1
|
Gómez-Apo E, Mondragón-Maya A, Ferrari-Díaz M, Silva-Pereyra J. Structural Brain Changes Associated with Overweight and Obesity. J Obes 2021; 2021:6613385. [PMID: 34327017 PMCID: PMC8302366 DOI: 10.1155/2021/6613385] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Revised: 05/14/2021] [Accepted: 07/09/2021] [Indexed: 12/17/2022] Open
Abstract
Obesity is a global health problem with a broad set of comorbidities, such as malnutrition, metabolic syndrome, diabetes, systemic hypertension, heart failure, and kidney failure. This review describes recent findings of neuroimaging and two studies of cell density regarding the roles of overnutrition-induced hypothalamic inflammation in neurodegeneration. These studies provided consistent evidence of smaller cortical thickness or reduction in the gray matter volume in people with overweight and obesity; however, the investigated brain regions varied across the studies. In general, bilateral frontal and temporal areas, basal nuclei, and cerebellum are more commonly involved. Mechanisms of volume reduction are unknown, and neuroinflammation caused by obesity is likely to induce neuronal loss. Adipocytes, macrophages of the adipose tissue, and gut dysbiosis in overweight and obese individuals result in the secretion of the cytokines and chemokines that cross the blood-brain barrier and may stimulate microglia, which in turn also release proinflammatory cytokines. This leads to chronic low-grade neuroinflammation and may be an important factor for apoptotic signaling and neuronal death. Additionally, significant microangiopathy observed in rat models may be another important mechanism of induction of apoptosis. Neuroinflammation in neurodegenerative diseases (such as Alzheimer's and Parkinson's diseases) may be similar to that in metabolic diseases induced by malnutrition. Poor cognitive performance, mainly in executive functions, in individuals with obesity is also discussed. This review highlights the neuroinflammatory and neurodegenerative mechanisms linked to obesity and emphasizes the importance of developing effective prevention and treatment intervention strategies for overweight and obese individuals.
Collapse
Affiliation(s)
- Erick Gómez-Apo
- Servicio de Anatomía Patológica, Hospital General de México “Dr. Eduardo Liceaga”, Ciudad de México, Mexico
| | - Alejandra Mondragón-Maya
- Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Tlalnepantla, Mexico
| | - Martina Ferrari-Díaz
- Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Tlalnepantla, Mexico
| | - Juan Silva-Pereyra
- Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Tlalnepantla, Mexico
| |
Collapse
|
2
|
Cherbuin N, Walsh EI. Sugar in mind: Untangling a sweet and sour relationship beyond type 2 diabetes. Front Neuroendocrinol 2019; 54:100769. [PMID: 31176793 DOI: 10.1016/j.yfrne.2019.100769] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/12/2019] [Revised: 05/17/2019] [Accepted: 06/05/2019] [Indexed: 12/17/2022]
Abstract
It is widely recognised that type 2 diabetes (T2D) represents a major disease burden but it is only recently that its role in neurodegeneration has attracted more attention. This research has shown that T2D is associated with impaired cerebral health, cognitive decline and dementia. However, the impact on the brain of progressive metabolic changes associated with the pre-clinical development of the disease is less clear. The aim of this review is to comprehensively summarise how the emergence of risk factors and co-morbid conditions linked to the development of T2D impact cerebral health. Particular attention is directed at characterising how normal but elevated blood glucose levels in individuals without T2D contribute to neurodegenerative processes, and how the main risk factors for T2D including obesity, physical activity and diet modulate these effects. Where available, evidence from the animal and human literature is contrasted, and sex differences in risk and outcomes are highlighted.
Collapse
Affiliation(s)
- Nicolas Cherbuin
- Centre for Research on Ageing, Health and Wellbeing, Australian National University, Canberra, Australia.
| | - Erin I Walsh
- Centre for Research on Ageing, Health and Wellbeing, Australian National University, Canberra, Australia
| |
Collapse
|
3
|
Gómez-Apo E, García-Sierra A, Silva-Pereyra J, Soto-Abraham V, Mondragón-Maya A, Velasco-Vales V, Pescatello LS. A Postmortem Study of Frontal and Temporal Gyri Thickness and Cell Number in Human Obesity. Obesity (Silver Spring) 2018; 26:94-102. [PMID: 29131517 DOI: 10.1002/oby.22036] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/09/2017] [Revised: 09/18/2017] [Accepted: 09/19/2017] [Indexed: 12/15/2022]
Abstract
OBJECTIVE This study aimed to compare cortex thickness and neuronal cell density in postmortem brain tissue from people with overweight or obesity and normal weight. METHODS The cortex thickness and neuron density of eight donors with overweight or obesity (mean = 31.6 kg/m2 ; SD = 4.35; n = 8; 6 male) and eight donors with normal weight (mean = 21.8 kg/m2 ; SD = 1.5; n = 8; 5 male) were compared. All participants were Mexican and lived in Mexico City. Randomly selected thickness measures of different cortex areas from the frontal and temporal lobes were analyzed based on high-resolution real-size photographs. A histological analysis of systematic-random fields was used to quantify the number of neurons in postmortem left and right of the first, second, and third gyri of frontal and temporal lobe brain samples. RESULTS No statistical difference was found in cortical thickness between donors with overweight or obesity and individuals with normal weight. A smaller number of neurons was found among the donors with overweight or obesity than the donors with normal weight at different frontal and temporal areas. CONCLUSIONS A lower density of neurons is associated with overweight or obesity. The morphological basis for structural brain changes in obesity requires further investigation.
Collapse
Affiliation(s)
- Erick Gómez-Apo
- Neuroscience Project, Faculty of Higher Studies Iztacala, National Autonomous University of Mexico, Mexico City, Mexico
- General Hospital of Mexico, Mexico City, Mexico
| | - Adrián García-Sierra
- Department of Speech, Language and Hearing Sciences, University of Connecticut, Storrs, Connecticut, USA
- Institute for Collaboration on Health, Intervention, and Policy, University of Connecticut, Storrs, Connecticut, USA
| | - Juan Silva-Pereyra
- Neuroscience Project, Faculty of Higher Studies Iztacala, National Autonomous University of Mexico, Mexico City, Mexico
| | | | - Alejandra Mondragón-Maya
- Neuroscience Project, Faculty of Higher Studies Iztacala, National Autonomous University of Mexico, Mexico City, Mexico
| | | | - Linda S Pescatello
- Institute for Collaboration on Health, Intervention, and Policy, University of Connecticut, Storrs, Connecticut, USA
- Department of Kinesiology, University of Connecticut, Storrs, Connecticut, USA
| |
Collapse
|
4
|
Chen-Roetling J, Kamalapathy P, Cao Y, Song W, Schipper HM, Regan RF. Astrocyte heme oxygenase-1 reduces mortality and improves outcome after collagenase-induced intracerebral hemorrhage. Neurobiol Dis 2017; 102:140-146. [PMID: 28323022 DOI: 10.1016/j.nbd.2017.03.008] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2017] [Revised: 02/24/2017] [Accepted: 03/16/2017] [Indexed: 11/30/2022] Open
Abstract
Pharmacotherapies that increase CNS expression of heme oxygenase-1 (HO-1) and other antioxidant proteins have improved outcome in experimental models of spontaneous intracerebral hemorrhage (ICH). In order to more specifically investigate the relationship between HO-1 and ICH outcome, mice expressing human HO-1 driven by the glial fibrillary acidic protein (GFAP) promoter (GFAP·HMOX1 mice) were tested in a model of in situ parenchymal hemorrhage. Injection of collagenase into the striata of wild-type (WT) mice resulted in a 26.3% mortality rate, with deaths equally distributed between males and females. Mortality was reduced to 4.48% in GFAP·HMOX1 mice. Cell viability in the injected striata of surviving WT mice was reduced by about half at one week and was significantly increased in transgenics; this benefit persisted over a 22day observation period. Cell counts guided by design-based stereology indicated loss of ~40% of neurons in WT hemorrhagic striata at one week, which was decreased by half in transgenics; no significant differences in microglia or astrocyte numbers were observed. Blood-brain barrier disruption and short-term neurological deficits were also mitigated in GFAP·HMOX1 mice, but long-term outcome did not differ from that of WT survivors. These results suggest that astrocyte HO-1 overexpression provides robust neuroprotection after acute intracerebral hemorrhage. Further investigation of drug or genetic therapies that selectively increase astrocyte HO-1 is warranted.
Collapse
Affiliation(s)
- Jing Chen-Roetling
- Department of Emergency Medicine, Thomas Jefferson University, Philadelphia, PA, USA
| | - Pramod Kamalapathy
- Department of Emergency Medicine, Thomas Jefferson University, Philadelphia, PA, USA
| | - Yang Cao
- Department of Emergency Medicine, Thomas Jefferson University, Philadelphia, PA, USA
| | - Wei Song
- Lady Davis Institute, Jewish General Hospital, Montreal, Quebec, Canada
| | - Hyman M Schipper
- Lady Davis Institute, Jewish General Hospital, Montreal, Quebec, Canada; Department of Neurology and Neurosurgery, McGill University, Montreal, Quebec, Canada
| | - Raymond F Regan
- Department of Emergency Medicine, Thomas Jefferson University, Philadelphia, PA, USA.
| |
Collapse
|
5
|
von Bartheld CS, Bahney J, Herculano-Houzel S. The search for true numbers of neurons and glial cells in the human brain: A review of 150 years of cell counting. J Comp Neurol 2016; 524:3865-3895. [PMID: 27187682 PMCID: PMC5063692 DOI: 10.1002/cne.24040] [Citation(s) in RCA: 587] [Impact Index Per Article: 73.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2015] [Revised: 05/13/2016] [Accepted: 05/16/2016] [Indexed: 12/13/2022]
Abstract
For half a century, the human brain was believed to contain about 100 billion neurons and one trillion glial cells, with a glia:neuron ratio of 10:1. A new counting method, the isotropic fractionator, has challenged the notion that glia outnumber neurons and revived a question that was widely thought to have been resolved. The recently validated isotropic fractionator demonstrates a glia:neuron ratio of less than 1:1 and a total number of less than 100 billion glial cells in the human brain. A survey of original evidence shows that histological data always supported a 1:1 ratio of glia to neurons in the entire human brain, and a range of 40-130 billion glial cells. We review how the claim of one trillion glial cells originated, was perpetuated, and eventually refuted. We compile how numbers of neurons and glial cells in the adult human brain were reported and we examine the reasons for an erroneous consensus about the relative abundance of glial cells in human brains that persisted for half a century. Our review includes a brief history of cell counting in human brains, types of counting methods that were and are employed, ranges of previous estimates, and the current status of knowledge about the number of cells. We also discuss implications and consequences of the new insights into true numbers of glial cells in the human brain, and the promise and potential impact of the newly validated isotropic fractionator for reliable quantification of glia and neurons in neurological and psychiatric diseases. J. Comp. Neurol. 524:3865-3895, 2016. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
| | - Jami Bahney
- Department of Physiology and Cell Biology, University of Nevada School of Medicine, Reno, Nevada, USA
| | - Suzana Herculano-Houzel
- Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, and Instituto Nacional de Neurociência Translacional, CNPq/MCT, Brasil
| |
Collapse
|
6
|
von Bartheld CS, Bahney J, Herculano-Houzel S. The search for true numbers of neurons and glial cells in the human brain: A review of 150 years of cell counting. J Comp Neurol 2016; 524:3865-3895. [PMID: 27187682 DOI: 10.1002/cne.2404] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2015] [Revised: 05/13/2016] [Accepted: 05/16/2016] [Indexed: 05/25/2023]
Abstract
For half a century, the human brain was believed to contain about 100 billion neurons and one trillion glial cells, with a glia:neuron ratio of 10:1. A new counting method, the isotropic fractionator, has challenged the notion that glia outnumber neurons and revived a question that was widely thought to have been resolved. The recently validated isotropic fractionator demonstrates a glia:neuron ratio of less than 1:1 and a total number of less than 100 billion glial cells in the human brain. A survey of original evidence shows that histological data always supported a 1:1 ratio of glia to neurons in the entire human brain, and a range of 40-130 billion glial cells. We review how the claim of one trillion glial cells originated, was perpetuated, and eventually refuted. We compile how numbers of neurons and glial cells in the adult human brain were reported and we examine the reasons for an erroneous consensus about the relative abundance of glial cells in human brains that persisted for half a century. Our review includes a brief history of cell counting in human brains, types of counting methods that were and are employed, ranges of previous estimates, and the current status of knowledge about the number of cells. We also discuss implications and consequences of the new insights into true numbers of glial cells in the human brain, and the promise and potential impact of the newly validated isotropic fractionator for reliable quantification of glia and neurons in neurological and psychiatric diseases. J. Comp. Neurol. 524:3865-3895, 2016. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
| | - Jami Bahney
- Department of Physiology and Cell Biology, University of Nevada School of Medicine, Reno, Nevada, USA
| | - Suzana Herculano-Houzel
- Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, and Instituto Nacional de Neurociência Translacional, CNPq/MCT, Brasil
| |
Collapse
|