1
|
Benazzouz SM, Benlouahmia N, Bouhadida K, Benlamara M, Arezki N, Sadeddine OEK, Issad M, Attal N, Mansouri K, Derrar F, Djidjik R. Evaluation of the immunoprotective power of a multiple antigenic peptide against Aah II toxin of Androctonus australis hector scorpion. Vaccine X 2024; 19:100503. [PMID: 38868522 PMCID: PMC11167365 DOI: 10.1016/j.jvacx.2024.100503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2023] [Revised: 05/21/2024] [Accepted: 05/22/2024] [Indexed: 06/14/2024] Open
Abstract
Scorpion envenoming (SE) is a public health problem in developing countries. In Algeria, the population exposed to the risk of SE was estimated at 86.45% in 2019. Thus, the development of a vaccine to protect the exposed population against scorpion toxins would be a major advance in the fight against this disease. This work aimed to evaluate the immunoprotective effect of a Multiple Antigenic Peptide against the Aah II toxin of Androctonus australis hector scorpion, the most dangerous scorpion species in Algeria. The immunogen MAP1Aah2 was designed and tested accordingly. This molecule contains a B epitope, derived from Aah II toxin, linked by a spacer to a universal T epitope, derived from the tetanus toxin. The results showed that MAP1Aah2 was non-toxic despite the fact that its sequence was derived from Aah II toxin. The immunoenzymatic assay revealed that the 3 immunization regimens tested generated specific anti-MAP1Aah2 antibodies and cross-reacted with the toxin. Mice immunized with this immunogen were partially protected against mortality caused by challenge doses of 2 and 3 LD50 of the toxin. The survival rate and developed symptoms varied depending on the adjuvant and the challenge dose used. In the in vitro neutralization test, the immune sera of mice having received the immunogen with incomplete Freund's adjuvant neutralized a challenge dose of 2 LD50. Hence, the concept of using peptide dendrimers, based on linear epitopes of scorpion toxins, as immunogens against the parent toxin was established. However, the protective properties of the tested immunogen require further optimizations.
Collapse
Affiliation(s)
- Safouane M. Benazzouz
- Laboratoire de Pharmacologie, Faculté de Pharmacie d’Alger, Université d’Alger 1. 8 Rue du Lieutenant Mohamed Benarfa, El Biar, Alger 16000, Algeria
- Laboratoire des Sérums Thérapeutiques, Département des Produits Biologiques Humains, Direction de la Production, Institut Pasteur d’Algérie. Rue du Petit Staoueli, Dely Ibrahim, Alger 16320, Algeria
| | - Nesrine Benlouahmia
- Laboratoire des Sérums Thérapeutiques, Département des Produits Biologiques Humains, Direction de la Production, Institut Pasteur d’Algérie. Rue du Petit Staoueli, Dely Ibrahim, Alger 16320, Algeria
| | - Karima Bouhadida
- Laboratoire des Sérums Thérapeutiques, Département des Produits Biologiques Humains, Direction de la Production, Institut Pasteur d’Algérie. Rue du Petit Staoueli, Dely Ibrahim, Alger 16320, Algeria
| | - Meriem Benlamara
- Laboratoire des Sérums Thérapeutiques, Département des Produits Biologiques Humains, Direction de la Production, Institut Pasteur d’Algérie. Rue du Petit Staoueli, Dely Ibrahim, Alger 16320, Algeria
| | - Naziha Arezki
- Laboratoire des Sérums Thérapeutiques, Département des Produits Biologiques Humains, Direction de la Production, Institut Pasteur d’Algérie. Rue du Petit Staoueli, Dely Ibrahim, Alger 16320, Algeria
| | - Oum El Kheir Sadeddine
- Laboratoire des Sérums Thérapeutiques, Département des Produits Biologiques Humains, Direction de la Production, Institut Pasteur d’Algérie. Rue du Petit Staoueli, Dely Ibrahim, Alger 16320, Algeria
| | - Mourad Issad
- Laboratoire des Vaccins Viraux Humains, Département des Produits Biologiques Humains, Direction de la Production, Institut Pasteur d’Algérie, Rue du Petit Staoueli, Dely Ibrahim, Alger 16320, Algeria
| | - Nabila Attal
- Laboratoire d’Immunologie, Faculté de Pharmacie d’Alger, Université d’Alger 1. 8 Rue du Lieutenant Mohamed Benarfa, El Biar, Alger 16000, Algeria
- Département d’Immunologie, Direction des Laboratoires, de la Recherche et du Développement, Institut Pasteur d’Algérie, Rue du Petit Staoueli, Dely Ibrahim, Alger 16320, Algeria
| | - Kamel Mansouri
- Laboratoire de Pharmacologie, Faculté de Pharmacie d’Alger, Université d’Alger 1. 8 Rue du Lieutenant Mohamed Benarfa, El Biar, Alger 16000, Algeria
| | - Fawzi Derrar
- Laboratoire de la Grippe et autres Virus Respiratoires, Département de Virologie, Direction des Laboratoires, de la Recherche et du Développement, Institut Pasteur d’Algérie. Rue du Petit Staoueli, Dely Ibrahim, Alger 16320, Algeria
- Laboratoire de Microbiologie, Faculté de Médecine d’Alger, Université d’Alger 1. 8 Rue du Lieutenant Mohamed Benarfa, El Biar, Alger 16000, Algeria
| | - Reda Djidjik
- Laboratoire d’Immunologie, Faculté de Pharmacie d’Alger, Université d’Alger 1. 8 Rue du Lieutenant Mohamed Benarfa, El Biar, Alger 16000, Algeria
- Laboratoire d’Immunologie Médicale, CHU Issaad Hassani, Rue Ibrahim Hadjeras, Beni Messous, Alger 16206, Algeria
| |
Collapse
|
2
|
Martin-Eauclaire MF, Adi-Bessalem S, Hammoudi-Triki D, Laraba-Djebari F, Bougis PE. Serotherapy against Voltage-Gated Sodium Channel-Targeting αToxins from Androctonus Scorpion Venom. Toxins (Basel) 2019; 11:toxins11020063. [PMID: 30678116 PMCID: PMC6410273 DOI: 10.3390/toxins11020063] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2018] [Revised: 01/18/2019] [Accepted: 01/21/2019] [Indexed: 12/12/2022] Open
Abstract
Because of their venom lethality towards mammals, scorpions of the Androctonus genus are considered a critical threat to human health in North Africa. Several decades of exploration have led to a comprehensive inventory of their venom components at chemical, pharmacological, and immunological levels. Typically, these venoms contain selective and high affinity ligands for the voltage-gated sodium (Nav) and potassium (Kv) channels that dictate cellular excitability. In the well-studied Androctonus australis and Androctonus mauretanicus venoms, almost all the lethality in mammals is due to the so-called α-toxins. These peptides commonly delay the fast inactivation process of Nav channels, which leads to increased sodium entry and a subsequent cell membrane depolarization. Markedly, their neutralization by specific antisera has been shown to completely inhibit the venom’s lethal activity, because they are not only the most abundant venom peptide but also the most fatal. However, the structural and antigenic polymorphisms in the α-toxin family pose challenges to the design of efficient serotherapies. In this review, we discuss past and present accomplishments to improve serotherapy against Androctonus scorpion stings.
Collapse
Affiliation(s)
| | - Sonia Adi-Bessalem
- Laboratory of Cellular and Molecular Biology, Faculty of Biological Sciences, USTHB, BP 32, El-Alia Bab Ezzouar, 16111 Algiers, Algeria.
| | - Djelila Hammoudi-Triki
- Laboratory of Cellular and Molecular Biology, Faculty of Biological Sciences, USTHB, BP 32, El-Alia Bab Ezzouar, 16111 Algiers, Algeria.
| | - Fatima Laraba-Djebari
- Laboratory of Cellular and Molecular Biology, Faculty of Biological Sciences, USTHB, BP 32, El-Alia Bab Ezzouar, 16111 Algiers, Algeria.
| | - Pierre E Bougis
- Laboratory of Cognitive Neuroscience, CNRS, Aix Marseille Univ, UMR 7291, 13003 Marseille, France.
| |
Collapse
|
3
|
Carmo AO, Chatzaki M, Horta CCR, Magalhães BF, Oliveira-Mendes BBR, Chávez-Olórtegui C, Kalapothakis E. Evolution of alternative methodologies of scorpion antivenoms production. Toxicon 2015; 97:64-74. [PMID: 25701676 DOI: 10.1016/j.toxicon.2015.02.007] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2014] [Revised: 11/10/2014] [Accepted: 02/17/2015] [Indexed: 12/23/2022]
Abstract
Scorpionism represents a serious public health problem resulting in the death of children and debilitated individuals. Scorpion sting treatment employs various strategies including the use of specific medicines such as antiserum, especially for patients with severe symptoms. In 1909 Charles Todd described the production of an antiserum against the venom of the scorpion Buthus quinquestriatus. Based on Todd's work, researchers worldwide began producing antiserum using the same approach i.e., immunization of horses with crude venom as antigen. Despite achieving satisfactory results using this approach, researchers in this field have developed alternative approaches for the production of scorpion antivenom serum. In this review, we describe the work published by experts in toxinology to the development of scorpion venom antiserum. Methods and results describing the use of specific antigens, detoxified venom or toxins, purified toxins and or venom fractions, native toxoids, recombinant toxins, synthetic peptides, monoclonal and recombinant antibodies, and alternative animal models are presented.
Collapse
Affiliation(s)
- A O Carmo
- Departamento de Biologia Geral, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Avenida Presidente Antônio Carlos, 6627, Pampulha, Belo Horizonte, MG 31270-901, Brazil.
| | - M Chatzaki
- Department of Molecular Biology & Genetics, Democritus University of Thrace, University Campus, 69100 Komotini, Greece.
| | - C C R Horta
- Departamento de Biologia Geral, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Avenida Presidente Antônio Carlos, 6627, Pampulha, Belo Horizonte, MG 31270-901, Brazil.
| | - B F Magalhães
- Departamento de Biologia Geral, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Avenida Presidente Antônio Carlos, 6627, Pampulha, Belo Horizonte, MG 31270-901, Brazil.
| | - B B R Oliveira-Mendes
- Departamento de Biologia Geral, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Avenida Presidente Antônio Carlos, 6627, Pampulha, Belo Horizonte, MG 31270-901, Brazil.
| | - C Chávez-Olórtegui
- Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Avenida Presidente Antônio Carlos, 6627, Pampulha, Belo Horizonte, MG 31270-901, Brazil.
| | - E Kalapothakis
- Departamento de Biologia Geral, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Avenida Presidente Antônio Carlos, 6627, Pampulha, Belo Horizonte, MG 31270-901, Brazil.
| |
Collapse
|
4
|
Martin-Eauclaire MF, Granjeaud S, Belghazi M, Bougis PE. Achieving automated scorpion venom mass fingerprinting (VMF) in the nanogram range. Toxicon 2013; 69:211-8. [DOI: 10.1016/j.toxicon.2013.03.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2012] [Revised: 02/11/2013] [Accepted: 03/01/2013] [Indexed: 10/27/2022]
|
5
|
Calderon-Aranda ES, Selisko B, York EJ, Gurrola GB, Stewart JM, Possani LD. Mapping of an epitope recognized by a neutralizing monoclonal antibody specific to toxin Cn2 from the scorpion Centruroides noxius, using discontinuous synthetic peptides. EUROPEAN JOURNAL OF BIOCHEMISTRY 1999; 264:746-55. [PMID: 10491120 DOI: 10.1046/j.1432-1327.1999.00620.x] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The Na+-channel-affecting toxin Cn2 represents the major and one of the most toxic components of the venom of the Mexican scorpion Centruroides noxius Hoffmann. A monoclonal antibody BCF2 raised against Cn2 has been shown previously to be able to neutralize the toxic effect of Cn2 and of the whole venom of C. noxius. In the present study the epitope was mapped to a surface region comprising the N- and C-terminal segments of Cn2, using continuous and discontinuous synthetic peptides, designed on the basis of the sequence and a three-dimensional model of Cn2. The study of peptides of varying length resulted in the identification of segments 5-14 and 56-65 containing residues essential for recognition by BCF2. The peptide (abbreviated SP7) with the highest affinity to BCF2 (IC50 = 5.1 microM) was a synthetic heterodimer comprising the amino acid sequence from position 3-15 (amidated) of Cn2, bridged by disulfide to peptide from position 54-66, acetylated and amidated. Similar affinity was found with peptide SP1 [heterodimer comprising residues 1-14 (amidated) of Cn2, bridged with synthetic peptide 52-66 (acetylated)]. SP1 and SP7 were used to induce anti-peptide antibodies in mouse and rabbit. Both peptides were highly immunogenic. The sera obtained were able to recognize Cn2 and to neutralize Cn2 in vitro. The most efficient protection (8.3 microgram Cn2 neutralized per mL of serum) was induced by rabbit anti-SP1 serum.
Collapse
Affiliation(s)
- E S Calderon-Aranda
- Department of Molecular Recognition, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Mexico
| | | | | | | | | | | |
Collapse
|
6
|
Devaux C, Fourquet P, Granier C. A conserved sequence region of scorpion toxins rendered immunogenic induces broadly cross-reactive, neutralizing antibodies. EUROPEAN JOURNAL OF BIOCHEMISTRY 1996; 242:727-35. [PMID: 9022703 DOI: 10.1111/j.1432-1033.1996.0727r.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Scorpion toxins constitute a family of proteins with a high degree of sequence diversity but a common mode of action. Neutralization of the toxic effects of scorpion stings by serotherapy is limited due to the various serotypes expressed by these proteins. We explored the possibility of raising antibodies to conserved parts of the toxins which could recognize several members of the family. We established the variability profile of a set of 25 scorpion toxin sequences, then evaluated systematically by peptide-scanning methods the antigenicity of one scorpion toxin. The most conserved regions were generally very poorly antigenic. One exception was the N-terminal region, which is both conserved and antigenic. Antibodies were raised in rabbits against an eight-residue synthetic peptide mimicking the N-terminal region. These peptide antibodies were cross-reactive with several scorpion toxins belonging to different serotypes and neutralized both the pharmacological effects (binding to rat brain synaptosomes) and the biological activity (toxicity in mice) of the parent toxin. The molecular model of the toxin indicates that antibody binding to residues 1-8 probably either masks some residue(s) of the N-terminus critical for the biological activity or overlaps with the epitope previously defined by neutralizing monoclonal antibody. These findings could open the way for new therapeutic strategies for the medical care of envenomations.
Collapse
Affiliation(s)
- C Devaux
- CNRS URA 1455, Laboratoire de Biochimie, IFR Jean Roche, Faculté de Médecine Nord, Marseille, France
| | | | | |
Collapse
|
7
|
Devaux C, Juin M, Mansuelle P, Granier C. Fine molecular analysis of the antigenicity of the Androctonus australis hector scorpion neurotoxin II: a new antigenic epitope disclosed by the Pepscan method. Mol Immunol 1993; 30:1061-8. [PMID: 7690110 DOI: 10.1016/0161-5890(93)90152-2] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
A set of 58 overlapping rod-bound peptides was used to map the antigenic reactivity pattern of a 64-residue neurotoxin (AaH II) from the venom of the scorpion Androctonus australis hector. Five anti-toxin rabbit antisera were assayed serially for their capacity to bind to each peptide in the set. Six regions of antigenic reactivity were thus identified (sequences: 1-8, 4-12, 27-35, 39-45, 52-58 and 55-61). When positioned on a 3-D model of the toxin, these regions appeared to correspond to either beta-turn or extended parts of the molecule. The antigenic regions revealed by this technique agree fairly well with those previously mapped on the same toxin by different methods. One discrepancy was, however, that the present study shows the N-terminus to be strongly reactive with anti-toxin antibodies. The antigenicity of this region was confirmed, since rabbit antibodies raised against a synthetic peptide mimicking the sequence 1-8 of the toxin were found to bind the toxin with high efficiency. A fine analysis of the recognition of this region was performed. Alanine-containing analogs of the sequence 1-7 and peptides mimicking the N-terminal of the four main toxins of AaH were probed with anti-toxin and anti-peptide antibodies. Lysine 2, aspartic acid 3 and glycine 4 were shown to be key residues in the recognition of the N-terminal region of the AaH II toxin by anti-toxin antibodies. In contrast, a loose specificity of recognition was shown by one anti-peptide serum which was, in addition, able to recognize the N-termini of all four AaH toxins.
Collapse
Affiliation(s)
- C Devaux
- Laboratoire de Biochimie, CNRS URA 1455, Faculté de Médecine Secteur Nord, Marseille, France
| | | | | | | |
Collapse
|