1
|
Raghani RM, Urie RR, Ma JA, Escalona G, Schrack IA, DiLillo KM, Kandagatla P, Decker JT, Morris AH, Arnold KB, Jeruss JS, Shea LD. Engineered Immunologic Niche Monitors Checkpoint Blockade Response and Probes Mechanisms of Resistance. IMMUNOMEDICINE 2024; 4:e1052. [PMID: 39246390 PMCID: PMC11376346 DOI: 10.1002/imed.1052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Accepted: 05/07/2024] [Indexed: 09/10/2024]
Abstract
Antibodies to programmed cell death protein1 (anti-PD-1) have become a promising immunotherapy for triple negative breast cancer (TNBC), blocking PD-L1 signaling from pro-tumor cells through T cell PD-1 receptor binding. Nevertheless, only 10-20% of PD-L1+ metastatic TNBC patients who meet criteria benefit from ICB, and biomarkers to predict patient response have been elusive. We have previously developed an immunological niche, consisting of a microporous implant in the subcutaneous space, that supports tissue formation whose immune composition is consistent with that within vital organs. Herein, we investigated dynamic gene expression within this immunological niche to provide biomarkers of response to anti-PD-1. In a 4T1 model of metastatic TNBC, we observed sensitivity and resistance to anti-PD-1 based on primary tumor growth and survival. The niche was biopsied before, during, and after anti-PD-1 therapy, and analyzed for cell types and gene expression indicative of treatment refractivity. Myeloid cell-to-lymphocyte ratios were altered between ICB-sensitivity and resistance. Longitudinal analysis of gene expression implicated dynamic myeloid cell function that stratified sensitivity from resistance. A niche-derived gene signature predicted sensitivity or resistance prior to therapy. Analysis of the niche to monitor immunotherapy response presents a new opportunity to personalize care and investigate mechanisms underlying treatment resistance.
Collapse
Affiliation(s)
- Ravi M Raghani
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, Michigan
| | - Russell R Urie
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, Michigan
| | - Jeffrey A Ma
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, Michigan
| | - Guillermo Escalona
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, Michigan
| | - Ian A Schrack
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, Michigan
| | - Katarina M DiLillo
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, Michigan
| | | | - Joseph T Decker
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, Michigan
- Department of Cariology, Restorative Sciences, and Endodontics, University of Michigan, Ann Arbor, Michigan
| | - Aaron H Morris
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, Michigan
| | - Kelly B Arnold
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, Michigan
| | - Jacqueline S Jeruss
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, Michigan
- Department of Surgery, University of Michigan, Ann Arbor, Michigan
- Department of Pathology, University of Michigan, Ann Arbor, Michigan
| | - Lonnie D Shea
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, Michigan
- Department of Chemical Engineering, University of Michigan, Ann Arbor, Michigan
| |
Collapse
|
2
|
Scheuermann K, Viana CTR, Dos Reis DC, de Lazari MGT, Orellano LAA, Machado CT, Dos Santos LCC, Ulrich H, Capettini LSA, Andrade SP, Campos PP. Amitriptyline efficacy in decreasing implant-induced foreign body reaction. IUBMB Life 2023; 75:732-742. [PMID: 37086464 DOI: 10.1002/iub.2725] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2022] [Accepted: 03/15/2023] [Indexed: 04/24/2023]
Abstract
Beyond its actions on the nervous system, amitriptyline (AM) has been shown to lower inflammatory, angiogenic, and fibrogenic markers in a few pathological conditions in human and in experimental animal models. However, its effects on foreign body reaction (FBR), a complex adverse healing process, after biomedical material implantation are not known. We have evaluated the effects of AM on the angiogenic and fibrogenic components on a model of implant-induced FBR. Sponge disks were implanted subcutaneously in C57BL/6 mice, that were treated daily with oral administration of AM (5 mg/kg) for seven consecutive days in two protocols: treatment was started on the day of surgery and the implants were removed on the seventh day after implantation and treatment started 7 days after implantation and the implants removed 14 after implantation. None of the angiogenic (vessels, Vascular endothelial growth factor (VEGF), and interleukin-1β (IL-1β) or fibrogenic parameters (collagen, TGF-β, and fibrous capsule) and giant cell numbers analyzed were attenuated by AM in 7-day-old implants. However, AM was able to downregulate angiogenesis and FBR in 14-day-old implants. The effects of AM described here expands its range of actions as a potential agent capable of attenuating fibroproliferative processes that may impair functionality of implantable devices.
Collapse
Affiliation(s)
- Karina Scheuermann
- Department of General Pathology, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Celso Tarso Rodrigues Viana
- Department of General Pathology, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
- Department of Biochemistry, Institute of Chemistry, University of São Paulo, São Paulo, São Paulo, Brazil
| | - Diego Carlos Dos Reis
- Department of General Pathology, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | | | - Laura Alejandra Ariza Orellano
- Department of General Pathology, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
- Department of Pathology, University of Massachusetts Medical School, Worcester, Massachusetts, USA
| | - Clara Tolentino Machado
- Department of General Pathology, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | | | - Henning Ulrich
- Department of Biochemistry, Institute of Chemistry, University of São Paulo, São Paulo, São Paulo, Brazil
| | | | - Silvia Passos Andrade
- Department of Physiology and Biophysics, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Paula Peixoto Campos
- Department of General Pathology, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| |
Collapse
|
3
|
De Lazari MGT, Viana CTR, Pereira LX, Orellano LAA, Ulrich H, Andrade SP, Campos PP. Sodium butyrate attenuates peritoneal fibroproliferative process in mice. Exp Physiol 2023; 108:146-157. [PMID: 36459573 PMCID: PMC10103766 DOI: 10.1113/ep090559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Accepted: 11/07/2022] [Indexed: 12/03/2022]
Abstract
NEW FINDINGS What is the central question of this study? Peritoneal injury can result in a persistent fibroproliferative process in the abdominal cavity, causing pain and loss of function of internal organs. This study aimed to demonstrate the use of sodium butyrate (NaBu) as a potential agent to attenuate peritoneal fibrosis induced by a synthetic matrix. What is the main finding and its importance? Our findings provide the first evidence that NaBu attenuates the inflammatory, angiogenesis and fibrogenesis axes involved in the formation of peritoneal fibrovascular tissue, indicating the potential of this compound to ameliorate peritoneal fibrosis. ABSTRACT The aim of this study was to identify the bio-efficacy of sodium butyrate (NaBu) on preventing the development of peritoneal fibrovascular tissue induced by implantation of a synthetic matrix in the abdominal cavity. Polyether-polyurethane sponge discs were implanted in the peritoneal cavity of mice, which were treated daily with oral administration of NaBu (100 mg/kg). Control animals received water (100 μl). After 7 days, the implants were removed for assessment of inflammatory, angiogenic and fibrogenic markers. Compared with control values, NaBu treatment decreased mast cell recruitment/activation, inflammatory enzyme activities, levels of pro-inflammatory cytokines, and the proteins p65 and p50 of the nuclear factor-κB pathway. Angiogenesis, as determined by haemoglobin content, vascular endothelial growth factor levels and the number of blood vessels in the implant, was reduced by the treatment. In NaBu-treated animals, the predominant collagen present in the abdominal fibrovascular tissue was thin collagen, whereas in control implants it was thick collagen. Transforming growth factor-β1 levels were also lower in implants of treated animals. Sodium butyrate downregulated the inflammatory, angiogenesis and fibrogenesis axes of the fibroproliferative tissue induced by the intraperitoneal synthetic matrix. This compound has potential to control/regulate chronic inflammation and adverse healing processes in the abdominal cavity.
Collapse
Affiliation(s)
| | | | - Luciana Xavier Pereira
- Department of Experimental PathologyUniversidade Federal de São João del‐ReiDivinópolisMinas GeraisBrazil
| | | | - Henning Ulrich
- Department of BiochemistryInstitute of ChemistryUniversity of São PauloSão PauloSão PauloBrazil
| | - Silvia Passos Andrade
- Department of Physiology and BiophysicsInstitute of Biological SciencesUniversidade Federal de Minas GeraisBelo HorizonteMinas GeraisBrazil
| | - Paula Peixoto Campos
- Department of General PathologyInstitute of Biological SciencesUniversidade Federal de Minas GeraisBelo HorizonteMinas GeraisBrazil
| |
Collapse
|
4
|
Wang W, Yang S, Song S, Zhang J, Jia F. Flammulina velutipes mycorrhizae dietary fiber improves lipid metabolism disorders in obese mice through activating AMPK signaling pathway mediated by gut microbiota. FOOD BIOSCI 2021. [DOI: 10.1016/j.fbio.2021.101246] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
5
|
Chua CYX, Liu HC, Di Trani N, Susnjar A, Ho J, Scorrano G, Rhudy J, Sizovs A, Lolli G, Hernandez N, Nucci MC, Cicalo R, Ferrari M, Grattoni A. Carbon fiber reinforced polymers for implantable medical devices. Biomaterials 2021; 271:120719. [PMID: 33652266 DOI: 10.1016/j.biomaterials.2021.120719] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Revised: 02/04/2021] [Accepted: 02/10/2021] [Indexed: 12/24/2022]
Abstract
Carbon fibers reinforced polymers (CFRPs) are prolifically finding applications in the medical field, moving beyond the aerospace and automotive industries. Owing to its high strength-to-weight ratio, lightness and radiolucency, CFRP-based materials are emerging to replace traditional metal-based medical implants. Numerous types of polymers matrices can be incorporated with carbon fiber using various manufacturing methods, creating composites with distinct properties. Thus, prior to biomedical application, comprehensive evaluation of material properties, biocompatibility and safety are of paramount importance. In this study, we systematically evaluated a series of novel CFRPs, aiming at analyzing biocompatibility for future development into medical implants or implantable drug delivery systems. These CFRPs were produced either via Carbon Fiber-Sheet Molding Compound or Fused Deposition Modelling-based additive manufacturing. Unlike conventional methods, both fabrication processes afford high production rates in a time-and cost-effective manner. Importantly, they offer rapid prototyping and customization in view of personalized medical devices. Here, we investigate the physicochemical and surface properties, material mutagenicity or cytotoxicity of 20 CFRPs, inclusive of 2 surface finishes, as well as acute and sub-chronic toxicity in mice and rabbits, respectively. We demonstrate that despite moderate in vitro physicochemical and surface changes over time, most of the CFRPs were non-mutagenic and non-cytotoxic, as well as biocompatible in small animal models. Future work will entail extensive material assessment in the context of orthopedic applications such as evaluating potential for osseointegration, and a chronic toxicity study in a larger animal model, pigs.
Collapse
Affiliation(s)
- Corrine Ying Xuan Chua
- Department of Nanomedicine, Houston Methodist Research Institute, Houston, TX, 77030, USA
| | - Hsuan-Chen Liu
- Department of Nanomedicine, Houston Methodist Research Institute, Houston, TX, 77030, USA
| | - Nicola Di Trani
- Department of Nanomedicine, Houston Methodist Research Institute, Houston, TX, 77030, USA; University of Chinese Academy of Science (UCAS), Shijingshan, 19 Yuquan Road, Beijing, 100049, China
| | - Antonia Susnjar
- Department of Nanomedicine, Houston Methodist Research Institute, Houston, TX, 77030, USA
| | - Jeremy Ho
- Department of Nanomedicine, Houston Methodist Research Institute, Houston, TX, 77030, USA; Weill Cornell Medical College, New York, NY, 10065, USA
| | - Giovanni Scorrano
- Department of Nanomedicine, Houston Methodist Research Institute, Houston, TX, 77030, USA; Department of Material Science and Nanoengineering, Rice University, Houston, TX, 77005, USA
| | - Jessica Rhudy
- Department of Nanomedicine, Houston Methodist Research Institute, Houston, TX, 77030, USA
| | - Antons Sizovs
- Department of Nanomedicine, Houston Methodist Research Institute, Houston, TX, 77030, USA
| | - Graziano Lolli
- Department of Nanomedicine, Houston Methodist Research Institute, Houston, TX, 77030, USA; Department of Mechanical and Aerospace Engineering, Polytechnic of Turin, Turin, 10129, Italy
| | - Nathanael Hernandez
- Department of Nanomedicine, Houston Methodist Research Institute, Houston, TX, 77030, USA
| | - Maria Concetta Nucci
- Division of Occupational Medicine, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Via Albertoni 15, Bologna, 40138, Italy
| | - Roberto Cicalo
- D-Verge Srl, Sant'Agata Bolognese, Emilia-Romagna, 40019, Italy
| | - Mauro Ferrari
- Department of Nanomedicine, Houston Methodist Research Institute, Houston, TX, 77030, USA; School of Pharmacy, University of Washington, Seattle, WA, 98195, USA
| | - Alessandro Grattoni
- Department of Nanomedicine, Houston Methodist Research Institute, Houston, TX, 77030, USA; Department of Surgery, Houston Methodist Hospital, Houston, TX, 77030, USA; Department of Radiation Oncology, Houston Methodist Hospital, Houston, TX, 77030, USA.
| |
Collapse
|
6
|
Amitriptyline Downregulates Chronic Inflammatory Response to Biomaterial in Mice. Inflammation 2020; 44:580-591. [PMID: 33034827 DOI: 10.1007/s10753-020-01356-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Accepted: 10/02/2020] [Indexed: 10/23/2022]
Abstract
Recent data has signaled that in addition to its therapeutic indications as antidepressant and analgesic, amitriptyline (AM) exerts anti-inflammatory effects in humans and experimental animal models of acute inflammation. We tested the hypothesis that this compound could also modulate the chronic inflammatory process induced by synthetic matrix in mice. Polyether-polyurethane sponge disks were implanted subcutaneously in 9-week-old male C57BL/6 mice. The animals received by oral gavage 5.0 mg/kg of amitriptyline for seven consecutive days in two treatment regimens. In the first series, the treatment was initiated on the day of surgery and the implants removed at day 7 post-implantation. For the assessment of the effect of amitriptyline on chronic inflammation, the treatment was initiated 7 days post-implantation and the sponge discs removed 14 after implantation. The inflammatory markers evaluated, myeloperoxidase - MPO, nitrite content, IL-6, IFN-γ, TNF-α, CXCL1 and CCL2 levels, and NF-κB transcription factor activation were reduced in implants when the treatment began 7 days post-implantation (chronic inflammation). In contrast, only mast cell number, MPO activity and activation of NF-κB pathway decreased when the treatment began soon after implantation (sub-acute inflammation) in 7-day old implants. The anti-inflammatory effects of amitriptyline described here, extend its range of actions as a potential agent able to attenuate long-term inflammatory processes.
Collapse
|
7
|
Morris AH, Hughes KR, Oakes RS, Cai MM, Miller SD, Irani DN, Shea LD. Engineered immunological niches to monitor disease activity and treatment efficacy in relapsing multiple sclerosis. Nat Commun 2020; 11:3871. [PMID: 32747712 PMCID: PMC7398910 DOI: 10.1038/s41467-020-17629-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Accepted: 07/09/2020] [Indexed: 12/19/2022] Open
Abstract
Relapses in multiple sclerosis can result in irreversible nervous system tissue injury. If these events could be detected early, targeted immunotherapy could potentially slow disease progression. We describe the use of engineered biomaterial-based immunological niches amenable to biopsy to provide insights into the phenotype of innate immune cells that control disease activity in a mouse model of multiple sclerosis. Differential gene expression in cells from these niches allow monitoring of disease dynamics and gauging the effectiveness of treatment. A proactive treatment regimen, given in response to signal within the niche but before symptoms appeared, substantially reduced disease. This technology offers a new approach to monitor organ-specific autoimmunity, and represents a platform to analyze immune dysfunction within otherwise inaccessible target tissues.
Collapse
Affiliation(s)
- Aaron H Morris
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, USA
| | - Kevin R Hughes
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, USA
| | - Robert S Oakes
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, USA
| | - Michelle M Cai
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, USA
| | - Stephen D Miller
- Department of Microbiology-Immunology and Interdepartmental Immunobiology Center, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - David N Irani
- Department of Neurology, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Lonnie D Shea
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, USA.
- Department of Chemical Engineering, University of Michigan, Ann Arbor, MI, USA.
| |
Collapse
|
8
|
Orellano LAA, de Almeida SA, Pereira LX, Machado CT, Viana CTR, Andrade SP, Campos PP. Implant-induced inflammatory angiogenesis is up-regulated in obese mice. Microvasc Res 2020; 131:104014. [PMID: 32450153 DOI: 10.1016/j.mvr.2020.104014] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Revised: 05/12/2020] [Accepted: 05/13/2020] [Indexed: 01/02/2023]
Abstract
The damaging effects of obesity extend to multiple pre-existing tissue/organs. However, the influence of this condition on key components (inflammation and angiogenesis) of fibrovascular connective proliferating tissue, essential in repair processes, has been neglected. Our objective in this study was to investigate whether obesity would influence inflammatory-angiogenesis induced by synthetic matrix of polyether-polyurethane implanted subcutaneously in high-fat-fed obese C57/BL6 mice. Fourteen days after implantation, the inflammatory and angiogenic components of the newly formed tissue intra-implant were evaluated. The pro-inflammatory enzyme activities, myeloperoxidase (MPO) and N-acetyl-β-D-glucosaminidase (NAG), the levels of TNF-α, CXCL1/KC and CCL2 and NF-κB transcription factor were examined. Angiogenesis was determined by morphometric analysis of implant blood vessels, intra-implant levels of hemoglobin content, VEGF levels, and western blot for VEGFR2. All inflammatory and angiogenic markers were increased in the implants of obese mice compared with their non-obese counterparts. Similarly, activation of the NF-κB pathway and phosphorylation of VEGFR2 were higher in implants of obese mice (1.60 ± 0.28 Np65/Cp65; 0.96 ± 0.08 p-VEGFR2/VEGFR2-T) compared with implants of non-obese animals (1.40 ± 0.14; 0.49 ± 0.08). These observations suggest that obesity exerts critical role in sponge-induced inflammatory-angiogenesis, possibly by activating fibrovascular components in the inflamed microenvironment. Thus, this pathological condition causes damage not only to pre-existing tissues/organs but also to newly formed proliferating fibrovascular tissue. This is relevant to the development of therapeutic approaches to improve healing processes in patients with obesity.
Collapse
Affiliation(s)
- Laura Alejandra Ariza Orellano
- Department of General Pathology, Institute of Biological Sciences, Federal University of Minas Gerais, Av. Antônio Carlos 6627 - Campus Pampulha, Cx Post 468, CEP 31270-901 Belo Horizonte, MG, Brazil.
| | - Simone Aparecida de Almeida
- Department of General Pathology, Institute of Biological Sciences, Federal University of Minas Gerais, Av. Antônio Carlos 6627 - Campus Pampulha, Cx Post 468, CEP 31270-901 Belo Horizonte, MG, Brazil
| | - Luciana Xavier Pereira
- Nursing Department, Federal University of Alagoas, Av. Manoel Severino Barbosa Bom Sucesso - Campus Arapiraca, CEP: 57309-005 Arapiraca, AL, Brazil
| | - Clara Tolentino Machado
- Department of General Pathology, Institute of Biological Sciences, Federal University of Minas Gerais, Av. Antônio Carlos 6627 - Campus Pampulha, Cx Post 468, CEP 31270-901 Belo Horizonte, MG, Brazil
| | - Celso Tarso Rodrigues Viana
- Department of General Pathology, Institute of Biological Sciences, Federal University of Minas Gerais, Av. Antônio Carlos 6627 - Campus Pampulha, Cx Post 468, CEP 31270-901 Belo Horizonte, MG, Brazil
| | - Silvia Passos Andrade
- Department of Physiology and Biophysics, Institute of Biological Sciences, Federal University of Minas Gerais, Av. Antônio Carlos 6627 - Campus Pampulha, Cx Post 468, CEP 31270-901 Belo Horizonte, MG, Brazil.
| | - Paula Peixoto Campos
- Department of General Pathology, Institute of Biological Sciences, Federal University of Minas Gerais, Av. Antônio Carlos 6627 - Campus Pampulha, Cx Post 468, CEP 31270-901 Belo Horizonte, MG, Brazil.
| |
Collapse
|
9
|
de Lazari MGT, Pereira LX, Orellano LAA, Scheuermann K, Machado CT, Vasconcelos AC, Andrade SP, Campos PP. Sodium Butyrate Downregulates Implant-Induced Inflammation in Mice. Inflammation 2020; 43:1259-1268. [DOI: 10.1007/s10753-020-01205-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
10
|
Rojas-Osornio SA, Cruz-Hernández TR, Drago-Serrano ME, Campos-Rodríguez R. Immunity to influenza: Impact of obesity. Obes Res Clin Pract 2019; 13:419-429. [PMID: 31542241 DOI: 10.1016/j.orcp.2019.05.003] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/19/2018] [Revised: 05/14/2019] [Accepted: 05/19/2019] [Indexed: 12/27/2022]
Abstract
Obesity is a health concern that is recognized as a critical factor for vulnerability to influenza A/pdmH1N1 virus infection, with epidemiological and clinical impacts. In humans, obesity induces disturbances in inflammatory and immune responses to the influenza virus and in some cases, this leads to severe complications, with fatal outcomes. Obesity impairs immunity by altering the response of cytokines, resulting in a decrease in the cytotoxic cell response of immunocompetent cells which have a key anti-viral role. Additionally, obesity seems to disturb the balance of endocrine hormones, such as leptin, that affect the interplay between metabolic and immune systems. This contribution focuses on reviewing the current epidemiologic data for the immune response to immunity in obese humans and animal models. In doing so, we aim to provide potential mechanisms to enhance immunity to influenza A/pdmH1N1 virus infection and protective factors in obese people.
Collapse
Affiliation(s)
- Sandra Angélica Rojas-Osornio
- Sección de Estudios de Posgrado e Investigación, Escuela Superior de Medicina, Instituto Politécnico Nacional, Plan de San Luis y Díaz Mirón s/n, CP 11340, CDMX, Mexico
| | - Teresita Rocío Cruz-Hernández
- Sección de Estudios de Posgrado e Investigación, Escuela Superior de Medicina, Instituto Politécnico Nacional, Plan de San Luis y Díaz Mirón s/n, CP 11340, CDMX, Mexico
| | - Maria Elisa Drago-Serrano
- Departamento de Sistemas Biológicos, Universidad Autónoma Metropolitana, Unidad Xochimilco. Calzada del Hueso No. 1100, CP 04960, CDMX, Mexico
| | - Rafael Campos-Rodríguez
- Sección de Estudios de Posgrado e Investigación, Escuela Superior de Medicina, Instituto Politécnico Nacional, Plan de San Luis y Díaz Mirón s/n, CP 11340, CDMX, Mexico.
| |
Collapse
|
11
|
Pinzón-García AD, Orellano LAA, de Lazari MGT, Campos PP, Cortes ME, Sinisterra RD. Evidence of hypoglycemic, lipid-lowering and hepatoprotective effects of the Bixin and Bixin: β-CD inclusion compound in high-fat-fed obese mice. Biomed Pharmacother 2018; 106:363-372. [DOI: 10.1016/j.biopha.2018.06.144] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2018] [Revised: 06/18/2018] [Accepted: 06/25/2018] [Indexed: 12/21/2022] Open
|