1
|
Hernández-del Caño C, Varela-Andrés N, Cebrián-León A, Deogracias R. Neurotrophins and Their Receptors: BDNF's Role in GABAergic Neurodevelopment and Disease. Int J Mol Sci 2024; 25:8312. [PMID: 39125882 PMCID: PMC11311851 DOI: 10.3390/ijms25158312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 07/21/2024] [Accepted: 07/25/2024] [Indexed: 08/12/2024] Open
Abstract
Neurotrophins and their receptors are distinctly expressed during brain development and play crucial roles in the formation, survival, and function of neurons in the nervous system. Among these molecules, brain-derived neurotrophic factor (BDNF) has garnered significant attention due to its involvement in regulating GABAergic system development and function. In this review, we summarize and compare the expression patterns and roles of neurotrophins and their receptors in both the developing and adult brains of rodents, macaques, and humans. Then, we focus on the implications of BDNF in the development and function of GABAergic neurons from the cortex and the striatum, as both the presence of BDNF single nucleotide polymorphisms and disruptions in BDNF levels alter the excitatory/inhibitory balance in the brain. This imbalance has different implications in the pathogenesis of neurodevelopmental diseases like autism spectrum disorder (ASD), Rett syndrome (RTT), and schizophrenia (SCZ). Altogether, evidence shows that neurotrophins, especially BDNF, are essential for the development, maintenance, and function of the brain, and disruptions in their expression or signaling are common mechanisms in the pathophysiology of brain diseases.
Collapse
Affiliation(s)
- Carlos Hernández-del Caño
- Instituto de Neurociencias de Castilla y León (INCyL), 37007 Salamanca, Spain; (C.H.-d.C.); (N.V.-A.); (A.C.-L.)
- Instituto de Investigación Biomédica de Salamanca (IBSAL), 37007 Salamanca, Spain
- Departamento de Biología Celular y Patología, Facultad de Medicina, Universidad de Salamanca, 37007 Salamanca, Spain
| | - Natalia Varela-Andrés
- Instituto de Neurociencias de Castilla y León (INCyL), 37007 Salamanca, Spain; (C.H.-d.C.); (N.V.-A.); (A.C.-L.)
- Instituto de Investigación Biomédica de Salamanca (IBSAL), 37007 Salamanca, Spain
- Departamento de Biología Celular y Patología, Facultad de Medicina, Universidad de Salamanca, 37007 Salamanca, Spain
| | - Alejandro Cebrián-León
- Instituto de Neurociencias de Castilla y León (INCyL), 37007 Salamanca, Spain; (C.H.-d.C.); (N.V.-A.); (A.C.-L.)
- Instituto de Investigación Biomédica de Salamanca (IBSAL), 37007 Salamanca, Spain
- Departamento de Biología Celular y Patología, Facultad de Medicina, Universidad de Salamanca, 37007 Salamanca, Spain
| | - Rubén Deogracias
- Instituto de Neurociencias de Castilla y León (INCyL), 37007 Salamanca, Spain; (C.H.-d.C.); (N.V.-A.); (A.C.-L.)
- Instituto de Investigación Biomédica de Salamanca (IBSAL), 37007 Salamanca, Spain
- Departamento de Biología Celular y Patología, Facultad de Medicina, Universidad de Salamanca, 37007 Salamanca, Spain
| |
Collapse
|
2
|
Wang J, Liu D, Tian E, Zhang Y, Guo Z, Chen J, Guo J, Zhou Z, Shi S, Lu Y, Zhang S. Molecular profile of vestibular compensation in the medial vestibular nucleus after unilateral labyrinthectomy. J Cell Mol Med 2024; 28:e18532. [PMID: 39039705 PMCID: PMC11263133 DOI: 10.1111/jcmm.18532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 05/30/2024] [Accepted: 06/04/2024] [Indexed: 07/24/2024] Open
Abstract
Long non-coding RNAs (lncRNAs) have emerged as crucial regulators in the central nervous system, yet their role in vestibular compensation remains elusive. To address this knowledge gap, we employed unilateral labyrinthectomy (UL) in rats to establish animal models of peripheral vestibular dysfunction. Utilizing ribonucleic acid sequencing (RNA-seq), we comprehensively analysed the expression profiles of genes dysregulated in the medial vestibular nucleus (MVN) of these rats at distinct time points: 4 h, 4 days, and 14 days post-UL. Through trans-target prediction analysis integrating differentially co-expressed messenger RNAs (mRNAs) and lncRNAs, we constructed lncRNA-mRNA regulatory networks. Validation of selected mRNAs and lncRNAs was performed using RT-qPCR. Our RNA-seq analysis revealed significant aberrant expression of 3054 lncRNAs and 1135 mRNAs compared to control samples. By applying weighted gene co-expression network analysis (WGCNA), we identified 11 co-expressed modules encompassing all genes. Notably, within the MEmagenta module, we observed an initial upregulation of differentially expressed genes (DEGs) at 4 h, followed by downregulation at 4- and 14-days post-UL. Our findings indicated that 3068 lncRNAs positively regulated 1259 DEGs, while 1482 lncRNAs negatively regulated 433 DEGs in the MVN. The RT-qPCR results corroborated the RNA-seq data, validating our findings. This study offers novel insights into the lncRNA-mRNA expression landscape during vestibular compensation, paving the way for further exploration of lncRNA functions in this context.
Collapse
Affiliation(s)
- Jun Wang
- Department of Otorhinolaryngology, Union Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
- Institute of Otorhinolaryngology, Union Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanHubeiChina
| | - Dan Liu
- Department of OtorhinolaryngologyThe First Affiliated Hospital of Zhengzhou UniversityZhengzhouChina
| | - E. Tian
- Department of Otorhinolaryngology, Union Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
- Institute of Otorhinolaryngology, Union Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanHubeiChina
| | - Yuejin Zhang
- Department of Otorhinolaryngology, Union Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
- Department of Physiology, School of Basic MedicineHuazhong University of Science and TechnologyWuhanChina
| | - Zhaoqi Guo
- Department of Otorhinolaryngology, Union Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
- Institute of Otorhinolaryngology, Union Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanHubeiChina
| | - Jingyu Chen
- Department of Otorhinolaryngology, Union Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
- Institute of Otorhinolaryngology, Union Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanHubeiChina
| | - Jiaqi Guo
- Department of Otorhinolaryngology, Union Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
- Institute of Otorhinolaryngology, Union Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanHubeiChina
| | - Zhanghong Zhou
- Department of Otorhinolaryngology, Union Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
- Institute of Otorhinolaryngology, Union Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanHubeiChina
| | - Shiyu Shi
- Department of Rehabilitation, Liyuan Hospital of Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
| | - Yisheng Lu
- Department of Physiology, School of Basic MedicineHuazhong University of Science and TechnologyWuhanChina
| | - Sulin Zhang
- Department of Otorhinolaryngology, Union Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
- Institute of Otorhinolaryngology, Union Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanHubeiChina
| |
Collapse
|
3
|
Song J. BDNF Signaling in Vascular Dementia and Its Effects on Cerebrovascular Dysfunction, Synaptic Plasticity, and Cholinergic System Abnormality. J Lipid Atheroscler 2024; 13:122-138. [PMID: 38826183 PMCID: PMC11140249 DOI: 10.12997/jla.2024.13.2.122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Revised: 11/29/2023] [Accepted: 12/19/2023] [Indexed: 06/04/2024] Open
Abstract
Vascular dementia (VaD) is the second most common type of dementia and is characterized by memory impairment, blood-brain barrier disruption, neuronal cell loss, glia activation, impaired synaptic plasticity, and cholinergic system abnormalities. To effectively prevent and treat VaD a good understanding of the mechanisms underlying its neuropathology is needed. Brain-derived neurotrophic factor (BDNF) is an important neurotrophic factor with multiple functions in the systemic circulation and the central nervous system and is known to regulate neuronal cell survival, synaptic formation, glia activation, and cognitive decline. Recent studies indicate that when compared with normal subjects, patients with VaD have low serum BDNF levels and that BDNF deficiency in the serum and cerebrospinal fluid is an important indicator of VaD. Here, we review current knowledge on the role of BDNF signaling in the pathology of VaD, such as cerebrovascular dysfunction, synaptic dysfunction, and cholinergic system impairment.
Collapse
Affiliation(s)
- Juhyun Song
- Department of Anatomy, Chonnam National University Medical School, Hwasun, Korea
| |
Collapse
|
4
|
Guo J, Wang J, Liang P, Tian E, Liu D, Guo Z, Chen J, Zhang Y, Zhou Z, Kong W, Crans DC, Lu Y, Zhang S. Vestibular dysfunction leads to cognitive impairments: State of knowledge in the field and clinical perspectives (Review). Int J Mol Med 2024; 53:36. [PMID: 38391090 PMCID: PMC10914312 DOI: 10.3892/ijmm.2024.5360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Accepted: 01/08/2024] [Indexed: 02/24/2024] Open
Abstract
The vestibular system may have a critical role in the integration of sensory information and the maintenance of cognitive function. A dysfunction in the vestibular system has a significant impact on quality of life. Recent research has provided evidence of a connection between vestibular information and cognitive functions, such as spatial memory, navigation and attention. Although the exact mechanisms linking the vestibular system to cognition remain elusive, researchers have identified various pathways. Vestibular dysfunction may lead to the degeneration of cortical vestibular network regions and adversely affect synaptic plasticity and neurogenesis in the hippocampus, ultimately contributing to neuronal atrophy and cell death, resulting in memory and visuospatial deficits. Furthermore, the extent of cognitive impairment varies depending on the specific type of vestibular disease. In the present study, the current literature was reviewed, potential causal relationships between vestibular dysfunction and cognitive performance were discussed and directions for future research were proposed.
Collapse
Affiliation(s)
- Jiaqi Guo
- Department of Otorhinolaryngology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, P.R. China
- Institute of Otorhinolaryngology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, P.R. China
| | - Jun Wang
- Department of Otorhinolaryngology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, P.R. China
- Institute of Otorhinolaryngology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, P.R. China
| | - Pei Liang
- Department of Psychology, Faculty of Education, Hubei University, Wuhan, Hubei 430062, P.R. China
| | - E Tian
- Department of Otorhinolaryngology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, P.R. China
- Institute of Otorhinolaryngology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, P.R. China
| | - Dan Liu
- Department of Otorhinolaryngology-Head and Neck Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, P.R. China
| | - Zhaoqi Guo
- Department of Otorhinolaryngology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, P.R. China
- Institute of Otorhinolaryngology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, P.R. China
| | - Jingyu Chen
- Department of Otorhinolaryngology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, P.R. China
- Institute of Otorhinolaryngology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, P.R. China
| | - Yuejin Zhang
- Department of Physiology, School of Basic Medicine, Huazhong University of Science and Technology, Wuhan, Hubei 430030, P.R. China
- Institute of Brain Research, Collaborative Innovation Center for Brain Science, Huazhong University of Science and Technology, Wuhan, Hubei 430030, P.R. China
| | - Zhanghong Zhou
- Department of Otorhinolaryngology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, P.R. China
- Institute of Otorhinolaryngology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, P.R. China
| | - Weijia Kong
- Department of Otorhinolaryngology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, P.R. China
- Institute of Otorhinolaryngology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, P.R. China
| | - Debbie C. Crans
- Cell and Molecular Biology Program, Colorado State University, Fort Collins, CO 80523, USA
| | - Yisheng Lu
- Department of Physiology, School of Basic Medicine, Huazhong University of Science and Technology, Wuhan, Hubei 430030, P.R. China
- Institute of Brain Research, Collaborative Innovation Center for Brain Science, Huazhong University of Science and Technology, Wuhan, Hubei 430030, P.R. China
| | - Sulin Zhang
- Department of Otorhinolaryngology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, P.R. China
- Institute of Otorhinolaryngology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, P.R. China
| |
Collapse
|
5
|
Kuijper EC, Overzier M, Suidgeest E, Dzyubachyk O, Maguin C, Pérot JB, Flament J, Ariyurek Y, Mei H, Buijsen RAM, van der Weerd L, van Roon-Mom W. Antisense oligonucleotide-mediated disruption of HTT caspase-6 cleavage site ameliorates the phenotype of YAC128 Huntington disease mice. Neurobiol Dis 2024; 190:106368. [PMID: 38040383 DOI: 10.1016/j.nbd.2023.106368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 11/20/2023] [Accepted: 11/28/2023] [Indexed: 12/03/2023] Open
Abstract
In Huntington disease, cellular toxicity is particularly caused by toxic protein fragments generated from the mutant huntingtin (HTT) protein. By modifying the HTT protein, we aim to reduce proteolytic cleavage and ameliorate the consequences of mutant HTT without lowering total HTT levels. To that end, we use an antisense oligonucleotide (AON) that targets HTT pre-mRNA and induces partial skipping of exon 12, which contains the critical caspase-6 cleavage site. Here, we show that AON-treatment can partially restore the phenotype of YAC128 mice, a mouse model expressing the full-length human HTT gene including 128 CAG-repeats. Wild-type and YAC128 mice were treated intracerebroventricularly with AON12.1, scrambled AON or vehicle starting at 6 months of age and followed up to 12 months of age, when MRI was performed and mice were sacrificed. AON12.1 treatment induced around 40% exon skip and protein modification. The phenotype on body weight and activity, but not rotarod, was restored by AON treatment. Genes differentially expressed in YAC128 striatum changed toward wild-type levels and striatal volume was preserved upon AON12.1 treatment. However, scrambled AON also showed a restorative effect on gene expression and appeared to generally increase brain volume.
Collapse
Affiliation(s)
- Elsa C Kuijper
- Department of Human Genetics, Leiden University Medical Center, the Netherlands.
| | - Maurice Overzier
- Department of Human Genetics, Leiden University Medical Center, the Netherlands
| | - Ernst Suidgeest
- Department of Radiology, Leiden University Medical Center, the Netherlands
| | - Oleh Dzyubachyk
- Department of Radiology, Leiden University Medical Center, the Netherlands
| | - Cécile Maguin
- Université Paris-Saclay, Commissariat à l'Energie Atomique et aux Energies Alternatives, Centre National de la Recherche Scientifique, Molecular Imaging Research Center, Laboratoire des Maladies Neurodégénératives, France
| | - Jean-Baptiste Pérot
- Université Paris-Saclay, Commissariat à l'Energie Atomique et aux Energies Alternatives, Centre National de la Recherche Scientifique, Molecular Imaging Research Center, Laboratoire des Maladies Neurodégénératives, France; Institut du Cerveau - Paris Brain Institute, Sorbonne Université, France
| | - Julien Flament
- Université Paris-Saclay, Commissariat à l'Energie Atomique et aux Energies Alternatives, Centre National de la Recherche Scientifique, Molecular Imaging Research Center, Laboratoire des Maladies Neurodégénératives, France
| | - Yavuz Ariyurek
- Department of Human Genetics, Leiden University Medical Center, the Netherlands
| | - Hailiang Mei
- Department of Biomedical Data Sciences, Leiden University Medical Center, the Netherlands
| | - Ronald A M Buijsen
- Department of Human Genetics, Leiden University Medical Center, the Netherlands
| | - Louise van der Weerd
- Department of Human Genetics, Leiden University Medical Center, the Netherlands; Department of Radiology, Leiden University Medical Center, the Netherlands
| | | |
Collapse
|
6
|
Xi C, He L, Huang Z, Zhang J, Zou K, Guo Q, Huang C. Combined metabolomics and transcriptomics analysis of rats under neuropathic pain and pain-related depression. Front Pharmacol 2023; 14:1320419. [PMID: 38143492 PMCID: PMC10739318 DOI: 10.3389/fphar.2023.1320419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Accepted: 11/29/2023] [Indexed: 12/26/2023] Open
Abstract
Neuropathic pain often leads to negative emotions, which in turn can enhance the sensation of pain. This study aimed to investigate the molecular mechanisms mediating neuropathic pain and negative emotions. Chronic constriction injury (CCI) rats were used as model animals and behavioral tests were conducted to assess pain and negative emotions. Then, the rat anterior cingulate cortex (ACC) was analyzed using UPLC-MS/MS and subsequently integrated with our previously published transcriptome data. Metabolomics analysis revealed that 68 differentially expressed metabolites (DEMs) were identified, mainly in amino acid metabolites and fatty acyls. Combined with our previously published transcriptome data, we predicted two genes that potentially exhibited associations with these metabolites, respectively Apolipoprotein L domain containing 1 (Apold1) and WAP four-disulfide core domain 1 (Wfdc1). Taken together, our results indicated that peripheral nerve injury contributing to neuropathic pain and pain-related depression may be associated with these metabolites and genes. This research provides new insights into the molecular regulatory mechanism, which could serve as a reference for the treatment of neuropathic pain and pain-related depression.
Collapse
Affiliation(s)
- Caiyun Xi
- Department of Anesthesiology, Xiangya Hospital, Central South University, Changsha, China
| | - Liqiong He
- Department of Anesthesiology, Xiangya Hospital, Central South University, Changsha, China
| | - Zhifeng Huang
- Department of Anesthesiology, Xiangya Hospital, Central South University, Changsha, China
| | - Jianxi Zhang
- Department of Anesthesiology, Xiangya Hospital, Central South University, Changsha, China
| | - Kailu Zou
- Department of Anesthesiology, Xiangya Hospital, Central South University, Changsha, China
| | - Qulian Guo
- Department of Anesthesiology, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Changsheng Huang
- Department of Anesthesiology, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
7
|
Greguske EA, Maroto AF, Borrajo M, Palou A, Gut M, Esteve-Codina A, Barrallo-Gimeno A, Llorens J. Decreased expression of synaptic genes in the vestibular ganglion of rodents following subchronic ototoxic stress. Neurobiol Dis 2023; 182:106134. [PMID: 37100209 DOI: 10.1016/j.nbd.2023.106134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 04/14/2023] [Accepted: 04/23/2023] [Indexed: 04/28/2023] Open
Abstract
The vestibular ganglion contains primary sensory neurons that are postsynaptic to the transducing hair cells (HC) and project to the central nervous system. Understanding the response of these neurons to HC stress or loss is of great interest as their survival and functional competence will determine the functional outcome of any intervention aiming at repair or regeneration of the HCs. We have shown that subchronic exposure to the ototoxicant 3,3'-iminodipropionitrile (IDPN) in rats and mice causes a reversible detachment and synaptic uncoupling between the HCs and the ganglion neurons. Here, we used this paradigm to study the global changes in gene expression in vestibular ganglia using RNA-seq. Comparative gene ontology and pathway analyses of the data from both model species indicated a robust downregulation of terms related to synapses, including presynaptic and postsynaptic functions. Manual analyses of the most significantly downregulated transcripts identified genes with expressions related to neuronal activity, modulators of neuronal excitability, and transcription factors and receptors that promote neurite growth and differentiation. For choice selected genes, the mRNA expression results were replicated by qRT-PCR, validated spatially by RNA-scope, or were demonstrated to be associated with decreased expression of the corresponding protein. We conjectured that decreased synaptic input or trophic support on the ganglion neurons from the HC was triggering these expression changes. To support this hypothesis, we demonstrated decreased expression of BDNF mRNA in the vestibular epithelium after subchronic ototoxicity and also downregulated expression of similarly identified genes (e.g Etv5, Camk1g, Slc17a6, Nptx2, Spp1) after HC ablation with another ototoxic compound, allylnitrile. We conclude that vestibular ganglion neurons respond to decreased input from HCs by decreasing the strength of all their synaptic contacts, both as postsynaptic and presynaptic players.
Collapse
Affiliation(s)
- Erin A Greguske
- Departament de Ciències Fisiològiques, Universitat de Barcelona, Feixa Llarga s/n, 08907 l'Hospitalet de Llobregat, Catalunya, Spain; Institut de Neurociènces, Universitat de Barcelona, Barcelona, Catalunya, Spain; Institut d'Investigació Biomèdica de Bellvitge (IDIBELL), 08907 l'Hospitalet de Llobregat, Catalunya, Spain
| | - Alberto F Maroto
- Departament de Ciències Fisiològiques, Universitat de Barcelona, Feixa Llarga s/n, 08907 l'Hospitalet de Llobregat, Catalunya, Spain; Institut de Neurociènces, Universitat de Barcelona, Barcelona, Catalunya, Spain; Institut d'Investigació Biomèdica de Bellvitge (IDIBELL), 08907 l'Hospitalet de Llobregat, Catalunya, Spain
| | - Mireia Borrajo
- Departament de Ciències Fisiològiques, Universitat de Barcelona, Feixa Llarga s/n, 08907 l'Hospitalet de Llobregat, Catalunya, Spain; Institut de Neurociènces, Universitat de Barcelona, Barcelona, Catalunya, Spain; Institut d'Investigació Biomèdica de Bellvitge (IDIBELL), 08907 l'Hospitalet de Llobregat, Catalunya, Spain.
| | - Aïda Palou
- Departament de Ciències Fisiològiques, Universitat de Barcelona, Feixa Llarga s/n, 08907 l'Hospitalet de Llobregat, Catalunya, Spain; Institut de Neurociènces, Universitat de Barcelona, Barcelona, Catalunya, Spain; Institut d'Investigació Biomèdica de Bellvitge (IDIBELL), 08907 l'Hospitalet de Llobregat, Catalunya, Spain.
| | - Marta Gut
- CNAG-CRG, Centre for Genomic Regulation, Barcelona Institute of Science and Technology (BIST), Barcelona, Spain; Universitat Pompeu Fabra, Barcelona, Spain.
| | - Anna Esteve-Codina
- CNAG-CRG, Centre for Genomic Regulation, Barcelona Institute of Science and Technology (BIST), Barcelona, Spain; Universitat Pompeu Fabra, Barcelona, Spain.
| | - Alejandro Barrallo-Gimeno
- Departament de Ciències Fisiològiques, Universitat de Barcelona, Feixa Llarga s/n, 08907 l'Hospitalet de Llobregat, Catalunya, Spain; Institut de Neurociènces, Universitat de Barcelona, Barcelona, Catalunya, Spain; Institut d'Investigació Biomèdica de Bellvitge (IDIBELL), 08907 l'Hospitalet de Llobregat, Catalunya, Spain.
| | - Jordi Llorens
- Departament de Ciències Fisiològiques, Universitat de Barcelona, Feixa Llarga s/n, 08907 l'Hospitalet de Llobregat, Catalunya, Spain; Institut de Neurociènces, Universitat de Barcelona, Barcelona, Catalunya, Spain; Institut d'Investigació Biomèdica de Bellvitge (IDIBELL), 08907 l'Hospitalet de Llobregat, Catalunya, Spain.
| |
Collapse
|
8
|
Stritt S, Nurden P, Nurden AT, Schved JF, Bordet JC, Roux M, Alessi MC, Trégouët DA, Mäkinen T, Giansily-Blaizot M. APOLD1 loss causes endothelial dysfunction involving cell junctions, cytoskeletal architecture, and Weibel-Palade bodies, while disrupting hemostasis. Haematologica 2023; 108:772-784. [PMID: 35638551 PMCID: PMC9973481 DOI: 10.3324/haematol.2022.280816] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Indexed: 11/09/2022] Open
Abstract
Vascular homeostasis is impaired in various diseases thereby contributing to the progression of their underlying pathologies. The endothelial immediate early gene Apolipoprotein L domain-containing 1 (APOLD1) helps to regulate endothelial function. However, its precise role in endothelial cell biology remains unclear. We have localized APOLD1 to endothelial cell contacts and to Weibel-Palade bodies (WPB) where it associates with von Willebrand factor (VWF) tubules. Silencing of APOLD1 in primary human endothelial cells disrupted the cell junction-cytoskeletal interface, thereby altering endothelial permeability accompanied by spontaneous release of WPB contents. This resulted in an increased presence of WPB cargoes, notably VWF and angiopoietin-2 in the extracellular medium. Autophagy flux, previously recognized as an essential mechanism for the regulated release of WPB, was impaired in the absence of APOLD1. In addition, we report APOLD1 as a candidate gene for a novel inherited bleeding disorder across three generations of a large family in which an atypical bleeding diathesis was associated with episodic impaired microcirculation. A dominant heterozygous nonsense APOLD1:p.R49* variant segregated to affected family members. Compromised vascular integrity resulting from an excess of plasma angiopoietin-2, and locally impaired availability of VWF may explain the unusual clinical profile of APOLD1:p.R49* patients. In summary, our findings identify APOLD1 as an important regulator of vascular homeostasis and raise the need to consider testing of endothelial cell function in patients with inherited bleeding disorders without apparent platelet or coagulation defects.
Collapse
Affiliation(s)
- Simon Stritt
- Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala
| | - Paquita Nurden
- Institut de Rythmologie et de Modélisation Cardiaque, Hôpital Xavier Arnozan, Pessac, France.
| | - Alan T Nurden
- Institut de Rythmologie et de Modélisation Cardiaque, Hôpital Xavier Arnozan, Pessac, France
| | - Jean-François Schved
- Department of Biological Hematology, CHU Montpellier, Université de Montpellier, Montpellier
| | - Jean-Claude Bordet
- Hematology, Hospices civils de Lyon, Bron biology center and Hemostasis- Thrombosis, Lyon-1 University, Lyon
| | | | | | - David-Alexandre Trégouët
- Laboratory of Excellence GENMED (Medical Genomics), Paris; University of Bordeaux, INSERM, Bordeaux Population Health Research Center, U1219, Bordeaux
| | - Taija Mäkinen
- Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden
| | - Muriel Giansily-Blaizot
- Department of Biological Hematology, CHU Montpellier, Université de Montpellier, Montpellier
| |
Collapse
|
9
|
A Genome-Wide Association Study Reveals a BDNF-Centered Molecular Network Associated with Alcohol Dependence and Related Clinical Measures. Biomedicines 2022; 10:biomedicines10123007. [PMID: 36551763 PMCID: PMC9775455 DOI: 10.3390/biomedicines10123007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2022] [Revised: 11/15/2022] [Accepted: 11/18/2022] [Indexed: 11/24/2022] Open
Abstract
At least 50% of factors predisposing to alcohol dependence (AD) are genetic and women affected with this disorder present with more psychiatric comorbidities, probably indicating different genetic factors involved. We aimed to run a genome-wide association study (GWAS) followed by a bioinformatic functional annotation of associated genomic regions in patients with AD and eight related clinical measures. A genome-wide significant association of rs220677 with AD (p-value = 1.33 × 10-8 calculated with the Yates-corrected χ2 test under the assumption of dominant inheritance) was discovered in female patients. Associations of AD and related clinical measures with seven other single nucleotide polymorphisms listed in previous GWASs of psychiatric and addiction traits were differently replicated in male and female patients. The bioinformatic analysis showed that regulatory elements in the eight associated linkage disequilibrium blocks define the expression of 80 protein-coding genes. Nearly 68% of these and of 120 previously published coding genes associated with alcohol phenotypes directly interact in a single network, where BDNF is the most significant hub gene. This study indicates that several genes behind the pathogenesis of AD are different in male and female patients, but implicated molecular mechanisms are functionally connected. The study also reveals a central role of BDNF in the pathogenesis of AD.
Collapse
|
10
|
Shang W, Dai Z, Zhang J, Shen F, Sui N, Liang J. Embryonic opioid exposure impairs inhibitory transmission of striatum in day‐old chicks. Dev Psychobiol 2022; 64:e22273. [DOI: 10.1002/dev.22273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Revised: 03/05/2022] [Accepted: 03/13/2022] [Indexed: 11/07/2022]
Affiliation(s)
- Wen Shang
- CAS Key Laboratory of Mental Health Institute of Psychology Beijing China
- Department of Psychology University of Chinese Academy of Sciences Beijing China
| | - Zhonghua Dai
- CAS Key Laboratory of Mental Health Institute of Psychology Beijing China
- Department of Psychology University of Chinese Academy of Sciences Beijing China
| | - Jianjun Zhang
- CAS Key Laboratory of Mental Health Institute of Psychology Beijing China
- Department of Psychology University of Chinese Academy of Sciences Beijing China
| | - Fang Shen
- CAS Key Laboratory of Mental Health Institute of Psychology Beijing China
- Department of Psychology University of Chinese Academy of Sciences Beijing China
| | - Nan Sui
- CAS Key Laboratory of Mental Health Institute of Psychology Beijing China
- Department of Psychology University of Chinese Academy of Sciences Beijing China
| | - Jing Liang
- CAS Key Laboratory of Mental Health Institute of Psychology Beijing China
- Department of Psychology University of Chinese Academy of Sciences Beijing China
- Sino‐Danish Center for Education and Research University of Chinese Academy of Sciences Beijing China
| |
Collapse
|