1
|
Kelsey LJ, Seiberlich N, Bapuraj J, Rivas F, Masotti M, Gulani V, Mishra S. Clinical MR imaging of patients with spinal hardware at 0.55T: comparison of diagnostic assessment and metal artifact appearance with 1.5T. EUROPEAN SPINE JOURNAL : OFFICIAL PUBLICATION OF THE EUROPEAN SPINE SOCIETY, THE EUROPEAN SPINAL DEFORMITY SOCIETY, AND THE EUROPEAN SECTION OF THE CERVICAL SPINE RESEARCH SOCIETY 2025:10.1007/s00586-025-08701-7. [PMID: 39894833 DOI: 10.1007/s00586-025-08701-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 12/12/2024] [Accepted: 01/26/2025] [Indexed: 02/04/2025]
Abstract
PURPOSE The aim of this study is to assess inter-reader agreement of imaging findings and compare readers' assessment of image quality (IQ) and appearance of metal artifact (MA) in patients with spinal implants between 0.55T and 1.5T MRI. METHODS Patients imaged on Siemens Healthineers Magnetom Free.Max 0.55T (n = 42; avg. age 55 yrs.) with spinal hardware between 12/2021 and 3/2024 were included. Of these, 18 patients had a paired exam at 1.5T. All exams were reviewed independently by three neuroradiologists (R1-3). Readers selected imaging findings from a pick-list and rated sequences using a 4-point Likert scale for IQ and MA. RESULTS At both 0.55T and 1.5T, raw agreement for the following findings ranged between 81 and 95%: cord signal abnormality, osteomyelitis/discitis, osseous metastatic disease, and compression fracture. Agreement on post-operative fluid collection and spinal canal stenosis was 64.3% and 66.7% at 0.55T, and 77.7% and 50.0% at 1.5T. Agreement on neural foraminal stenosis was low in both cohorts, 47.6% and 33.3% at 0.55T and 1.5T. No sequence at 0.55T was rated inferior to 1.5T in IQ or MA. Sequences rated higher at 0.55T compared to 1.5T were as follows for IQ: sagittal T1w TSE (R1) and as follows for MA: axial T1w TSE (R1, R2), sagittal T1w TSE (R1), axial T2w TSE (R1), sagittal T1w TSE Dixon post-contrast (R2), sagittal T2w STIR (R2: p = 0.01). CONCLUSION Imaging patients with spinal hardware at 0.55T results in comparable inter-reader agreement for clinically-relevant imaging findings and equivalent or improved image quality compared to 1.5T.
Collapse
Affiliation(s)
- Lauren J Kelsey
- Department of Radiology, University of Michigan, Ann Arbor, MI, USA
| | | | | | - Francisco Rivas
- Department of Radiology, University of Michigan, Ann Arbor, MI, USA
| | - Maria Masotti
- Department of Biostatistics, University of Michigan, Ann Arbor, MI, USA
| | - Vikas Gulani
- Department of Radiology, University of Michigan, Ann Arbor, MI, USA
| | - Shruti Mishra
- Department of Radiology, University of Michigan, Ann Arbor, MI, USA.
- Department of Radiology, Division of Neuroradiology, University of Michigan Medical School, Medical Science Unit 1, Rm #3125 1301 Catherine St, Ann Arbor, MI, 48109, USA.
| |
Collapse
|
2
|
Balaji S, Wiley N, Poorman ME, Kolind SH. Low-field MRI for use in neurological diseases. Curr Opin Neurol 2024; 37:381-391. [PMID: 38813835 DOI: 10.1097/wco.0000000000001282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/31/2024]
Abstract
PURPOSE OF REVIEW To review recent clinical uses of low-field magnetic resonance imaging (MRI) to guide incorporation into neurological practice. RECENT FINDINGS Use of low-field MRI has been demonstrated in applications including tumours, vascular pathologies, multiple sclerosis, brain injury, and paediatrics. Safety, workflow, and image quality have also been evaluated. SUMMARY Low-field MRI has the potential to increase access to critical brain imaging for patients who otherwise may not obtain imaging in a timely manner. This includes areas such as the intensive care unit and emergency room, where patients could be imaged at the point of care rather than be transported to the MRI scanner. Such systems are often more affordable than conventional systems, allowing them to be more easily deployed in resource constrained settings. A variety of systems are available on the market or in a research setting and are currently being used to determine clinical uses for these devices. The utility of such devices must be fully evaluated in clinical scenarios before adoption into standard practice can be achieved. This review summarizes recent clinical uses of low-field MR as well as safety, workflows, and image quality to aid practitioners in assessing this new technology.
Collapse
Affiliation(s)
- Sharada Balaji
- Department of Physics and Astronomy, University of British Columbia, Vancouver, British Columbia, Canada
| | - Neale Wiley
- Department of Physics and Astronomy, University of British Columbia, Vancouver, British Columbia, Canada
| | | | - Shannon H Kolind
- Department of Physics and Astronomy, University of British Columbia, Vancouver, British Columbia, Canada
- Department of Medicine (Neurology)
- Department of Radiology
- International Collaboration on Repair Discoveries, Blusson Spinal Cord Centre, University of British Columbia, Vancouver, British Columbia, Canada
| |
Collapse
|
3
|
Ramachandran A, Hussain HK, Gulani V, Kelsey L, Mendiratta-Lala M, Richardson J, Masotti M, Dudek N, Morehouse J, Panagis KR, Wright K, Seiberlich N. Abdominal MRI on a Commercial 0.55T System: Initial Evaluation and Comparison to Higher Field Strengths. Acad Radiol 2024; 31:3177-3190. [PMID: 38320946 DOI: 10.1016/j.acra.2024.01.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 01/09/2024] [Accepted: 01/09/2024] [Indexed: 02/08/2024]
Abstract
RATIONALE AND OBJECTIVES This study aims to assess the quality of abdominal MR images acquired on a commercial 0.55T scanner and compare these images with those acquired on conventional 1.5T/3T scanners in both healthy subjects and patients. MATERIALS AND METHODS Fifteen healthy subjects and 52 patients underwent abdominal Magnetic Resonance Imaging at 0.55T. Images were also collected in healthy subjects at 1.5T, and comparison 1.5/3T images identified for 28 of the 52 patients. Image quality was rated by two radiologists on a 4-point Likert scale. Readers were asked whether they could answer the clinical question for patient studies. Wilcoxon signed-rank test was used to test for significant differences in image ratings and acquisition times, and inter-reader reliability was computed. RESULTS The overall image quality of all sequences at 0.55T were rated as acceptable in healthy subjects. Sequences were modified to improve signal-to-noise ratio and reduce artifacts and deployed for clinical use; 52 patients were enrolled in this study. Radiologists were able to answer the clinical question in 52 (reader 1) and 46 (reader 2) of the patient cases. Average image quality was considered to be diagnostic (>3) for all sequences except arterial phase FS 3D T1w gradient echo (GRE) and 3D magnetic resonance cholangiopancreatography for one reader. In comparison to higher field images, significantly lower scores were given to 0.55T IP 2D GRE and arterial phase FS 3D T1w GRE, and significantly higher scores to diffusion-weighted echo planar imaging at 0.55T; other sequences were equivalent. The average scan time at 0.55T was 54 ± 10 minutes vs 36 ± 11 minutes at higher field strengths (P < .001). CONCLUSION Diagnostic-quality abdominal MR images can be obtained on a commercial 0.55T scanner at a longer overall acquisition time compared to higher field systems, although some sequences may benefit from additional optimization.
Collapse
Affiliation(s)
| | - Hero K Hussain
- Department of Radiology, University of Michigan, Ann Arbor, MI 48109
| | - Vikas Gulani
- Department of Radiology, University of Michigan, Ann Arbor, MI 48109
| | - Lauren Kelsey
- Department of Radiology, University of Michigan, Ann Arbor, MI 48109
| | | | - Jacob Richardson
- Department of Radiology, University of Michigan, Ann Arbor, MI 48109
| | - Maria Masotti
- Department of Biostatistics, University of Michigan, Ann Arbor, Michigan
| | - Nancy Dudek
- Department of Radiology, University of Michigan, Ann Arbor, MI 48109
| | - Joel Morehouse
- Department of Radiology, University of Michigan, Ann Arbor, MI 48109
| | | | - Katherine Wright
- Department of Radiology, University of Michigan, Ann Arbor, MI 48109
| | - Nicole Seiberlich
- Department of Radiology, University of Michigan, Ann Arbor, MI 48109.
| |
Collapse
|
4
|
Lavrova A, Seiberlich N, Kelsey L, Richardson J, Comer J, Masotti M, Itriago-Leon P, Wright K, Mishra S. Comparison of image quality and diagnostic efficacy of routine clinical lumbar spine imaging at 0.55T and 1.5/3T. Eur J Radiol 2024; 175:111406. [PMID: 38490129 DOI: 10.1016/j.ejrad.2024.111406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 01/19/2024] [Accepted: 03/03/2024] [Indexed: 03/17/2024]
Abstract
PURPOSE To compare image quality, assess inter-reader variability, and evaluate the diagnostic efficacy of routine clinical lumbar spine sequences at 0.55T compared with those collected at 1.5/3T to assess common spine pathology. METHODS 665 image series across 70 studies, collected at 0.55T and 1.5/3T, were assessed by two neuroradiology fellows for overall imaging quality (OIQ), artifacts, and accurate visualization of anatomical features (intervertebral discs, neural foramina, spinal cord, bone marrow, and conus / cauda equina nerve roots) using a 4-point Likert scale (1 = non-diagnostic to 4 = excellent). For the 0.55T scans, the most appropriate diagnosis(es) from a picklist of common spine pathologies was selected. The mean ± SD of all scores for all features for each sequence and reader at 0.55T and 1.5/3T were calculated. Paired t-tests (p ≤ 0.05) were used to compare ratings between field strengths. The inter-reader agreement was calculated using linear-weighted Cohen's Kappa coefficient (p ≤ 0.05). Unpaired VCG analysis for OIQ was additionally employed to represent differences between 0.55T and 1.5/3T (95 % CI). RESULTS All sequences at 0.55T were rated as acceptable (≥2) for diagnostic use by both readers despite significantly lower scores for some compared to those at 1.5/3T. While there was low inter-reader agreement on individual scores, the agreement on the diagnosis was high, demonstrating the potential of this system for detecting routine spine pathology. CONCLUSIONS Clinical lumbar spine imaging at 0.55T produces diagnostic-quality images demonstrating the feasibility of its use in diagnosing spinal pathology, including osteomyelitis/discitis, post-surgical changes with complications, and metastatic disease.
Collapse
Affiliation(s)
- Anna Lavrova
- Department of Radiology, University of Michigan, Ann Arbor, MI, United States; Department of Neurology, Mayo Clinic, Rochester, MN, United States
| | - Nicole Seiberlich
- Department of Radiology, University of Michigan, Ann Arbor, MI, United States
| | - Lauren Kelsey
- Department of Radiology, University of Michigan, Ann Arbor, MI, United States
| | - Jacob Richardson
- Department of Radiology, University of Michigan, Ann Arbor, MI, United States
| | - John Comer
- Department of Radiology, University of Michigan, Ann Arbor, MI, United States
| | - Maria Masotti
- Department of Biostatistics, University of Michigan, Ann Arbor, MI, United States
| | | | - Katherine Wright
- Department of Radiology, University of Michigan, Ann Arbor, MI, United States
| | - Shruti Mishra
- Department of Radiology, University of Michigan, Ann Arbor, MI, United States.
| |
Collapse
|