1
|
de Andrade AG, Vanderley SER, de Farias Marques L, Almeida FS, Cavalcante-Silva LHA, Keesen TSL. Leptin, NK cells, and the weight of immunity: Insights into obesity. Int Immunopharmacol 2025; 147:113992. [PMID: 39755107 DOI: 10.1016/j.intimp.2024.113992] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Revised: 12/28/2024] [Accepted: 12/29/2024] [Indexed: 01/06/2025]
Abstract
Obesity is a chronic inflammatory disease that affects more than 1 billion people worldwide and is associated with various metabolic and physiological dysfunctions, directly impacting the dynamics of the immune response, partly due to elevated leptin levels. Leptin is an important peptide hormone that regulates neuroendocrine function and energy homeostasis, with its blood levels reflecting energy reserves, fat mass, or energy deprivation. This hormone also plays a fundamental role in regulating immune function, including the activity of NK cells, which are essential components in antiviral and antitumor activity. In obese individuals, leptin resistance is commonly established, however, NK cells and other immune components remain responsive to this hormone. So far, leptin has demonstrated paradoxical activities of these cells, often associated with a dysfunctional profile when associated with obesity. The excessive fat is usually related to metabolic remodeling in NK cells, resulting in compromised antitumor responses due to reduced cytotoxic capacity and decreased expression of cytokines important for these defense mechanisms, such as IFN-γ. Therefore, this review approaches a better understanding of the immunoendocrine interactions between leptin and NK cells in the context of obesity.
Collapse
Affiliation(s)
- Arthur Gomes de Andrade
- Immunology Laboratory of Infectious Diseases, Department of Cellular and Molecular Biology, Federal University of Paraiba, João Pessoa, Paraíba 58051-900, Brazil
| | - Shayenne Eduarda Ramos Vanderley
- Immunology Laboratory of Infectious Diseases, Department of Cellular and Molecular Biology, Federal University of Paraiba, João Pessoa, Paraíba 58051-900, Brazil
| | - Lorrane de Farias Marques
- Immunology Laboratory of Infectious Diseases, Department of Cellular and Molecular Biology, Federal University of Paraiba, João Pessoa, Paraíba 58051-900, Brazil
| | - Fernanda Silva Almeida
- Immunology Laboratory of Infectious Diseases, Department of Cellular and Molecular Biology, Federal University of Paraiba, João Pessoa, Paraíba 58051-900, Brazil
| | | | - Tatjana Souza Lima Keesen
- Immunology Laboratory of Infectious Diseases, Department of Cellular and Molecular Biology, Federal University of Paraiba, João Pessoa, Paraíba 58051-900, Brazil.
| |
Collapse
|
2
|
Zhang H, Li S, Wang D, Liu S, Xiao T, Gu W, Yang H, Wang H, Yang M, Chen P. Metabolic reprogramming and immune evasion: the interplay in the tumor microenvironment. Biomark Res 2024; 12:96. [PMID: 39227970 PMCID: PMC11373140 DOI: 10.1186/s40364-024-00646-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Accepted: 08/24/2024] [Indexed: 09/05/2024] Open
Abstract
Tumor cells possess complex immune evasion mechanisms to evade immune system attacks, primarily through metabolic reprogramming, which significantly alters the tumor microenvironment (TME) to modulate immune cell functions. When a tumor is sufficiently immunogenic, it can activate cytotoxic T-cells to target and destroy it. However, tumors adapt by manipulating their metabolic pathways, particularly glucose, amino acid, and lipid metabolism, to create an immunosuppressive TME that promotes immune escape. These metabolic alterations impact the function and differentiation of non-tumor cells within the TME, such as inhibiting effector T-cell activity while expanding regulatory T-cells and myeloid-derived suppressor cells. Additionally, these changes lead to an imbalance in cytokine and chemokine secretion, further enhancing the immunosuppressive landscape. Emerging research is increasingly focusing on the regulatory roles of non-tumor cells within the TME, evaluating how their reprogrammed glucose, amino acid, and lipid metabolism influence their functional changes and ultimately aid in tumor immune evasion. Despite our incomplete understanding of the intricate metabolic interactions between tumor and non-tumor cells, the connection between these elements presents significant challenges for cancer immunotherapy. This review highlights the impact of altered glucose, amino acid, and lipid metabolism in the TME on the metabolism and function of non-tumor cells, providing new insights that could facilitate the development of novel cancer immunotherapies.
Collapse
Affiliation(s)
- Haixia Zhang
- The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Hunan Cancer Hospital, Changsha, China
- Department of Pediatrics, Third Xiangya Hospital, Central South University, Changsha, China
| | - Shizhen Li
- The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Hunan Cancer Hospital, Changsha, China
| | - Dan Wang
- Department of Pediatrics, Third Xiangya Hospital, Central South University, Changsha, China
| | - Siyang Liu
- Department of Pediatrics, Third Xiangya Hospital, Central South University, Changsha, China
| | - Tengfei Xiao
- The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Hunan Cancer Hospital, Changsha, China
| | - Wangning Gu
- The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Hunan Cancer Hospital, Changsha, China
| | - Hongmin Yang
- The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Hunan Cancer Hospital, Changsha, China
| | - Hui Wang
- The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Hunan Cancer Hospital, Changsha, China.
| | - Minghua Yang
- Department of Pediatrics, Third Xiangya Hospital, Central South University, Changsha, China.
| | - Pan Chen
- The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Hunan Cancer Hospital, Changsha, China.
| |
Collapse
|
3
|
Ye H, Yang X, Feng B, Luo P, Torres Irizarry VC, Carrillo-Sáenz L, Yu M, Yang Y, Eappen BP, Munoz MD, Patel N, Schaul S, Ibrahimi L, Lai P, Qi X, Zhou Y, Kota M, Dixit D, Mun M, Liew CW, Jiang Y, Wang C, He Y, Xu P. 27-Hydroxycholesterol acts on estrogen receptor α expressed by POMC neurons in the arcuate nucleus to modulate feeding behavior. SCIENCE ADVANCES 2024; 10:eadi4746. [PMID: 38996023 PMCID: PMC11244552 DOI: 10.1126/sciadv.adi4746] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Accepted: 02/05/2024] [Indexed: 07/14/2024]
Abstract
Oxysterols are metabolites of cholesterol that regulate cholesterol homeostasis. Among these, the most abundant oxysterol is 27-hydroxycholesterol (27HC), which can cross the blood-brain barrier. Because 27HC functions as an endogenous selective estrogen receptor modulator, we hypothesize that 27HC binds to the estrogen receptor α (ERα) in the brain to regulate energy balance. Supporting this view, we found that delivering 27HC to the brain reduced food intake and activated proopiomelanocortin (POMC) neurons in the arcuate nucleus of the hypothalamus (POMCARH) in an ERα-dependent manner. In addition, we observed that inhibiting brain ERα, deleting ERα in POMC neurons, or chemogenetic inhibition of POMCARH neurons blocked the anorexigenic effects of 27HC. Mechanistically, we further revealed that 27HC stimulates POMCARH neurons by inhibiting the small conductance of the calcium-activated potassium (SK) channel. Together, our findings suggest that 27HC, through its interaction with ERα and modulation of the SK channel, inhibits food intake as a negative feedback mechanism against a surge in circulating cholesterol.
Collapse
Affiliation(s)
- Hui Ye
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, Singapore 639798, Singapore
- Division of Endocrinology, Department of Medicine, The University of Illinois at Chicago, Chicago, IL 60612, USA
| | - Xiaohua Yang
- Division of Endocrinology, Department of Medicine, The University of Illinois at Chicago, Chicago, IL 60612, USA
- Guangdong Laboratory of Lingnan Modern Agriculture and Guangdong Province Key Laboratory of Animal Nutritional Regulation, National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, 483 Wushan Road, Tianhe District, Guangzhou, Guangdong 510642, China
| | - Bing Feng
- Pennington Biomedical Research Center, Louisiana State University, Baton Rouge, LA 70808, USA
| | - Pei Luo
- Division of Endocrinology, Department of Medicine, The University of Illinois at Chicago, Chicago, IL 60612, USA
- Guangdong Laboratory of Lingnan Modern Agriculture and Guangdong Province Key Laboratory of Animal Nutritional Regulation, National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, 483 Wushan Road, Tianhe District, Guangzhou, Guangdong 510642, China
| | - Valeria C. Torres Irizarry
- Division of Endocrinology, Department of Medicine, The University of Illinois at Chicago, Chicago, IL 60612, USA
- Department of Physiology and Biophysics, The University of Illinois at Chicago, Chicago, IL 60612, USA
| | - Leslie Carrillo-Sáenz
- Division of Endocrinology, Department of Medicine, The University of Illinois at Chicago, Chicago, IL 60612, USA
- Department of Physiology and Biophysics, The University of Illinois at Chicago, Chicago, IL 60612, USA
| | - Meng Yu
- Children’s Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA
| | - Yongjie Yang
- Children’s Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA
| | - Benjamin P. Eappen
- Children’s Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA
| | - Marcos David Munoz
- Division of Endocrinology, Department of Medicine, The University of Illinois at Chicago, Chicago, IL 60612, USA
| | - Nirali Patel
- Division of Endocrinology, Department of Medicine, The University of Illinois at Chicago, Chicago, IL 60612, USA
| | - Sarah Schaul
- Division of Endocrinology, Department of Medicine, The University of Illinois at Chicago, Chicago, IL 60612, USA
| | - Lucas Ibrahimi
- Division of Endocrinology, Department of Medicine, The University of Illinois at Chicago, Chicago, IL 60612, USA
| | - Penghua Lai
- Division of Endocrinology, Department of Medicine, The University of Illinois at Chicago, Chicago, IL 60612, USA
| | - Xinyue Qi
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, Singapore 639798, Singapore
| | - Yuliang Zhou
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, Singapore 639798, Singapore
| | - Maya Kota
- Division of Endocrinology, Department of Medicine, The University of Illinois at Chicago, Chicago, IL 60612, USA
| | - Devin Dixit
- Division of Endocrinology, Department of Medicine, The University of Illinois at Chicago, Chicago, IL 60612, USA
| | - Madeline Mun
- Division of Endocrinology, Department of Medicine, The University of Illinois at Chicago, Chicago, IL 60612, USA
| | - Chong Wee Liew
- Division of Endocrinology, Department of Medicine, The University of Illinois at Chicago, Chicago, IL 60612, USA
- Department of Physiology and Biophysics, The University of Illinois at Chicago, Chicago, IL 60612, USA
| | - Yuwei Jiang
- Division of Endocrinology, Department of Medicine, The University of Illinois at Chicago, Chicago, IL 60612, USA
- Department of Physiology and Biophysics, The University of Illinois at Chicago, Chicago, IL 60612, USA
| | - Chunmei Wang
- Children’s Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA
| | - Yanlin He
- Pennington Biomedical Research Center, Louisiana State University, Baton Rouge, LA 70808, USA
| | - Pingwen Xu
- Division of Endocrinology, Department of Medicine, The University of Illinois at Chicago, Chicago, IL 60612, USA
- Department of Physiology and Biophysics, The University of Illinois at Chicago, Chicago, IL 60612, USA
| |
Collapse
|
4
|
Wang X, Zhong F, Chen T, Wang H, Wang W, Jin H, Li C, Guo X, Liu Y, Zhang Y, Li B. Cholesterol neutralized vemurafenib treatment by promoting melanoma stem-like cells via its metabolite 27-hydroxycholesterol. Cell Mol Life Sci 2024; 81:226. [PMID: 38775844 PMCID: PMC11111659 DOI: 10.1007/s00018-024-05267-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Revised: 04/14/2024] [Accepted: 05/05/2024] [Indexed: 05/25/2024]
Abstract
Vemurafenib has been used as first-line therapy for unresectable or metastatic melanoma with BRAFV600E mutation. However, overall survival is still limited due to treatment resistance after about one year. Therefore, identifying new therapeutic targets for melanoma is crucial for improving clinical outcomes. In the present study, we found that lowering intracellular cholesterol by knocking down DHCR24, the limiting synthetase, impaired tumor cell proliferation and migration and abrogated the ability to xenotransplant tumors. More importantly, administration of DHCR24 or cholesterol mediated resistance to vemurafenib and promoted the growth of melanoma spheroids. Mechanistically, we identified that 27-hydroxycholesterol (27HC), a primary metabolite of cholesterol synthesized by the enzyme cytochrome P450 27A1 (CYP27A1), reproduces the phenotypes induced by DHCR24 or cholesterol administration and activates Rap1-PI3K/AKT signaling. Accordingly, CYP27A1 is highly expressed in melanoma patients and upregulated by DHCR24 induction. Dafadine-A, a CYP27A1 inhibitor, attenuates cholesterol-induced growth of melanoma spheroids and abrogates the resistance property of vemurafenib-resistant melanoma cells. Finally, we confirmed that the effects of cholesterol on melanoma resistance require its metabolite 27HC through CYP27A1 catalysis, and that 27HC further upregulates Rap1A/Rap1B expression and increases AKT phosphorylation. Thus, our results suggest that targeting 27HC may be a useful strategy to overcome treatment resistance in metastatic melanoma.
Collapse
Affiliation(s)
- Xiaohong Wang
- Liaoning Technology and Engineering Center for Tumor Immunology and Molecular Theranotics, Collaborative Innovation Center for Age-Related Disease, Life Science Institute of Jinzhou Medical University, Jinzhou, 121001, Liaoning, China
- College of Basic Medical Science, Jinzhou Medical University, Jinzhou, 121001, Liaoning, China
| | - Feiliang Zhong
- Key Laboratory of Industrial Fermentation Microbiology of the Ministry of Education, College of Biotechnology, Tianjin University of Science and Technology, Tianjin, 300457, People's Republic of China
| | - Tingting Chen
- School of Basic Medicine, Guangdong Medical University, Dongguan, 523808, Guangdong, China
| | - Hongbo Wang
- Liaoning Technology and Engineering Center for Tumor Immunology and Molecular Theranotics, Collaborative Innovation Center for Age-Related Disease, Life Science Institute of Jinzhou Medical University, Jinzhou, 121001, Liaoning, China
- College of Basic Medical Science, Jinzhou Medical University, Jinzhou, 121001, Liaoning, China
| | - Weifang Wang
- Liaoning Technology and Engineering Center for Tumor Immunology and Molecular Theranotics, Collaborative Innovation Center for Age-Related Disease, Life Science Institute of Jinzhou Medical University, Jinzhou, 121001, Liaoning, China
- College of Basic Medical Science, Jinzhou Medical University, Jinzhou, 121001, Liaoning, China
| | - Hongkai Jin
- Liaoning Technology and Engineering Center for Tumor Immunology and Molecular Theranotics, Collaborative Innovation Center for Age-Related Disease, Life Science Institute of Jinzhou Medical University, Jinzhou, 121001, Liaoning, China
| | - Chouyang Li
- College of Basic Medical Science, Jinzhou Medical University, Jinzhou, 121001, Liaoning, China
| | - Xuan Guo
- Liaoning Technology and Engineering Center for Tumor Immunology and Molecular Theranotics, Collaborative Innovation Center for Age-Related Disease, Life Science Institute of Jinzhou Medical University, Jinzhou, 121001, Liaoning, China
- College of Basic Medical Science, Jinzhou Medical University, Jinzhou, 121001, Liaoning, China
| | - Ying Liu
- Liaoning Technology and Engineering Center for Tumor Immunology and Molecular Theranotics, Collaborative Innovation Center for Age-Related Disease, Life Science Institute of Jinzhou Medical University, Jinzhou, 121001, Liaoning, China
- College of Basic Medical Science, Jinzhou Medical University, Jinzhou, 121001, Liaoning, China
| | - Yu Zhang
- Liaoning Technology and Engineering Center for Tumor Immunology and Molecular Theranotics, Collaborative Innovation Center for Age-Related Disease, Life Science Institute of Jinzhou Medical University, Jinzhou, 121001, Liaoning, China.
- College of Basic Medical Science, Jinzhou Medical University, Jinzhou, 121001, Liaoning, China.
| | - Bo Li
- Liaoning Technology and Engineering Center for Tumor Immunology and Molecular Theranotics, Collaborative Innovation Center for Age-Related Disease, Life Science Institute of Jinzhou Medical University, Jinzhou, 121001, Liaoning, China.
- College of Basic Medical Science, Jinzhou Medical University, Jinzhou, 121001, Liaoning, China.
| |
Collapse
|
5
|
Zhou Y, Yuan J, Xu K, Li S, Liu Y. Nanotechnology Reprogramming Metabolism for Enhanced Tumor Immunotherapy. ACS NANO 2024; 18:1846-1864. [PMID: 38180952 DOI: 10.1021/acsnano.3c11260] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/07/2024]
Abstract
Mutation burden, hypoxia, and immunoediting contribute to altered metabolic profiles in tumor cells, resulting in a tumor microenvironment (TME) characterized by accumulation of toxic metabolites and depletion of various nutrients, which significantly hinder the antitumor immunity via multiple mechanisms, hindering the efficacy of tumor immunotherapies. In-depth investigation of the mechanisms underlying these phenomena are vital for developing effective antitumor drugs and therapies, while the therapeutic effects of metabolism-targeting drugs are restricted by off-target toxicity toward effector immune cells and high dosage-mediated side effects. Nanotechnologies, which exhibit versatility and plasticity in targeted delivery and metabolism modulation, have been widely applied to boost tumor immunometabolic therapies via multiple strategies, including targeting of metabolic pathways. In this review, recent advances in understanding the roles of tumor cell metabolism in both immunoevasion and immunosuppression are reviewed, and nanotechnology-based metabolic reprogramming strategies for enhanced tumor immunotherapies are discussed.
Collapse
Affiliation(s)
- Yangkai Zhou
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety & CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jing Yuan
- First Medical Center of Chinese PLA General Hospital, Beijing 100853, China
| | - Ke Xu
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety & CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Shilin Li
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety & CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ying Liu
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety & CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, Beijing 100190, China
| |
Collapse
|
6
|
Borde S, Matosevic S. Metabolic adaptation of NK cell activity and behavior in tumors: challenges and therapeutic opportunities. Trends Pharmacol Sci 2023; 44:832-848. [PMID: 37770314 DOI: 10.1016/j.tips.2023.08.009] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2023] [Revised: 08/24/2023] [Accepted: 08/25/2023] [Indexed: 09/30/2023]
Abstract
The adaptation of natural killer (NK) cells to conditions in the microenvironment of tumors is deeply affected by their metabolic activity, itself a result of nutrient availability and the metabolism of the cancer cells themselves. Elevated rates of glycolysis and lipid metabolism in cancers not only lead to the accumulation of immunosuppressive byproducts but also contribute to an environment of elevated concentrations of extracellular metabolites. This results in altered NK cell bioenergetics through changes in transcriptional and translational profiles, ultimately affecting their pharmacology and impairing NK cell responses. However, understanding the metabolic processes that drive alterations in immunological signaling on NK cells remains both difficult and vastly underexplored. We discuss the varied and complex drivers of NK cell metabolism in homeostasis and the tumor microenvironment (TME), challenges associated with their targetability, and unexplored therapeutic opportunities.
Collapse
Affiliation(s)
- Shambhavi Borde
- Department of Industrial and Physical Pharmacy, Purdue University, West Lafayette, IN, USA
| | - Sandro Matosevic
- Department of Industrial and Physical Pharmacy, Purdue University, West Lafayette, IN, USA; Center for Cancer Research, Purdue University, West Lafayette, IN, USA.
| |
Collapse
|
7
|
Xiao C, Xiong W, Xu Y, Zou J, Zeng Y, Liu J, Peng Y, Hu C, Wu F. Immunometabolism: a new dimension in immunotherapy resistance. Front Med 2023; 17:585-616. [PMID: 37725232 DOI: 10.1007/s11684-023-1012-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Accepted: 05/19/2023] [Indexed: 09/21/2023]
Abstract
Immune checkpoint inhibitors (ICIs) have demonstrated unparalleled clinical responses and revolutionized the paradigm of tumor treatment, while substantial patients remain unresponsive or develop resistance to ICIs as a single agent, which is traceable to cellular metabolic dysfunction. Although dysregulated metabolism has long been adjudged as a hallmark of tumor, it is now increasingly accepted that metabolic reprogramming is not exclusive to tumor cells but is also characteristic of immunocytes. Correspondingly, people used to pay more attention to the effect of tumor cell metabolism on immunocytes, but in practice immunocytes interact intimately with their own metabolic function in a way that has never been realized before during their activation and differentiation, which opens up a whole new frontier called immunometabolism. The metabolic intervention for tumor-infiltrating immunocytes could offer fresh opportunities to break the resistance and ameliorate existing ICI immunotherapy, whose crux might be to ascertain synergistic combinations of metabolic intervention with ICIs to reap synergic benefits and facilitate an adjusted anti-tumor immune response. Herein, we elaborate potential mechanisms underlying immunotherapy resistance from a novel dimension of metabolic reprogramming in diverse tumor-infiltrating immunocytes, and related metabolic intervention in the hope of offering a reference for targeting metabolic vulnerabilities to circumvent immunotherapeutic resistance.
Collapse
Affiliation(s)
- Chaoyue Xiao
- Department of Oncology, The Second Xiangya Hospital, Central South University, Changsha, 410011, China
| | - Wei Xiong
- NHC Key Laboratory of Carcinogenesis and Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, 410078, China
| | - Yiting Xu
- Xiangya School of Medicine, Central South University, Changsha, 410013, China
| | - Ji'an Zou
- Xiangya School of Medicine, Central South University, Changsha, 410013, China
| | - Yue Zeng
- Department of Oncology, The Second Xiangya Hospital, Central South University, Changsha, 410011, China
| | - Junqi Liu
- Department of Oncology, The Second Xiangya Hospital, Central South University, Changsha, 410011, China
| | - Yurong Peng
- Department of Oncology, The Second Xiangya Hospital, Central South University, Changsha, 410011, China
| | - Chunhong Hu
- Department of Oncology, The Second Xiangya Hospital, Central South University, Changsha, 410011, China
- Hunan Cancer Mega-Data Intelligent Application and Engineering Research Centre, Changsha, 410011, China
| | - Fang Wu
- Department of Oncology, The Second Xiangya Hospital, Central South University, Changsha, 410011, China.
- Hunan Cancer Mega-Data Intelligent Application and Engineering Research Centre, Changsha, 410011, China.
- Hunan Key Laboratory of Early Diagnosis and Precision Therapy in Lung Cancer, The Second Xiangya Hospital, Central South University, Changsha, 410011, China.
- Hunan Key Laboratory of Tumor Models and Individualized Medicine, The Second Xiangya Hospital, Central South University, Changsha, 410011, China.
| |
Collapse
|
8
|
Kim H, Park C, Kim TH. Targeting Liver X Receptors for the Treatment of Non-Alcoholic Fatty Liver Disease. Cells 2023; 12:cells12091292. [PMID: 37174692 PMCID: PMC10177243 DOI: 10.3390/cells12091292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2023] [Revised: 04/29/2023] [Accepted: 04/29/2023] [Indexed: 05/15/2023] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) refers to a range of conditions in which excess lipids accumulate in the liver, possibly leading to serious hepatic manifestations such as steatohepatitis, fibrosis/cirrhosis and cancer. Despite its increasing prevalence and significant impact on liver disease-associated mortality worldwide, no medication has been approved for the treatment of NAFLD yet. Liver X receptors α/β (LXRα and LXRβ) are lipid-activated nuclear receptors that serve as master regulators of lipid homeostasis and play pivotal roles in controlling various metabolic processes, including lipid metabolism, inflammation and immune response. Of note, NAFLD progression is characterized by increased accumulation of triglycerides and cholesterol, hepatic de novo lipogenesis, mitochondrial dysfunction and augmented inflammation, all of which are highly attributed to dysregulated LXR signaling. Thus, targeting LXRs may provide promising strategies for the treatment of NAFLD. However, emerging evidence has revealed that modulating the activity of LXRs has various metabolic consequences, as the main functions of LXRs can distinctively vary in a cell type-dependent manner. Therefore, understanding how LXRs in the liver integrate various signaling pathways and regulate metabolic homeostasis from a cellular perspective using recent advances in research may provide new insights into therapeutic strategies for NAFLD and associated metabolic diseases.
Collapse
Affiliation(s)
- Hyejin Kim
- College of Pharmacy, Sookmyung Women's University, Seoul 04310, Republic of Korea
| | - Chaewon Park
- College of Pharmacy, Sookmyung Women's University, Seoul 04310, Republic of Korea
| | - Tae Hyun Kim
- College of Pharmacy, Sookmyung Women's University, Seoul 04310, Republic of Korea
- Drug Information Research Institute, Sookmyung Women's University, Seoul 04310, Republic of Korea
- Muscle Physiome Research Center, Sookmyung Women's University, Seoul 04310, Republic of Korea
| |
Collapse
|
9
|
Li X, Liu M, Liu H, Chen J. Tumor metabolic reprogramming in lung cancer progression. Oncol Lett 2022; 24:287. [PMID: 35814833 PMCID: PMC9260716 DOI: 10.3892/ol.2022.13407] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Accepted: 05/25/2022] [Indexed: 11/06/2022] Open
Abstract
Metabolic reprogramming is an important characteristic of tumor cells. Tumor cells reprogram their metabolic pathways to meet the material, energy and redox force needs for rapid proliferation. Metabolic reprogramming changes the level or type of specific metabolites inside and outside cells, and promotes tumor growth by affecting gene expression, cell state and the tumor microenvironment. Glucose metabolism, glutamine metabolism and lipid metabolism are significant metabolic pathways in tumors. Targeting metabolic reprogramming can significantly inhibit tumor growth and induce apoptosis. Metabolic reprogramming also plays an important role in maintaining the growth advantage of tumor cells and enhancing the chemotherapy tolerance of lung cancer. This review summarizes abnormal changes in the metabolism of glucose, fat and amino acids in lung cancer, and the underlying molecular mechanism, with the aim of providing novel ideas for the prevention, early diagnosis and treatment of lung cancer.
Collapse
Affiliation(s)
- Xin Li
- Department of Lung Cancer Surgery, Tianjin Medical University General Hospital, Tianjin 300052, P.R. China
- Tianjin Key Laboratory of Lung Cancer Metastasis and Tumor Microenvironment, Tianjin Lung Cancer Institute, Tianjin Medical University General Hospital, Tianjin 300052, P.R. China
| | - Minghui Liu
- Department of Lung Cancer Surgery, Tianjin Medical University General Hospital, Tianjin 300052, P.R. China
- Tianjin Key Laboratory of Lung Cancer Metastasis and Tumor Microenvironment, Tianjin Lung Cancer Institute, Tianjin Medical University General Hospital, Tianjin 300052, P.R. China
| | - Hongyu Liu
- Tianjin Key Laboratory of Lung Cancer Metastasis and Tumor Microenvironment, Tianjin Lung Cancer Institute, Tianjin Medical University General Hospital, Tianjin 300052, P.R. China
| | - Jun Chen
- Department of Lung Cancer Surgery, Tianjin Medical University General Hospital, Tianjin 300052, P.R. China
- Tianjin Key Laboratory of Lung Cancer Metastasis and Tumor Microenvironment, Tianjin Lung Cancer Institute, Tianjin Medical University General Hospital, Tianjin 300052, P.R. China
| |
Collapse
|
10
|
Velichinskii RA, Streltsova MA, Kust SA, Sapozhnikov AM, Kovalenko EI. The Biological Role and Therapeutic Potential of NK Cells in Hematological and Solid Tumors. Int J Mol Sci 2021; 22:ijms222111385. [PMID: 34768814 PMCID: PMC8584101 DOI: 10.3390/ijms222111385] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 10/16/2021] [Accepted: 10/18/2021] [Indexed: 12/20/2022] Open
Abstract
NK cells are an attractive target for cancer immunotherapy due to their potent antitumor activity. The main advantage of using NK cells as cytotoxic effectors over T cells is a reduced risk of graft versus host disease. At present, several variants of NK-cell-based therapies are undergoing clinical trials and show considerable effectiveness for hematological tumors. In these types of cancers, the immune cells themselves often undergo malignant transformation, which determines the features of the disease. In contrast, the current use of NK cells as therapeutic agents for the treatment of solid tumors is much less promising. Most studies are at the stage of preclinical investigation, but few progress to clinical trials. Low efficiency of NK cell migration and functional activity in the tumor environment are currently considered the major barriers to NK cell anti-tumor therapies. Various therapeutic combinations, genetic engineering methods, alternative sources for obtaining NK cells, and other techniques are aiming at the development of promising NK cell anticancer therapies, regardless of tumorigenesis. In this review, we compare the role of NK cells in the pathogenesis of hematological and solid tumors and discuss current prospects of NK-cell-based therapy for hematological and solid tumors.
Collapse
|
11
|
Höflinger P, Hauser S, Yutuc E, Hengel H, Griffiths L, Radelfahr F, Howell OW, Wang Y, Connor SL, Duell PB, DeBarber AE, Martus P, Lütjohann D, Griffiths WJ, Schöls L. Metabolic profiling in serum, cerebrospinal fluid, and brain of patients with cerebrotendinous xanthomatosis. J Lipid Res 2021; 62:100078. [PMID: 33891937 PMCID: PMC8135047 DOI: 10.1016/j.jlr.2021.100078] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Revised: 04/13/2021] [Accepted: 04/15/2021] [Indexed: 11/25/2022] Open
Abstract
Cerebrotendinous xanthomatosis (CTX) is caused by autosomal recessive loss-of-function mutations in CYP27A1, a gene encoding cytochrome p450 oxidase essential for bile acid synthesis, resulting in altered bile acid and lipid metabolism. Here, we aimed to identify metabolic aberrations that drive ongoing neurodegeneration in some patients with CTX despite chenodeoxycholic acid (CDCA) supplementation, the standard treatment in CTX. Using chromatographic separation techniques coupled to mass spectrometry, we analyzed 26 sterol metabolites in serum and cerebrospinal fluid (CSF) of patients with CTX and in one CTX brain. Comparing samples of drug naive patients to patients treated with CDCA and healthy controls, we identified 7α,12α-dihydroxycholest-4-en-3-one as the most prominently elevated metabolite in serum and CSF of drug naive patients. CDCA treatment substantially reduced or even normalized levels of all metabolites increased in untreated patients with CTX. Independent of CDCA treatment, metabolites of the 27-hydroxylation pathway were nearly absent in all patients with CTX. 27-hydroxylated metabolites accounted for ∼45% of total free sterol content in CSF of healthy controls but <2% in patients with CTX. Metabolic changes in brain tissue corresponded well with findings in CSF. Interestingly, 7α,12α-dihydroxycholest-4-en-3-one and 5α-cholestanol did not exert toxicity in neuronal cell culture. In conclusion, we propose that increased 7α,12α-dihydroxycholest-4-en-3-one and lack of 27-hydroxycholesterol may be highly sensitive metabolic biomarkers of CTX. As CDCA cannot reliably prevent disease progression despite reduction of most accumulated metabolites, supplementation of 27-hydroxylated bile acid intermediates or replacement of CYP27A1 might be required to counter neurodegeneration in patients with progressive disease despite CDCA treatment.
Collapse
Affiliation(s)
- Philip Höflinger
- German Center for Neurodegenerative Diseases (DZNE), Tübingen, Germany; Department of Neurology and Hertie Institute for Clinical Brain Research, University of Tübingen, Tübingen, Germany; Graduate School of Cellular and Molecular Neuroscience, University of Tübingen, Tübingen, Germany
| | - Stefan Hauser
- German Center for Neurodegenerative Diseases (DZNE), Tübingen, Germany; Department of Neurology and Hertie Institute for Clinical Brain Research, University of Tübingen, Tübingen, Germany
| | - Eylan Yutuc
- Swansea University Medical School, ILS1, Swansea, Wales, United Kingdom
| | - Holger Hengel
- Department of Neurology and Hertie Institute for Clinical Brain Research, University of Tübingen, Tübingen, Germany
| | - Lauren Griffiths
- Swansea University Medical School, ILS1, Swansea, Wales, United Kingdom
| | - Florentine Radelfahr
- Friedrich-Baur-Institute, Department of Neurology, University Hospital, LMU Munich, Munich, Germany; German Center for Neurodegenerative Diseases (DZNE), Munich, Germany
| | - Owain W Howell
- Swansea University Medical School, ILS1, Swansea, Wales, United Kingdom
| | - Yuqin Wang
- Swansea University Medical School, ILS1, Swansea, Wales, United Kingdom
| | - Sonja L Connor
- Department of Medicine, Oregon Health & Science University, Portland, OR, USA
| | - P Barton Duell
- Knight Cardiovascular Institute, Oregon Health & Science University, Portland, OR, USA
| | - Andrea E DeBarber
- Chemical Physiology and Biochemistry Department, Oregon Health & Science University, Portland, OR, USA
| | - Peter Martus
- Institute of Clinical Epidemiology and applied Biostatistics, University of Tübingen, Tübingen, Germany
| | - Dieter Lütjohann
- Institute of Clinical Chemistry and Clinical Pharmacology, University Hospital Bonn, Bonn, Germany
| | | | - Ludger Schöls
- German Center for Neurodegenerative Diseases (DZNE), Tübingen, Germany; Department of Neurology and Hertie Institute for Clinical Brain Research, University of Tübingen, Tübingen, Germany.
| |
Collapse
|
12
|
Talty R, Olino K. Metabolism of Innate Immune Cells in Cancer. Cancers (Basel) 2021; 13:cancers13040904. [PMID: 33670082 PMCID: PMC7927092 DOI: 10.3390/cancers13040904] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Revised: 02/15/2021] [Accepted: 02/17/2021] [Indexed: 12/22/2022] Open
Abstract
Simple Summary Both cancer cells and immune cells depend on specific metabolic programs for their survival and function. Depending on which metabolic changes occur, immune cells can either promote or suppress the antitumor immune response. This review summarizes the metabolic pathways that polarize innate immune cells for immune activation or suppression and describes the current clinical applications of these findings. Abstract Cancer cells possess specific metabolic requirements for their survival, proliferation, and progression. Within a shared microenvironment, immune cells depend on competing metabolic pathways for their development and effector function. As a result, local acidification, hypoxia, and nutrient depletion in the tumor microenvironment can alter the antitumor immune response and even promote resistance to immunotherapies such as immune checkpoint blockade and adoptive cell transfer. Although T cells are the primary effectors of the antitumor response, growing evidence demonstrates that innate immune cells are critical to successful tumor clearance. This review aims to summarize current research related to the innate immune system, metabolism, and cancer. We first discuss the specific metabolic requirements of innate immune cells for immune activation and suppression and conclude by highlighting ongoing clinical applications of these findings.
Collapse
Affiliation(s)
- Ronan Talty
- Department of Pathology, Yale University, New Haven, CT 06520, USA;
| | - Kelly Olino
- Department of Surgery, Yale University, New Haven, CT 06520, USA
- Correspondence:
| |
Collapse
|
13
|
Lipid Metabolism in Tumor-Associated Natural Killer Cells. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1316:71-85. [PMID: 33740244 DOI: 10.1007/978-981-33-6785-2_5] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Accumulative data demonstrate that during the initiation and progression of tumors, several types of cellular components in tumor microenvironment, including tumor cells and immune cells, exhibit malfunctions in cellular energy metabolism. For instance, lipid metabolism impairments in immune cells are crucial in coordinating immunosuppression and tumor immune escape. In particular, excessive lipids have been shown to exhibit negative effects on innate immunity. Previous studies on lipid metabolism in immune cells are mainly focused on macrophages and T lymphocytes. Although natural killer (NK) cells are major players in the innate elimination of virus, bacteria, and tumor cells, available literature reports related with lipid metabolism in NK cells and tumor-associated NK (TANK) cells are very sparse. Despite these, the importance and clinical relevance of the crosstalk among lipid metabolism, NK/TANK cells, and tumors have been clearly indicated. In this chapter, following a general description of NK and TANK cells, our knowledge on the regulation of lipid metabolism in NK cells is reviewed, with an emphasis on the roles of mTOR and SREBP signaling. Then the interactions between lipid metabolism and NK/TANK cells under pathological conditions, e.g., obesity and cancer, were carefully introduced. As there is an urgent need to reveal more regulators and to clarify detailed molecular mechanisms by which lipid metabolism interacts with NK/TANK cells, several categories of potential regulators/pathways, as well as the challenges and perspectives in this emerging field, are discussed.
Collapse
|
14
|
Devillier R, Chrétien AS, Pagliardini T, Salem N, Blaise D, Olive D. Mechanisms of NK cell dysfunction in the tumor microenvironment and current clinical approaches to harness NK cell potential for immunotherapy. J Leukoc Biol 2020; 109:1071-1088. [PMID: 32991746 DOI: 10.1002/jlb.5mr0920-198rr] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Revised: 09/03/2020] [Accepted: 09/08/2020] [Indexed: 12/13/2022] Open
Abstract
NK cells are innate immune cells with inherent capabilities in both recognizing and killing cancer cells. NK cell phenotypes and functional alterations are being described with increasing precision among patients harboring various cancer types, emphasizing the critical role that NK cells play in antitumor immune responses. In addition, advances in understanding NK cell biology have improved our knowledge of such alterations, thereby expanding the potential exploitation of NK cells' anticancer capabilities. In this review, we present an overview of (1) the various types of NK cell alterations that may contribute to immune evasion in cancer patients and (2) the various strategies to improve NK cell-based anticancer immunotherapies, including pharmacologic modulation and/or genetic modification.
Collapse
Affiliation(s)
- Raynier Devillier
- Immunity and Cancer Team, Paoli-Calmettes Institute, Aix-Marseille University, CNRS, INSERM, CRCM, Marseille, France.,Immunomonitoring platform, Paoli-Calmettes Institute, Marseille, France.,Hematology Department, Paoli-Calmettes Institute, Marseille, France
| | - Anne-Sophie Chrétien
- Immunity and Cancer Team, Paoli-Calmettes Institute, Aix-Marseille University, CNRS, INSERM, CRCM, Marseille, France.,Immunomonitoring platform, Paoli-Calmettes Institute, Marseille, France
| | - Thomas Pagliardini
- Immunity and Cancer Team, Paoli-Calmettes Institute, Aix-Marseille University, CNRS, INSERM, CRCM, Marseille, France.,Immunomonitoring platform, Paoli-Calmettes Institute, Marseille, France.,Hematology Department, Paoli-Calmettes Institute, Marseille, France
| | - Nassim Salem
- Immunity and Cancer Team, Paoli-Calmettes Institute, Aix-Marseille University, CNRS, INSERM, CRCM, Marseille, France.,Immunomonitoring platform, Paoli-Calmettes Institute, Marseille, France
| | - Didier Blaise
- Immunity and Cancer Team, Paoli-Calmettes Institute, Aix-Marseille University, CNRS, INSERM, CRCM, Marseille, France.,Immunomonitoring platform, Paoli-Calmettes Institute, Marseille, France.,Hematology Department, Paoli-Calmettes Institute, Marseille, France
| | - Daniel Olive
- Immunity and Cancer Team, Paoli-Calmettes Institute, Aix-Marseille University, CNRS, INSERM, CRCM, Marseille, France.,Immunomonitoring platform, Paoli-Calmettes Institute, Marseille, France
| |
Collapse
|
15
|
Choi C, Finlay DK. Diverse Immunoregulatory Roles of Oxysterols-The Oxidized Cholesterol Metabolites. Metabolites 2020; 10:metabo10100384. [PMID: 32998240 PMCID: PMC7601797 DOI: 10.3390/metabo10100384] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Revised: 09/14/2020] [Accepted: 09/24/2020] [Indexed: 12/15/2022] Open
Abstract
Intermediates of both cholesterol synthesis and cholesterol metabolism can have diverse roles in the control of cellular processes that go beyond the control of cholesterol homeostasis. For example, oxidized forms of cholesterol, called oxysterols have functions ranging from the control of gene expression, signal transduction and cell migration. This is of particular interest in the context of immunology and immunometabolism where we now know that metabolic processes are key towards shaping the nature of immune responses. Equally, aberrant metabolic processes including altered cholesterol homeostasis contribute to immune dysregulation and dysfunction in pathological situations. This review article brings together our current understanding of how oxysterols affect the control of immune responses in diverse immunological settings.
Collapse
Affiliation(s)
- Chloe Choi
- School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, Pearse Street 152-160, Dublin 2, Ireland
- Correspondence: (C.C.); (D.K.F.); Tel.: +353-1-896-3564 (D.K.F.)
| | - David K. Finlay
- School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, Pearse Street 152-160, Dublin 2, Ireland
- School of Pharmacy and Pharmaceutical Sciences, Trinity Biomedical Sciences Institute, Trinity College Dublin, Pearse Street 152-160, Dublin 2, Ireland
- Correspondence: (C.C.); (D.K.F.); Tel.: +353-1-896-3564 (D.K.F.)
| |
Collapse
|
16
|
Abstract
Through the successes of checkpoint blockade and adoptive cellular therapy, immunotherapy has become an established treatment modality for cancer. Cellular metabolism has emerged as a critical determinant of the viability and function of both cancer cells and immune cells. In order to sustain prodigious anabolic needs, tumours employ a specialized metabolism that differs from untransformed somatic cells. This metabolism leads to a tumour microenvironment that is commonly acidic, hypoxic and/or depleted of critical nutrients required by immune cells. In this context, tumour metabolism itself is a checkpoint that can limit immune-mediated tumour destruction. Because our understanding of immune cell metabolism and cancer metabolism has grown significantly in the past decade, we are on the cusp of being able to unravel the interaction of cancer cell metabolism and immune metabolism in therapeutically meaningful ways. Although there are metabolic processes that are seemingly fundamental to both cancer and responding immune cells, metabolic heterogeneity and plasticity may serve to distinguish the two. As such, understanding the differential metabolic requirements of the diverse cells that comprise an immune response to cancer offers an opportunity to selectively regulate immune cell function. Such a nuanced evaluation of cancer and immune metabolism can uncover metabolic vulnerabilities and therapeutic windows upon which to intervene for enhanced immunotherapy.
Collapse
Affiliation(s)
- Robert D Leone
- Bloomberg~Kimmel Institute for Cancer Immunotherapy, Sidney Kimmel Comprehensive Cancer Research Center, Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Jonathan D Powell
- Bloomberg~Kimmel Institute for Cancer Immunotherapy, Sidney Kimmel Comprehensive Cancer Research Center, Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
| |
Collapse
|
17
|
Melaiu O, Lucarini V, Cifaldi L, Fruci D. Influence of the Tumor Microenvironment on NK Cell Function in Solid Tumors. Front Immunol 2020; 10:3038. [PMID: 32038612 PMCID: PMC6985149 DOI: 10.3389/fimmu.2019.03038] [Citation(s) in RCA: 271] [Impact Index Per Article: 54.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2019] [Accepted: 12/11/2019] [Indexed: 12/18/2022] Open
Abstract
Natural killer (NK) cells are a population of innate lymphoid cells playing a pivotal role in host immune responses against infection and tumor growth. These cells have a powerful cytotoxic activity orchestrated by an intricate network of inhibitory and activating signals. The importance of NK cells in controlling tumor growth and in mediating a robust anti-metastatic effect has been demonstrated in different experimental mouse cancer models. Consistently, high density of tumor-infiltrating NK cells has been linked with a good prognosis in multiple human solid tumors. However, there are also tumors that appear to be refractory to NK cell-mediated killing for the presence of an immunosuppressive microenvironment affecting NK cell function. Immunotherapeutic strategies aimed at restoring and increasing the cytotoxic activity of NK cells in solid tumors, including the adoptive transfer of NK and CAR-NK cells, are currently employed in preclinical and clinical studies. In this review, we outline recent advances supporting the direct role of NK cells in controlling expansion of solid tumors and their prognostic value in human cancers. We summarize the mechanisms adopted by cancer cells and the tumor microenvironment to affect NK cell function, and finally we evaluate current strategies to augment the antitumor function of NK cells for the treatment of solid tumors.
Collapse
Affiliation(s)
- Ombretta Melaiu
- Paediatric Haematology/Oncology Department, Ospedale Pediatrico Bambino Gesù, Rome, Italy.,Department of Biology, University of Pisa, Pisa, Italy
| | - Valeria Lucarini
- Paediatric Haematology/Oncology Department, Ospedale Pediatrico Bambino Gesù, Rome, Italy
| | - Loredana Cifaldi
- Academic Department of Pediatrics (DPUO), Ospedale Pediatrico Bambino Gesù, Rome, Italy
| | - Doriana Fruci
- Paediatric Haematology/Oncology Department, Ospedale Pediatrico Bambino Gesù, Rome, Italy
| |
Collapse
|
18
|
Terrén I, Orrantia A, Vitallé J, Zenarruzabeitia O, Borrego F. NK Cell Metabolism and Tumor Microenvironment. Front Immunol 2019; 10:2278. [PMID: 31616440 PMCID: PMC6769035 DOI: 10.3389/fimmu.2019.02278] [Citation(s) in RCA: 301] [Impact Index Per Article: 50.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2019] [Accepted: 09/09/2019] [Indexed: 12/28/2022] Open
Abstract
Natural Killer (NK) cells are characterized by their potential to kill tumor cells by different means without previous sensitization and have, therefore, become a valuable tool in cancer immunotherapy. However, their efficacy against solid tumors is still poor and further studies are required to improve it. One of the major restrictions for NK cell activity is the immunosuppressive tumor microenvironment (TME). There, tumor and other immune cells create the appropriate conditions for tumor proliferation while, among others, preventing NK cell activation. Furthermore, NK cell metabolism is impaired in the TME, presumably due to nutrient and oxygen deprivation, and the higher concentration of tumor-derived metabolic end products, such as lactate. This metabolic restriction of NK cells limits their effector functions, and it could represent a potential target to focus on to improve the efficacy of NK cell-based therapies against solid tumors. In this review, we discuss the potential effect of TME into NK cell metabolism and its influence in NK cell effector functions.
Collapse
Affiliation(s)
- Iñigo Terrén
- Immunopathology Group, Biocruces Bizkaia Health Research Institute, Barakaldo, Spain
| | - Ane Orrantia
- Immunopathology Group, Biocruces Bizkaia Health Research Institute, Barakaldo, Spain
| | - Joana Vitallé
- Immunopathology Group, Biocruces Bizkaia Health Research Institute, Barakaldo, Spain
| | - Olatz Zenarruzabeitia
- Immunopathology Group, Biocruces Bizkaia Health Research Institute, Barakaldo, Spain
| | - Francisco Borrego
- Immunopathology Group, Biocruces Bizkaia Health Research Institute, Barakaldo, Spain.,Ikerbasque, Basque Foundation for Science, Bilbao, Spain
| |
Collapse
|
19
|
|
20
|
Kovač U, Skubic C, Bohinc L, Rozman D, Režen T. Oxysterols and Gastrointestinal Cancers Around the Clock. Front Endocrinol (Lausanne) 2019; 10:483. [PMID: 31379749 PMCID: PMC6653998 DOI: 10.3389/fendo.2019.00483] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/08/2019] [Accepted: 07/03/2019] [Indexed: 12/24/2022] Open
Abstract
This review focuses on the role of oxidized sterols in three major gastrointestinal cancers (hepatocellular carcinoma, pancreatic, and colon cancer) and how the circadian clock affects the carcinogenesis by regulating the lipid metabolism and beyond. While each field of research (cancer, oxysterols, and circadian clock) is well-studied within their specialty, little is known about the intertwining mechanisms and how these influence the disease etiology in each cancer type. Oxysterols are involved in pathology of these cancers, but final conclusions about their protective or damaging effects are elusive, since the effect depends on the type of oxysterol, concentration, and the cell type. Oxysterol concentrations, the expression of key regulators liver X receptors (LXR), farnesoid X receptor (FXR), and oxysterol-binding proteins (OSBP) family are modulated in tumors and plasma of cancer patients, exposing these proteins and selected oxysterols as new potential biomarkers and drug targets. Evidence about how cholesterol/oxysterol pathways are intertwined with circadian clock is building. Identified key contact points are different forms of retinoic acid receptor related orphan receptors (ROR) and LXRs. RORs and LXRs are both regulated by sterols/oxysterols and the circadian clock and in return also regulate the same pathways, representing a complex interplay between sterol metabolism and the clock. With this in mind, in addition to classical therapies to modulate cholesterol in gastrointestinal cancers, such as the statin therapy, the time is ripe also for therapies where time and duration of the drug application is taken as an important factor for successful therapies. The final goal is the personalized approach with chronotherapy for disease management and treatment in order to increase the positive drug effects.
Collapse
|
21
|
Chen Q, Xiong C, Jia K, Jin J, Li Z, Huang Y, Liu Y, Wang L, Luo H, Li H, Meng QH, Li W. Hepatic transcriptome analysis from HFD-fed mice defines a long noncoding RNA regulating cellular cholesterol levels. J Lipid Res 2018; 60:341-352. [PMID: 30504232 PMCID: PMC6358296 DOI: 10.1194/jlr.m086215] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2018] [Revised: 11/12/2018] [Indexed: 12/21/2022] Open
Abstract
To elucidate the transcriptomic changes of long noncoding RNAs (lncRNAs) in high-fat diet (HFD)-fed mice, we defined their hepatic transcriptome by RNA sequencing. Aberrant expression of 37 representative lncRNAs and 254 protein-coding RNAs was observed in the livers of HFD-fed mice with insulin resistance compared with the livers from control mice. Of these, 24 lncRNAs and 179 protein-coding RNAs were upregulated, whereas 13 lncRNAs and 75 protein-coding RNAs were downregulated. Functional analyses showed that the aberrantly expressed protein-coding RNAs were enriched in various lipid metabolic processes and in the insulin signaling pathway. Genomic juxtaposition and coexpression patterns identified six pairs of aberrantly expressed lncRNAs and protein-coding genes, consisting of five lncRNAs and five protein-coding genes. Four of these protein-coding genes are targeted genes upregulated by PPARα. As expected, the corresponding lncRNAs were significantly elevated in AML12 cells treated with palmitic acid or the PPARα agonist, WY14643. In Hepa1-6 cells, knockdown of NONMMUG027912 increased the cellular cholesterol level, the expression of cholesterol biosynthesis genes and proteins, and the HMG-CoA reductase activity. This genome-wide profiling of lncRNAs in HFD-fed mice reveals one lncRNA, NONMMUG027912, which is potentially regulated by PPARα and is implicated in the process of cholesterol biosynthesis.
Collapse
Affiliation(s)
- Qian Chen
- Key Laboratory of Laboratory Medicine, Ministry of Education of China, School of Laboratory Medicine and Life Science, Wenzhou Medical University, Wenzhou 325035, China
| | - Chaoliang Xiong
- Key Laboratory of Laboratory Medicine, Ministry of Education of China, School of Laboratory Medicine and Life Science, Wenzhou Medical University, Wenzhou 325035, China
| | - Kunyun Jia
- Key Laboratory of Laboratory Medicine, Ministry of Education of China, School of Laboratory Medicine and Life Science, Wenzhou Medical University, Wenzhou 325035, China
| | - Jing Jin
- Key Laboratory of Laboratory Medicine, Ministry of Education of China, School of Laboratory Medicine and Life Science, Wenzhou Medical University, Wenzhou 325035, China
| | - Ziyang Li
- Key Laboratory of Laboratory Medicine, Ministry of Education of China, School of Laboratory Medicine and Life Science, Wenzhou Medical University, Wenzhou 325035, China
| | - Yazhou Huang
- Key Laboratory of Laboratory Medicine, Ministry of Education of China, School of Laboratory Medicine and Life Science, Wenzhou Medical University, Wenzhou 325035, China
| | - Yewen Liu
- Key Laboratory of Laboratory Medicine, Ministry of Education of China, School of Laboratory Medicine and Life Science, Wenzhou Medical University, Wenzhou 325035, China
| | - Lingling Wang
- Key Laboratory of Laboratory Medicine, Ministry of Education of China, School of Laboratory Medicine and Life Science, Wenzhou Medical University, Wenzhou 325035, China
| | - Haitao Luo
- Key Laboratory of Intelligent Information Processing, Advanced Computer Research Center, State Key Laboratory of Computer Architecture, Institute of Computing Technology, Chinese Academy of Sciences, Beijing 100190, China
| | - Haiyan Li
- Department of Rehabilitation Medicine, First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325035, China
| | - Qing H Meng
- Department of Laboratory Medicine, University of Texas MD Anderson Cancer Center, Houston, TX 77030
| | - Wei Li
- Key Laboratory of Laboratory Medicine, Ministry of Education of China, School of Laboratory Medicine and Life Science, Wenzhou Medical University, Wenzhou 325035, China .,Key Laboratory of Intelligent Information Processing, Advanced Computer Research Center, State Key Laboratory of Computer Architecture, Institute of Computing Technology, Chinese Academy of Sciences, Beijing 100190, China
| |
Collapse
|