) has diverse applications in physics, biology, and medicine. Uniform excitation of nuclei spins through circular-polarized transverse magnetic component of electromagnetic field is vital for obtaining unbiased tissue contrasts. However, achieving this in the electrically large human body poses a significant challenge, especially at ultra-high fields (UHF) with increased working frequencies (≥297 MHz). Canonical volume resonators struggle to meet this challenge, while radiative excitation methods like travelling-wave (TW) show promise but often suffer from inadequate excitation efficiency. Here, we introduce a new technique using a subwavelength dielectric waveguide insert that enhances both efficiency and homogeneity at 7 T. Through TE11-to-TM11 mode conversion, power focusing, wave impedance matching, and phase velocity matching, we achieved a 114% improvement in TW efficiency and mitigated the center-brightening effect. This fundamental advancement in TW MRI through effective wave manipulation could promote the electromagnetic design of UHF MRI systems.
Collapse
Affiliation(s)
- Yang Gao
- Hangzhou Institute of Technology, Xidian University, Hangzhou, China.
- School of Electronic Engineering, National Key Laboratory of Antennas and Microwave Technology, Xidian University, Xi'an, China.
- College of Electrical Engineering, Zhejiang University, Hangzhou, China.
| | - Tong Liu
- Hangzhou Institute of Technology, Xidian University, Hangzhou, China
| | - Tao Hong
- Hangzhou Institute of Technology, Xidian University, Hangzhou, China
- School of Electronic Engineering, National Key Laboratory of Antennas and Microwave Technology, Xidian University, Xi'an, China
| | - Youtong Fang
- College of Electrical Engineering, Zhejiang University, Hangzhou, China
| | - Wen Jiang
- Hangzhou Institute of Technology, Xidian University, Hangzhou, China
- School of Electronic Engineering, National Key Laboratory of Antennas and Microwave Technology, Xidian University, Xi'an, China
| | - Xiaotong Zhang
- College of Electrical Engineering, Zhejiang University, Hangzhou, China.
- Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China.
- MOE Frontier Science Center for Brain Science and Brain-machine Integration, Zhejiang University, Hangzhou, China.
- Interdisciplinary Institute of Neuroscience and Technology, School of Medicine, Zhejiang University, Hangzhou, China.
| |
Collapse
|
6
|
Solomakha GA, Bosch D, Glang F, Scheffler K, Avdievich NI. Evaluation of coaxial dipole antennas as transceiver elements of human head array for ultra-high field MRI at 9.4T. Magn Reson Med 2024; 91:1268-1280. [PMID: 38009927 DOI: 10.1002/mrm.29941] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 10/29/2023] [Accepted: 11/08/2023] [Indexed: 11/29/2023]
Abstract
PURPOSE The aim of this work is to evaluate a new eight-channel transceiver (TxRx) coaxial dipole array for imaging of the human head at 9.4T developed to improve specific absorption rate (SAR) performance, and provide for a more compact and robust alternative to the state-of-the art dipole arrays. METHODS First, the geometry of a single coaxial element was optimized to minimize peak SAR and sensitivity to the load variation. Next, a multi-tissue voxel model was used to numerically simulate a TxRx array coil that consisted of eight coaxial dipoles with the optimal configuration. Finally, we compared the developed array to other human head dipole arrays. Results of numerical simulations were verified on a bench and in the scanner including in vivo measurements on a healthy volunteer. RESULTS The developed eight-element coaxial dipole TxRx array coil showed up to 1.1times higher SAR-efficiency than a similar in geometry folded-end and fractionated dipole array while maintaining whole brain coverage and low sensitivity of the resonance frequency to variation in the head size. CONCLUSION As a proof of concept, we developed and constructed a prototype of a 9.4T (400 MHz) human head array consisting of eight TxRx coaxial dipoles. The developed array improved SAR-efficiency and provided for a more compact and robust alternative to the folded-end dipole design. To the best of our knowledge, this is the first example of using coaxial dipoles for human head MRI at ultra-high field.
Collapse
Affiliation(s)
- G A Solomakha
- High-Field MR Center, Max Planck Institute for Biological Cybernetics, Tübingen, Germany
| | - D Bosch
- High-Field MR Center, Max Planck Institute for Biological Cybernetics, Tübingen, Germany
- Department for Biomedical Magnetic Resonance, University of Tübingen, Tübingen, Germany
| | - F Glang
- High-Field MR Center, Max Planck Institute for Biological Cybernetics, Tübingen, Germany
| | - K Scheffler
- High-Field MR Center, Max Planck Institute for Biological Cybernetics, Tübingen, Germany
- Department for Biomedical Magnetic Resonance, University of Tübingen, Tübingen, Germany
| | - N I Avdievich
- High-Field MR Center, Max Planck Institute for Biological Cybernetics, Tübingen, Germany
| |
Collapse
|
7
|
Choi CH, Webb A, Orzada S, Kelenjeridze M, Shah NJ, Felder J. A Review of Parallel Transmit Arrays for Ultra-High Field MR Imaging. IEEE Rev Biomed Eng 2024; 17:351-368. [PMID: 37022919 DOI: 10.1109/rbme.2023.3244132] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/12/2023]
Abstract
Parallel transmission (pTX) techniques are required to tackle a number of challenges, e.g., the inhomogeneous distribution of the transmit field and elevated specific absorption rate (SAR), in ultra-high field (UHF) MR imaging. Additionally, they offer multiple degrees of freedom to create temporally- and spatially-tailored transverse magnetization. Given the increasing availability of MRI systems at 7 T and above, it is anticipated that interest in pTX applications will grow accordingly. One of the key components in MR systems capable of pTX is the design of the transmit array, as this has a major impact on performance in terms of power requirements, SAR and RF pulse design. While several reviews on pTX pulse design and the clinical applicability of UHF exist, there is currently no systematic review of pTX transmit/transceiver coils and their associated performance. In this article, we analyze transmit array concepts to determine the strengths and weaknesses of different types of design. We systematically review the different types of individual antennas employed for UHF, their combination into pTX arrays, and methods to decouple the individual elements. We also reiterate figures-of-merit (FoMs) frequently employed to describe the performance of pTX arrays and summarize published array designs in terms of these FoMs.
Collapse
|
8
|
Nikulin AV, Bosch D, Solomakha GA, Glang F, Scheffler K, Avdievich NI. Double-row 16-element folded-end dipole transceiver array for 3D RF shimming of the whole human brain at 9.4 T. NMR IN BIOMEDICINE 2023; 36:e4981. [PMID: 37173759 DOI: 10.1002/nbm.4981] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 04/18/2023] [Accepted: 05/10/2023] [Indexed: 05/15/2023]
Abstract
Homogeneity and longitudinal coverage of transmit (Tx) human head RF coils at ultrahigh field (UHF, ≥7 T) can be improved by 3D RF shimming, which requires using multi-row Tx arrays. Examples of 3D RF shimming using double-row UHF loop transceiver (TxRx) and Tx arrays have been described previously. Dipole antennas provide unique simplicity and robustness while offering comparable Tx efficiency and signal-to-noise ratio to conventional loop designs. Single-row Tx and TxRx human head UHF dipole arrays have been previously described by multiple groups. Recently, we developed a novel type of dipole antenna, a folded-end dipole, and presented single-row eight-element array prototypes for human head imaging at 7 and 9.4 T. These studies have shown that the novel antenna design can improve the longitudinal coverage and minimize peak local specific absorption rate (SAR) as compared with common unfolded dipoles. In this work, we developed, constructed, and evaluated a 16-element double-row TxRx folded-end dipole array for human head imaging at 9.4 T. To minimize cross-talk between neighboring dipoles located in different rows, we used transformer decoupling, which decreased coupling to a level below -20 dB. The developed array design was demonstrated to be capable of 3D static RF shimming and can be potentially used for dynamic shimming using parallel transmission. For optimal phase shifts between the rows, the array provides 11% higher SAR efficiency and 18% higher homogeneity than a folded-end dipole single-row array of the same length. The design also offers a substantially simpler and more robust alternative to the common double-row loop array with about 10% higher SAR efficiency and better longitudinal coverage.
Collapse
Affiliation(s)
- Anton V Nikulin
- High-Field MR Center, Max Planck Institute for Biological Cybernetics, Tübingen, Germany
- Department for Biomedical Magnetic Resonance, University of Tübingen, Tübingen, Germany
- Center of Photonics and 2D Materials, Moscow Institute of Physics and Technology, Dolgoprudny, Russia
| | - Dario Bosch
- High-Field MR Center, Max Planck Institute for Biological Cybernetics, Tübingen, Germany
- Department for Biomedical Magnetic Resonance, University of Tübingen, Tübingen, Germany
| | - Georgiy A Solomakha
- High-Field MR Center, Max Planck Institute for Biological Cybernetics, Tübingen, Germany
- Department of Physics and Engineering, ITMO University, St. Petersburg, Russia
| | - Felix Glang
- High-Field MR Center, Max Planck Institute for Biological Cybernetics, Tübingen, Germany
| | - Klaus Scheffler
- High-Field MR Center, Max Planck Institute for Biological Cybernetics, Tübingen, Germany
- Department for Biomedical Magnetic Resonance, University of Tübingen, Tübingen, Germany
| | - Nikolai I Avdievich
- High-Field MR Center, Max Planck Institute for Biological Cybernetics, Tübingen, Germany
| |
Collapse
|