1
|
Zhang Q, Huang Y, Gao S, Ding Y, Zhang H, Chang G, Wang X. Obesity-Related Ciliopathies: Focus on Advances of Biomarkers. Int J Mol Sci 2024; 25:8484. [PMID: 39126056 PMCID: PMC11312664 DOI: 10.3390/ijms25158484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2024] [Revised: 07/27/2024] [Accepted: 08/01/2024] [Indexed: 08/12/2024] Open
Abstract
Obesity-related ciliopathies, as a group of ciliopathies including Alström Syndrome and Bardet-Biedl Syndrome, exhibit distinct genetic and phenotypic variability. The understanding of these diseases is highly significant for understanding the functions of primary cilia in the human body, particularly regarding the relationship between obesity and primary cilia. The diagnosis of these diseases primarily relies on clinical presentation and genetic testing. However, there is a significant lack of research on biomarkers to elucidate the variability in clinical manifestations, disease progression, prognosis, and treatment responses. Through an extensive literature review, the paper focuses on obesity-related ciliopathies, reviewing the advancements in the field and highlighting the potential roles of biomarkers in the clinical presentation, diagnosis, and prognosis of these diseases.
Collapse
Affiliation(s)
- Qianwen Zhang
- Department of Endocrinology and Metabolism, Shanghai Children’s Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China; (Q.Z.); (Y.H.); (S.G.); (Y.D.)
| | - Yiguo Huang
- Department of Endocrinology and Metabolism, Shanghai Children’s Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China; (Q.Z.); (Y.H.); (S.G.); (Y.D.)
| | - Shiyang Gao
- Department of Endocrinology and Metabolism, Shanghai Children’s Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China; (Q.Z.); (Y.H.); (S.G.); (Y.D.)
| | - Yu Ding
- Department of Endocrinology and Metabolism, Shanghai Children’s Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China; (Q.Z.); (Y.H.); (S.G.); (Y.D.)
| | - Hao Zhang
- Heart Center and Shanghai Institute of Pediatric Congenital Heart Disease, Shanghai Children’s Medical Center, National Children’s Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China;
| | - Guoying Chang
- Department of Endocrinology and Metabolism, Shanghai Children’s Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China; (Q.Z.); (Y.H.); (S.G.); (Y.D.)
| | - Xiumin Wang
- Department of Endocrinology and Metabolism, Shanghai Children’s Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China; (Q.Z.); (Y.H.); (S.G.); (Y.D.)
| |
Collapse
|
2
|
Namwanje M, Mazumdar S, Stayton A, Patel PS, Watkins C, White C, Brown C, Eason JD, Mozhui K, Kuscu C, Pabla N, Stephenson EJ, Bajwa A. Exogenous mitochondrial transfer increases energy expenditure and attenuates adiposity gains in mice with diet-induced obesity. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.12.23.573206. [PMID: 38187751 PMCID: PMC10769436 DOI: 10.1101/2023.12.23.573206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2024]
Abstract
Obesity is associated with chronic multi-system bioenergetic stress that may be improved by increasing the number of healthy mitochondria available across organ systems. However, treatments capable of increasing mitochondrial content are generally limited to endurance exercise training paradigms, which are not always sustainable long-term, let alone feasible for many patients with obesity. Recent studies have shown that local transfer of exogenous mitochondria from healthy donor tissues can improve bioenergetic outcomes and alleviate the effects of tissue injury in recipients with organ specific disease. Thus, the aim of this project was to determine the feasibility of systemic mitochondrial transfer for improving energy balance regulation in the setting of diet-induced obesity. We found that transplantation of mitochondria from lean mice into mice with diet-induced obesity attenuated adiposity gains by increasing energy expenditure and promoting the mobilization and oxidation of lipids. Additionally, mice that received exogenous mitochondria demonstrated improved glucose uptake, greater insulin responsiveness, and complete reversal of hepatic steatosis. These changes were, in part, driven by adaptations occurring in white adipose tissue. Together, these findings are proof-of-principle that mitochondrial transplantation is an effective therapeutic strategy for limiting the deleterious metabolic effects of diet-induced obesity in mice.
Collapse
Affiliation(s)
- Maria Namwanje
- Transplant Research Institute, Department of Surgery, College of Medicine, University of Tennessee Health Science Center, Memphis, TN, U.S.A
| | - Soumi Mazumdar
- Transplant Research Institute, Department of Surgery, College of Medicine, University of Tennessee Health Science Center, Memphis, TN, U.S.A
| | - Amanda Stayton
- Transplant Research Institute, Department of Surgery, College of Medicine, University of Tennessee Health Science Center, Memphis, TN, U.S.A
| | - Prisha S. Patel
- Transplant Research Institute, Department of Surgery, College of Medicine, University of Tennessee Health Science Center, Memphis, TN, U.S.A
| | - Christine Watkins
- Transplant Research Institute, Department of Surgery, College of Medicine, University of Tennessee Health Science Center, Memphis, TN, U.S.A
| | - Catrina White
- Transplant Research Institute, Department of Surgery, College of Medicine, University of Tennessee Health Science Center, Memphis, TN, U.S.A
| | - Chester Brown
- Department of Pediatrics, College of Medicine, University of Tennessee Health Science Center, Memphis, TN, U.S.A
- Department of Genetics, Genomics, and Informatics, College of Medicine, University of Tennessee Health Science Center, Memphis, TN, U.S.A
| | - James D. Eason
- Transplant Research Institute, Department of Surgery, College of Medicine, University of Tennessee Health Science Center, Memphis, TN, U.S.A
| | - Khyobeni Mozhui
- Department of Preventive Medicine, College of Medicine, University of Tennessee Health Science Center, Memphis, TN, U.S.A
| | - Cem Kuscu
- Transplant Research Institute, Department of Surgery, College of Medicine, University of Tennessee Health Science Center, Memphis, TN, U.S.A
| | - Navjot Pabla
- Division of Pharmaceutics and Pharmacology, College of Pharmacy & Comprehensive Cancer Center, The Ohio State University, Columbus, OH, U.S.A
| | - Erin J. Stephenson
- Department of Anatomy, College of Graduate Studies, Midwestern University, Downers Grove, IL, U.S.A
- Physical Therapy Program, College of Health Sciences, Midwestern University, Downers Grove, IL, U.S.A
- Physician Assistant Program, College of Health Sciences, Midwestern University, Downers Grove, IL, U.S.A
- Chicago College of Osteopathic Medicine, Midwestern University, Downers Grove, IL, U.S.A
- College of Dental Medicine Illinois, Midwestern University, Downers Grove, IL, U.S.A
| | - Amandeep Bajwa
- Transplant Research Institute, Department of Surgery, College of Medicine, University of Tennessee Health Science Center, Memphis, TN, U.S.A
- Department of Genetics, Genomics, and Informatics, College of Medicine, University of Tennessee Health Science Center, Memphis, TN, U.S.A
- Department of Microbiology, Immunology, and Biochemistry, College of Medicine, University of Tennessee Health Science Center, Memphis, TN, U.S.A
| |
Collapse
|