1
|
Sánchez-Martínez C, Grueso E, Calvo-López T, Martinez-Ortega J, Ruiz A, Almendral JM. VEGF-Virus Interactions: Pathogenic Mechanisms and Therapeutic Applications. Cells 2024; 13:1815. [PMID: 39513922 PMCID: PMC11545703 DOI: 10.3390/cells13211815] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Revised: 10/16/2024] [Accepted: 10/22/2024] [Indexed: 11/16/2024] Open
Abstract
Many types of viruses directly or indirectly target the vascular endothelial growth factor (VEGF) system, which is a central regulator of vasculogenesis and angiogenesis in physiological homeostasis, causing diverse pathologies. Other viruses have been developed into effective therapeutic tools for VEGF modulation in conditions such as cancer and eye diseases. Some viruses may alter the levels of VEGF in the pathogenesis of respiratory syndromes, or they may encode VEGF-like factors, promoting vascular disruption and angiogenesis to enable viruses' systemic spread. Oncogenic viruses may express interactive factors that perturb VEGF's functional levels or downstream signaling, which increases the neovascularization and metastasis of tumors. Furthermore, many viruses are being developed as therapeutic vectors for vascular pathologies in clinical trials. Major examples are those viral vectors that inhibit the role of VEGF in the neovascularization required for cancer progression; this is achieved through the induction of immune responses, by exposing specific peptides that block signaling or by expressing anti-VEGF and anti-VEGF receptor-neutralizing antibodies. Other viruses have been engineered into effective pro- or anti-angiogenesis multitarget vectors for neovascular eye diseases, paving the way for therapies with improved safety and minimal side effects. This article critically reviews the large body of literature on these issues, highlighting those contributions that describe the molecular mechanisms, thus expanding our understanding of the VEGF-virus interactions in disease and therapy. This could facilitate the clinical use of therapeutic virus vectors in precision medicine for the VEGF system.
Collapse
Affiliation(s)
- Cristina Sánchez-Martínez
- Biosciences Research Institute, School of Experimental Sciences, Universidad Francisco de Vitoria, Pozuelo de Alarcón, 28223 Madrid, Spain; (C.S.-M.); (E.G.)
| | - Esther Grueso
- Biosciences Research Institute, School of Experimental Sciences, Universidad Francisco de Vitoria, Pozuelo de Alarcón, 28223 Madrid, Spain; (C.S.-M.); (E.G.)
| | - Tania Calvo-López
- Centro de Biología Molecular Severo Ochoa (CSIC-UAM), Cantoblanco, 28049 Madrid, Spain or (T.C.-L.); (J.M.-O.); (A.R.)
- Departamento de Biología Molecular, Universidad Autónoma de Madrid, Cantoblanco, 28049 Madrid, Spain
- Department of Biomedicine, Centro de Investigaciones Biológicas Margarita Salas (CSIC), Ramiro de Maeztu 9, 28040 Madrid, Spain
| | - Jorge Martinez-Ortega
- Centro de Biología Molecular Severo Ochoa (CSIC-UAM), Cantoblanco, 28049 Madrid, Spain or (T.C.-L.); (J.M.-O.); (A.R.)
- Departamento de Biología Molecular, Universidad Autónoma de Madrid, Cantoblanco, 28049 Madrid, Spain
| | - Ana Ruiz
- Centro de Biología Molecular Severo Ochoa (CSIC-UAM), Cantoblanco, 28049 Madrid, Spain or (T.C.-L.); (J.M.-O.); (A.R.)
- Departamento de Biología Molecular, Universidad Autónoma de Madrid, Cantoblanco, 28049 Madrid, Spain
| | - José M. Almendral
- Centro de Biología Molecular Severo Ochoa (CSIC-UAM), Cantoblanco, 28049 Madrid, Spain or (T.C.-L.); (J.M.-O.); (A.R.)
- Departamento de Biología Molecular, Universidad Autónoma de Madrid, Cantoblanco, 28049 Madrid, Spain
| |
Collapse
|
2
|
Ritter A, Koirala N, Wieland A, Kaumaya PTP, Mitchell DL. Therapeutic Cancer Vaccines for the Management of Recurrent and Metastatic Head and Neck Cancer: A Review. JAMA Otolaryngol Head Neck Surg 2023; 149:168-176. [PMID: 36580281 DOI: 10.1001/jamaoto.2022.4264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Importance Squamous cell carcinoma of the head and neck (HNSCC) is prevalent globally and in the US. Management, particularly after disease recurrence, can be challenging, and exploring additional treatment modalities, such as therapeutic cancer vaccines, may offer an opportunity to improve outcomes in this setting. Observations This review provides an overview of the clinical efficacy of different treatment modalities that are currently available for the treatment of recurrent and metastatic HNSCC, including checkpoint inhibitors and targeted therapies, with a detailed summary of the numerous T-cell vaccines that have been studied in the setting of HNSCC, as well as a detailed summary of B-cell therapeutic vaccines being investigated for various malignant tumors. Conclusions and Relevance The findings of this review suggest that several therapeutic T-cell and B-cell vaccines, which have been recently developed and evaluated in a clinical setting, offer a promising treatment modality with the potential to improve outcomes for patients with recurrent and metastatic HNSCC.
Collapse
Affiliation(s)
- Alex Ritter
- Department of Radiation Oncology, College of Medicine, The Ohio State University Wexner Medical Center, The James Cancer Hospital and Solove Research Institute, Columbus
| | - Nischal Koirala
- Department of Radiation Oncology, College of Medicine, The Ohio State University Wexner Medical Center, The James Cancer Hospital and Solove Research Institute, Columbus
| | - Andreas Wieland
- Department of Otolaryngology, College of Medicine, The Ohio State University Wexner Medical Center, The James Cancer Hospital and Solove Research Institute, Columbus.,Department of Microbial Infection and Immunity, College of Medicine, The Ohio State University Wexner Medical Center, The James Cancer Hospital and Solove Research Institute, Columbus.,Pelotonia Institute for Immuno-Oncology, College of Medicine, The Ohio State University Wexner Medical Center, The James Cancer Hospital and Solove Research Institute, Columbus
| | - Pravin T P Kaumaya
- Department of Obstetrics and Gynecology, College of Medicine, The Ohio State University Wexner Medical Center, The James Cancer Hospital and Solove Research Institute, Columbus
| | - Darrion L Mitchell
- Department of Radiation Oncology, College of Medicine, The Ohio State University Wexner Medical Center, The James Cancer Hospital and Solove Research Institute, Columbus
| |
Collapse
|
3
|
Zahedipour F, Zamani P, Jamialahmadi K, Jaafari MR, Sahebkar A. Vaccines targeting angiogenesis in melanoma. Eur J Pharmacol 2021; 912:174565. [PMID: 34656608 DOI: 10.1016/j.ejphar.2021.174565] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Revised: 09/28/2021] [Accepted: 10/11/2021] [Indexed: 12/15/2022]
Abstract
Angiogenesis has a significant role in metastasis and progression of melanoma. Even small tumors may be susceptible to metastasis and hence lead to a worse outcome in patients with melanoma. One of the anti-angiogenic treatment approaches that is undergoing comprehensive study is specific immunotherapy. While tumor cells are challenging targets for immunotherapy due to their genetic instability and heterogeneity, endothelial cells (ECs) are genetically stable. Therefore, vaccines targeting angiogenesis in melanoma are appropriate choices that target both tumor cells and ECs while capable of inducing strong, anti-tumor immune responses with limited toxicity. The main targets of angiogenesis are VEGFs and their receptors but other potential targets have also been investigated, especially in preclinical studies. Various types of vaccines that target angiogenesis in melanoma have been studied including DNA, peptide, protein, dendritic cell-based, and endothelial cell vaccines. This review outlines a number of target antigens that are important for potential progress in developing vaccines for targeting angiogenesis in melanoma. We also discuss different types of vaccines that have been investigated, delivery mechanisms and popular adjuvants, and suggest ways to improve future clinical outcomes.
Collapse
Affiliation(s)
- Fatemeh Zahedipour
- Student Research Committee, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Medical Biotechnology and Nanotechnology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran; Nanotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Parvin Zamani
- Nanotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Khadijeh Jamialahmadi
- Department of Medical Biotechnology and Nanotechnology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran; Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mahmoud Reza Jaafari
- Nanotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Pharmaceutical Nanotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran.
| | - Amirhossein Sahebkar
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran; School of Medicine, The University of Western Australia, Perth, Australia; School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
4
|
Araujo DV, Oliva M, Li K, Fazelzad R, Liu ZA, Siu LL. Contemporary dose-escalation methods for early phase studies in the immunotherapeutics era. Eur J Cancer 2021; 158:85-98. [PMID: 34656816 DOI: 10.1016/j.ejca.2021.09.016] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Revised: 09/01/2021] [Accepted: 09/09/2021] [Indexed: 11/21/2022]
Abstract
Phase 1 dose-escalation trials are crucial to drug development by providing a framework to assess the toxicity of novel agents in a stepwise and monitored fashion. Despite widely adopted, rule-based dose-escalation methods (such as 3 + 3) are limited in finding the maximum tolerated dose (MTD) and tend to treat a significant number of patients at subtherapeutic doses. Newer methods of dose escalation, such as model-based and model-assisted designs, have emerged and are more accurate in finding MTD. However, these designs have not yet been broadly embraced by investigators. In this review, we summarise the advantages and disadvantages of contemporary dose-escalation methods, with emphasis on model-assisted designs, including time-to-event designs and hybrid methods involving optimal biological dose (OBD). The methods reviewed include mTPI, keyboard, BOIN, and their variations. In addition, the challenges of drug development (and dose-escalation) in the era of immunotherapeutics are discussed, where many of these agents typically have a wide therapeutic window. Fictional examples of how the dose-escalation method chosen can alter the outcomes of a phase 1 study are described, including the number of patients enrolled, the trial's timeframe, and the dose level chosen as MTD. Finally, the recent trends in dose-escalation methods applied in phase 1 trials in the immunotherapeutics era are reviewed. Among 856 phase I trials from 2014 to 2019, a trend towards the increased use of model-based and model-assisted designs over time (OR = 1.24) was detected. However, only 8% of the studies used non-rule-based dose-escalation methods. Increasing familiarity with such dose-escalation methods will likely facilitate their uptake in clinical trials.
Collapse
Affiliation(s)
- Daniel V Araujo
- Division of Medical Oncology and Hematology, Princess Margaret Cancer Centre, Toronto, ON, Canada; Department of Medical Oncology, Hospital de Base, São José Do Rio Preto, SP, Brazil
| | - Marc Oliva
- Division of Medical Oncology and Hematology, Princess Margaret Cancer Centre, Toronto, ON, Canada; Department of Medical Oncology, Institut Catala d' Oncologia, L'Hospitalet de Llobregat, Barcelona, Spain
| | - Kecheng Li
- Department of Biostatistics, Princess Margaret Cancer Centre, Toronto, ON, Canada
| | - Rouhi Fazelzad
- Library and Information Services, University Health Network, Toronto, ON, Canada
| | - Zhihui Amy Liu
- Department of Biostatistics, Princess Margaret Cancer Centre, Toronto, ON, Canada; Dalla Lana School of Public Health, University of Toronto, Toronto, ON, Canada
| | - Lillian L Siu
- Division of Medical Oncology and Hematology, Princess Margaret Cancer Centre, Toronto, ON, Canada.
| |
Collapse
|