1
|
Yang Q, Ye F, Li L, Chu J, Tian Y, Cao J, Gan S, Jiang A. Integration analysis of PLAUR as a sunitinib resistance and macrophage related biomarker in ccRCC, an in silicon and experimental study. J Biomol Struct Dyn 2025; 43:3956-3973. [PMID: 38173169 DOI: 10.1080/07391102.2023.2300754] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Accepted: 12/21/2023] [Indexed: 01/05/2024]
Abstract
Sunitinib remains the preferred systemic treatment option for specific patients with advanced RCC who are ineligible for immune therapy. However, it's essential to recognize that Sunitinib fails to elicit a favourable response in all patients. Moreover, most patients eventually develop resistance to Sunitinib. Therefore, identifying new targets associated with Sunitinib resistance is crucial. Utilizing multiple datasets from public cohorts, we conducted an exhaustive analysis and identified a total of 8 microRNAs and 112 mRNAs displaying significant expression differences between Sunitinib responsive and resistant groups. A particular set of six genes, specifically NIPSNAP1, STK40, SDC4, NEU1, TBC1D9, and PLAUR, were identified as highly significant via WGCNA. To delve deeper into the resistance mechanisms, we performed additional investigations using cell, molecular, and flow cytometry tests. These studies confirmed PLAUR's pivotal role in fostering Sunitinib resistance, both in vitro and in vivo. Our findings suggest that PLAUR could be a promising therapeutic target across various cancer types. In conclusion, this investigation not only uncovers vital genes and microRNAs associated with Sunitinib resistance in RCC but also introduces PLAUR as a prospective therapeutic target for diverse cancers. The outcomes contribute to advancing personalized healthcare and developing superior therapeutic strategies.
Collapse
Affiliation(s)
- Qiwei Yang
- Department of Urology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, People's Republic of China
- Department of Urology, The Third Affiliated Hospital of Naval Military Medical University (Eastern Hepatobiliary Surgery Hospital), Shanghai, China
| | - Fangdie Ye
- Fudan Institute of Urology, Huashan Hospital, Fudan University, Shanghai, China
| | - Lin Li
- Department of Urology, The Third Affiliated Hospital of Naval Military Medical University (Eastern Hepatobiliary Surgery Hospital), Shanghai, China
| | - Jian Chu
- Department of Urology, The Luodian Hospital in Baoshan District of Shanghai, China
| | - Yijun Tian
- Department of Urology, The Third Affiliated Hospital of Naval Military Medical University (Eastern Hepatobiliary Surgery Hospital), Shanghai, China
- Department of Urology, The Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jianwei Cao
- Department of Urology, The Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Sishun Gan
- Department of Urology, The Third Affiliated Hospital of Naval Military Medical University (Eastern Hepatobiliary Surgery Hospital), Shanghai, China
- Department of Urology, The Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Aimin Jiang
- Department of Urology, Changhai Hospital of Naval Military Medical University, Shanghai, China
| |
Collapse
|
2
|
Cai GF, Chen SW, Huang JK, Lin SR, Huang GH, Lin CH. Decoding marker genes and immune landscape of unstable carotid plaques from cellular senescence. Sci Rep 2024; 14:26196. [PMID: 39478143 PMCID: PMC11525637 DOI: 10.1038/s41598-024-78251-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Accepted: 10/29/2024] [Indexed: 11/02/2024] Open
Abstract
Recently, cellular senescence-induced unstable carotid plaques have gained increasing attention. In this study, we utilized bioinformatics and machine learning methods to investigate the correlation between cellular senescence and the pathological mechanisms of unstable carotid plaques. Our aim was to elucidate the causes of unstable carotid plaque progression and identify new therapeutic strategies. First, differential expression analysis was performed on the test set GSE43292 to identify differentially expressed genes (DEGs) between the unstable plaque group and the control group. These DEGs were intersected with cellular senescence-associated genes to obtain 40 cellular senescence-associated DEGs. Subsequently, key genes were then identified through weighted gene co-expression network analysis, random forest, Recursive Feature Elimination for Support Vector Machines algorithm and cytoHubba plugin. The intersection yielded 3 CSA-signature genes, which were validated in the external validation set GSE163154. Additionally, we assessed the relationship between these CSA-signature genes and the immune landscape of the unstable plaque group. This study suggests that cellular senescence may play an important role in the progression mechanism of unstable plaques and is closely related to the influence of the immune microenvironment. Our research lays the foundation for studying the progression mechanism of unstable carotid plaques and provides some reference for targeted therapy.
Collapse
Affiliation(s)
- Gang-Feng Cai
- Department of Neurosurgery, Fujian Medical University Union Hospital, No. 29 Xinquan Road, Fuzhou, 350001, Fujian, China
| | - Shao-Wei Chen
- Department of Neurosurgery, Quanzhou Orthopedic-Traumatological Hospital, Quanzhou, Fujian, China
| | - Jin-Kai Huang
- Department of Neurosurgery, Quanzhou Orthopedic-Traumatological Hospital, Quanzhou, Fujian, China
| | - Shi-Rong Lin
- Department of Neurosurgery, Quanzhou Orthopedic-Traumatological Hospital, Quanzhou, Fujian, China
| | - Guo-He Huang
- Department of Neurosurgery, Quanzhou Orthopedic-Traumatological Hospital, Quanzhou, Fujian, China
| | - Cai-Hou Lin
- Department of Neurosurgery, Fujian Medical University Union Hospital, No. 29 Xinquan Road, Fuzhou, 350001, Fujian, China.
| |
Collapse
|
3
|
Ren Y, Bao X, Feng M, Xing B, Lian W, Yao Y, Wang R. CD87-targeted BiTE and CAR-T cells potently inhibit invasive nonfunctional pituitary adenomas. SCIENCE CHINA. LIFE SCIENCES 2024; 67:2169-2185. [PMID: 38987430 DOI: 10.1007/s11427-024-2591-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2024] [Accepted: 04/12/2024] [Indexed: 07/12/2024]
Abstract
Recently, bispecific T-cell engagers (BiTEs) and chimeric antigen receptor-modified T cells (CAR-Ts) have been shown to have high therapeutic efficacy in hematological tumors. CD87 is highly expressed in solid tumors with an oncogenic function. To assess their cytotoxic effects on invasive nonfunctioning pituitary adenomas (iNFPAs), we first examined CD87 expression and its effects on the metabolism of iNFPA cells. We generated CD87-specific BiTE and CAR/IL-12 T cells, and their cytotoxic effects on iNFPAs cells and in mouse models were determined. CD87 had high expression in iNFPA tissue and cell samples but was undetected in noncancerous brain samples. CD87×CD3 BiTE and CD87 CAR/IL-12 T-cells showed antigenic specificity and exerted satisfactory cytotoxic effects, decreasing tumor cell proliferation in vitro and reducing existing tumors in experimental mice. Overall, the above findings suggest that CD87 is a promising target for the immunotherapeutic management of iNFPAs using anti-CD87 BiTE and CD87-specific CAR/IL-12 T cells.
Collapse
Affiliation(s)
- Yuan Ren
- Department of Neurosurgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China
| | - Xinjie Bao
- Department of Neurosurgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China
| | - Ming Feng
- Department of Neurosurgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China
| | - Bing Xing
- Department of Neurosurgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China
| | - Wei Lian
- Department of Neurosurgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China
| | - Yong Yao
- Department of Neurosurgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China
| | - Renzhi Wang
- Department of Neurosurgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China.
| |
Collapse
|
4
|
Qi C, Ren H, Fan Y. Microglia specific alternative splicing alterations in multiple sclerosis. Aging (Albany NY) 2024; 16:11656-11667. [PMID: 39115871 PMCID: PMC11346782 DOI: 10.18632/aging.206045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2024] [Accepted: 07/17/2024] [Indexed: 08/22/2024]
Abstract
Several aberrant alternative splicing (AS) events and their regulatory mechanisms are widely recognized in multiple sclerosis (MS). Yet the cell-type specific AS events have not been extensively examined. Here we assessed the diversity of AS events using web-based RNA-seq data of sorted CD15-CD11b+ microglia in white matter (WM) region from 10 patients with MS and 11 control subjects. The GSE111972 dataset was downloaded from GEO and ENA databases, aligned to the GRCh38 reference genome from ENSEMBL via STAR. rMATS was used to assess five types of AS events, alternative 3'SS (A3SS), alternative 5'SS (A5SS), skipped exon (SE), retained intron (RI) and mutually exclusive exons (MXE), followed by visualizing with rmats2sashimiplot and maser. Differential genes or transcripts were analyzed using the limma R package. Gene ontology (GO) analysis was performed with the clusterProfiler R package. 42,663 raw counts of AS events were identified and 132 significant AS events were retained based on the filtered criteria: 1) average coverage >10 and 2) delta percent spliced in (ΔPSI) >0.1. SE was the most common AS event (36.36%), followed by MXE events (32.58%), and RI (18.94%). Genes related to telomere maintenance and organization primarily underwent SE splicing, while genes associated with protein folding and mitochondrion organization were predominantly spliced in the MXE pattern. Conversely, genes experiencing RI were enriched in immune response and immunoglobulin production. In conclusion, we identified microglia-specific AS changes in the white matter of MS patients, which may shed light on novel pathological mechanisms underlying MS.
Collapse
Affiliation(s)
- Caiyun Qi
- Department of Obstetrics and Gynecology, Guangdong Provincial Key Laboratory of Major Obstetric Diseases, Guangdong Provincial Clinical Research Center for Obstetrics and Gynecology, Guangdong-Hong Kong-Macao Greater Bay Area Higher Education Joint Laboratory of Maternal-Fetal Medicine, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Honglei Ren
- Department of Neurology, Tianjin Neurological Institute, Tianjin Institute of Immunology, State Key Laboratory of Experimental Hematology, Haihe Laboratory of Cell Ecosystem, Tianjin Medical University General Hospital, Tianjin, China
| | - Yong Fan
- Department of Obstetrics and Gynecology, Guangdong Provincial Key Laboratory of Major Obstetric Diseases, Guangdong Provincial Clinical Research Center for Obstetrics and Gynecology, Guangdong-Hong Kong-Macao Greater Bay Area Higher Education Joint Laboratory of Maternal-Fetal Medicine, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| |
Collapse
|
5
|
Qin T, Huang M, Wei W, Zhou W, Tang Q, Huang Q, Tang N, Gai S. PLAUR facilitates the progression of clear cell renal cell carcinoma by activating the PI3K/AKT/mTOR signaling pathway. PeerJ 2024; 12:e17555. [PMID: 38948215 PMCID: PMC11214736 DOI: 10.7717/peerj.17555] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Accepted: 05/21/2024] [Indexed: 07/02/2024] Open
Abstract
Background PLAUR has been found upregulated in various tumors and closely correlated with the malignant phenotype of tumor cells. The aim of this study was to investigate the relationship between PLAUR and clear cell renal cell carcinoma (ccRCC) and its potential mechanism of promoting tumor progression. Methods The expression levels and clinical significance of PLAUR, along with the associated signaling pathways, were extensively investigated in ccRCC samples obtained from The Cancer Genome Atlas (TCGA). PLAUR expression in 20 pairs of ccRCC tumor tissues and the adjacent tissues was assessed using qRT-PCR and IHC staining. Additionally, a series of in vitro experiments were conducted to investigate the impact of PLAUR suppression on cellular proliferation, migration, invasion, cell cycle progression, and apoptosis in ccRCC. The Western blot analysis was employed to investigate the expression levels of pivotal genes associated with the PI3K/AKT/mTOR signaling pathway. Results The expression of PLAUR was significantly upregulated in ccRCC compared to normal renal tissues, and higher PLAUR expression in ccRCC was associated with a poorer prognosis than low expression. The in-vitro functional investigations demonstrated that knockdown of PLAUR significantly attenuated the proliferation, migration, and invasion capabilities of ccRCC cells. Concurrently, PLAUR knockdown effectively induced cellular apoptosis, modulated the cell cycle, inhibited the EMT process, and attenuated the activation of the PI3K/AKT/mTOR signaling pathway. PLAUR may represent a key mechanism underlying ccRCC progression. Conclusions The involvement of PLAUR in ccRCC progression may be achieved through the activation of the PI3K/AKT/mTOR signaling pathway, making it a reliable biomarker for the identification and prediction of ccRCC.
Collapse
Affiliation(s)
- Tianzi Qin
- The First Clinical Medical College of Jinan University, Guangzhou, China
- Department of Urology, the Affiliated Hospital of Youjinag Medical University for Nationalities, Baise, China
| | - Minyu Huang
- Department of Urology, the Affiliated Hospital of Youjinag Medical University for Nationalities, Baise, China
| | - Wenjuan Wei
- Department of Ultrasound department, the Affiliated Hospital of Youjinag Medical University for Nationalities, Baise, China
| | - Wei Zhou
- Department of Urology, the Affiliated Hospital of Youjinag Medical University for Nationalities, Baise, China
| | - Qianli Tang
- The First Clinical Medical College of Jinan University, Guangzhou, China
- The Affiliated Hospital of Youjinag Medical University for Nationalities, Baise, China
| | - Qun Huang
- Department of Urology, the Affiliated Hospital of Youjinag Medical University for Nationalities, Baise, China
| | - Ning Tang
- Youjinag Medical University for Nationalities, Baise, China
| | - Shasha Gai
- Youjinag Medical University for Nationalities, Baise, China
| |
Collapse
|
6
|
Baruah P, Mahony C, Marshall JL, Smith CG, Monksfield P, Irving RI, Dumitriu IE, Buckley CD, Croft AP. Single-cell RNA sequencing analysis of vestibular schwannoma reveals functionally distinct macrophage subsets. Br J Cancer 2024; 130:1659-1669. [PMID: 38480935 DOI: 10.1038/s41416-024-02646-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 02/19/2024] [Accepted: 02/27/2024] [Indexed: 03/18/2024] Open
Abstract
BACKGROUND Vestibular schwannomas (VSs) remain a challenge due to their anatomical location and propensity to growth. Macrophages are present in VS but their roles in VS pathogenesis remains unknown. OBJECTIVES The objective was to assess phenotypic and functional profile of macrophages in VS with single-cell RNA sequencing (scRNAseq). METHODS scRNAseq was carried out in three VS samples to examine characteristics of macrophages in the tumour. RT-qPCR was carried out on 10 VS samples for CD14, CD68 and CD163 and a panel of macrophage-associated molecules. RESULTS scRNAseq revealed macrophages to be a major constituent of VS microenvironment with three distinct subclusters based on gene expression. The subclusters were also defined by expression of CD163, CD68 and IL-1β. AREG and PLAUR were expressed in the CD68+CD163+IL-1β+ subcluster, PLCG2 and NCKAP5 were expressed in CD68+CD163+IL-1β- subcluster and AUTS2 and SPP1 were expressed in the CD68+CD163-IL-1β+ subcluster. RT-qPCR showed expression of several macrophage markers in VS of which CD14, ALOX15, Interleukin-1β, INHBA and Colony Stimulating Factor-1R were found to have a high correlation with tumour volume. CONCLUSIONS Macrophages form an important component of VS stroma. scRNAseq reveals three distinct subsets of macrophages in the VS tissue which may have differing roles in the pathogenesis of VS.
Collapse
Affiliation(s)
- Paramita Baruah
- Department of ENT, University Hospitals of Birmingham NHS Trust, Birmingham, UK.
- Department of ENT, University Hospitals of Leicester NHS Trust, Leicester, UK.
- Institute of Inflammation and Ageing, University of Birmingham, Birmingham, UK.
| | - Christopher Mahony
- Institute of Inflammation and Ageing, University of Birmingham, Birmingham, UK
| | - Jennifer L Marshall
- Institute of Inflammation and Ageing, University of Birmingham, Birmingham, UK
| | - Charlotte G Smith
- Institute of Inflammation and Ageing, University of Birmingham, Birmingham, UK
| | - Peter Monksfield
- Department of ENT, University Hospitals of Birmingham NHS Trust, Birmingham, UK
| | - Richard I Irving
- Department of ENT, University Hospitals of Birmingham NHS Trust, Birmingham, UK
| | - Ingrid E Dumitriu
- Institute of Cardiovascular Sciences, University of Birmingham, Birmingham, UK
| | | | - Adam P Croft
- Institute of Inflammation and Ageing, University of Birmingham, Birmingham, UK
| |
Collapse
|
7
|
Tang W, Du J, Li L, Hu S, Ma S, Xue M, Zhu L. Hypoxia-related THBD + macrophages as a prognostic factor in glioma: Construction of a powerful risk model. J Cell Mol Med 2024; 28:e18393. [PMID: 38809929 PMCID: PMC11135907 DOI: 10.1111/jcmm.18393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 04/10/2024] [Accepted: 04/30/2024] [Indexed: 05/31/2024] Open
Abstract
Glioma is a prevalent malignant tumour characterized by hypoxia as a pivotal factor in its progression. This study aims to investigate the impact of the most severely hypoxic cell subpopulation in glioma. Our findings reveal that the THBD+ macrophage subpopulation is closely associated with hypoxia in glioma, exhibiting significantly higher infiltration in tumours compared to non-tumour tissues. Moreover, a high proportion of THBD+ cells correlates with poor prognosis in glioblastoma (GBM) patients. Notably, THBD+ macrophages exhibit hypoxic characteristics and epithelial-mesenchymal transition features. Silencing THBD expression leads to a notable reduction in the proliferation and metastasis of glioma cells. Furthermore, we developed a THBD+ macrophage-related risk signature (THBDMRS) through machine learning techniques. THBDMRS emerges as an independent prognostic factor for GBM patients with a substantial prognostic impact. By comparing THBDMRS with 119 established prognostic features, we demonstrate the superior prognostic performance of THBDMRS. Additionally, THBDMRS is associated with glioma metastasis and extracellular matrix remodelling. In conclusion, hypoxia-related THBD+ macrophages play a pivotal role in glioma pathogenesis, and THBDMRS emerges as a potent and promising prognostic tool for GBM, contributing to enhanced patient survival outcomes.
Collapse
Affiliation(s)
- Weichun Tang
- Blood Transfusion DepartmentThe Third People's Hospital of BengbuBengbuChina
| | - Juntao Du
- Department of Rehabilitation MedicineThe First Affiliated Hospital of Bengbu Medical CollegeBengbuChina
- Anhui Key Laboratory of Tissue TransplantationBengbu Medical CollegeBengbuChina
| | - Lin Li
- Department of Rehabilitation MedicineThe First Affiliated Hospital of Bengbu Medical CollegeBengbuChina
- Anhui Key Laboratory of Tissue TransplantationBengbu Medical CollegeBengbuChina
| | | | - Shuo Ma
- Medical School of Southeast UniversityNanjingChina
| | - Mengtong Xue
- Department of Rehabilitation MedicineThe First Affiliated Hospital of Bengbu Medical CollegeBengbuChina
- Anhui Key Laboratory of Tissue TransplantationBengbu Medical CollegeBengbuChina
| | - Linlin Zhu
- School of Medical TechnologyXinxiang Medical UniversityXinxiangChina
| |
Collapse
|
8
|
Fu Z, Chen Z, Ye J, Ji J, Ni W, Lin W, Lin H, Lu L, Zhu G, Xie Q, Yan F, Chen G, Liu F. Identifying PLAUR as a Pivotal Gene of Tumor Microenvironment and Regulating Mesenchymal Phenotype of Glioblastoma. Cancers (Basel) 2024; 16:840. [PMID: 38398231 PMCID: PMC10887327 DOI: 10.3390/cancers16040840] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 02/04/2024] [Accepted: 02/16/2024] [Indexed: 02/25/2024] Open
Abstract
The mesenchymal (MES) phenotype of glioblastoma (GBM) is the most aggressive and therapy-resistant subtype of GBM. The MES phenotype transition during tumor progression results from both tumor-intrinsic genetic alterations and tumor-extrinsic microenvironmental factors. In this study, we sought to identify genes that can modulate the MES phenotype via both mechanisms. By integrating weighted gene co-expression network analysis (WGCNA) and the differential expression analysis of hypoxia-immunosuppression-related genes, we identified the plasminogen activator, urokinase receptor (PLAUR) as the hub gene. Functional enrichment analysis and GSVA analysis demonstrated that PLAUR was associated with the MES phenotype of glioma and the hypoxia-immunosuppression-related microenvironmental components. Single-cell sequencing analysis revealed that PLAUR mediated the ligand-receptor interaction between tumor-associated macrophages (TAMs) and glioma cells. Functional experiments in vitro with cell lines or primary glioma cells and xenograft models using BALB/c nude mice confirmed the role of PLAUR in promoting the MES phenotype of GBM. Our findings indicate that PLAUR regulates both glioma cells and tumor cell-extrinsic factors that favor the MES phenotype and suggest that PLAUR might be a potential target for GBM therapy.
Collapse
Affiliation(s)
- Zaixiang Fu
- Department of Neurosurgery, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou 310000, China; (Z.F.); (Z.C.); (J.Y.); (J.J.); (W.N.); (W.L.); (H.L.); (L.L.); (Q.X.); (F.Y.)
- Key Laboratory of Precise Treatment and Clinical Translational Research of Neurological Diseases, Hangzhou 310000, China
| | - Zihang Chen
- Department of Neurosurgery, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou 310000, China; (Z.F.); (Z.C.); (J.Y.); (J.J.); (W.N.); (W.L.); (H.L.); (L.L.); (Q.X.); (F.Y.)
- Key Laboratory of Precise Treatment and Clinical Translational Research of Neurological Diseases, Hangzhou 310000, China
| | - Jingya Ye
- Department of Neurosurgery, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou 310000, China; (Z.F.); (Z.C.); (J.Y.); (J.J.); (W.N.); (W.L.); (H.L.); (L.L.); (Q.X.); (F.Y.)
- Key Laboratory of Precise Treatment and Clinical Translational Research of Neurological Diseases, Hangzhou 310000, China
| | - Jianxiong Ji
- Department of Neurosurgery, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou 310000, China; (Z.F.); (Z.C.); (J.Y.); (J.J.); (W.N.); (W.L.); (H.L.); (L.L.); (Q.X.); (F.Y.)
- Key Laboratory of Precise Treatment and Clinical Translational Research of Neurological Diseases, Hangzhou 310000, China
| | - Weifang Ni
- Department of Neurosurgery, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou 310000, China; (Z.F.); (Z.C.); (J.Y.); (J.J.); (W.N.); (W.L.); (H.L.); (L.L.); (Q.X.); (F.Y.)
- Key Laboratory of Precise Treatment and Clinical Translational Research of Neurological Diseases, Hangzhou 310000, China
| | - Weibo Lin
- Department of Neurosurgery, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou 310000, China; (Z.F.); (Z.C.); (J.Y.); (J.J.); (W.N.); (W.L.); (H.L.); (L.L.); (Q.X.); (F.Y.)
- Key Laboratory of Precise Treatment and Clinical Translational Research of Neurological Diseases, Hangzhou 310000, China
| | - Haopu Lin
- Department of Neurosurgery, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou 310000, China; (Z.F.); (Z.C.); (J.Y.); (J.J.); (W.N.); (W.L.); (H.L.); (L.L.); (Q.X.); (F.Y.)
- Key Laboratory of Precise Treatment and Clinical Translational Research of Neurological Diseases, Hangzhou 310000, China
| | - Liquan Lu
- Department of Neurosurgery, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou 310000, China; (Z.F.); (Z.C.); (J.Y.); (J.J.); (W.N.); (W.L.); (H.L.); (L.L.); (Q.X.); (F.Y.)
- Key Laboratory of Precise Treatment and Clinical Translational Research of Neurological Diseases, Hangzhou 310000, China
| | - Ganggui Zhu
- Department of Lung Transplantation, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou 310052, China;
| | - Qin Xie
- Department of Neurosurgery, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou 310000, China; (Z.F.); (Z.C.); (J.Y.); (J.J.); (W.N.); (W.L.); (H.L.); (L.L.); (Q.X.); (F.Y.)
- Key Laboratory of Precise Treatment and Clinical Translational Research of Neurological Diseases, Hangzhou 310000, China
| | - Feng Yan
- Department of Neurosurgery, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou 310000, China; (Z.F.); (Z.C.); (J.Y.); (J.J.); (W.N.); (W.L.); (H.L.); (L.L.); (Q.X.); (F.Y.)
- Key Laboratory of Precise Treatment and Clinical Translational Research of Neurological Diseases, Hangzhou 310000, China
| | - Gao Chen
- Department of Neurosurgery, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou 310000, China; (Z.F.); (Z.C.); (J.Y.); (J.J.); (W.N.); (W.L.); (H.L.); (L.L.); (Q.X.); (F.Y.)
- Key Laboratory of Precise Treatment and Clinical Translational Research of Neurological Diseases, Hangzhou 310000, China
| | - Fuyi Liu
- Department of Neurosurgery, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou 310000, China; (Z.F.); (Z.C.); (J.Y.); (J.J.); (W.N.); (W.L.); (H.L.); (L.L.); (Q.X.); (F.Y.)
- Key Laboratory of Precise Treatment and Clinical Translational Research of Neurological Diseases, Hangzhou 310000, China
| |
Collapse
|
9
|
Chen W, Zhao X, Lu Y, Wang H, Wang X, Wang Y, Liang C, Jia Z, Ma W. Clinical significance, molecular characterization, and immune microenvironment analysis of coagulation-related genes in clear cell renal cell carcinoma. CANCER INNOVATION 2024; 3:e105. [PMID: 38948537 PMCID: PMC11212306 DOI: 10.1002/cai2.105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 09/17/2023] [Accepted: 09/30/2023] [Indexed: 07/02/2024]
Abstract
BACKGROUND Numerous studies have revealed a tight connection between tumor development and the coagulation system. However, the effects of coagulation on the prognosis and tumor microenvironment (TME) of clear cell renal cell carcinoma (ccRCC) remain poorly understood. METHODS We employed the consensus clustering method to characterize distinct molecular subtypes associated with coagulation patterns. Subsequently, we examined variations in the overall survival (OS), genomic profiles, and TME characteristics between these subtypes. To develop a prognostic coagulation-related risk score (CRRS) model, we utilized the least absolute shrinkage and selection operator Cox regression and stepwise multivariate Cox regression analyses. We also created a nomogram to aid in the clinical application of the risk score, evaluating the relationships between the CRRS and the immune microenvironment, responsiveness to immunotherapy, and targeted treatment. The clinical significance of PLAUR and its biological function in ccRCC were also further analyzed. RESULTS There were significant differences in clinical features, prognostic stratification, genomic variation, and TME characteristics between the two coagulation-related subtypes. We established and validated a CRRS using six coagulation-related genes that can be employed as an effective indicator of risk stratification and prognosis estimation for ccRCC patients. Significant variations in survival outcomes were observed between the high- and low-risk groups. The nomogram was proficient in predicting the 1-, 3-, and 5-year OS. Additionally, the CRRS emerged as a novel tool for evaluating the clinical effectiveness of immunotherapy and targeted treatments in ccRCC. Moreover, we confirmed upregulated PLAUR expression in ccRCC samples that was significantly correlated with poor patient prognosis. PLAUR knockdown notably inhibited ccRCC cell proliferation and migration. CONCLUSION Our data suggested that CRRS may be employed as a reliable predictive biomarker that can provide therapeutic benefits for immunotherapy and targeted therapy in ccRCC.
Collapse
Affiliation(s)
- Weihao Chen
- Department of UrologyThe Third Medical Center of PLA General HospitalBeijingChina
| | - Xupeng Zhao
- School of MedicineNankai UniversityTianjinChina
| | - Yongliang Lu
- Department of UrologyThe Third Medical Center of PLA General HospitalBeijingChina
| | - Hanfeng Wang
- Department of UrologyThe Third Medical Center of PLA General HospitalBeijingChina
| | - Xiyou Wang
- Department of UrologyThe Third Medical Center of PLA General HospitalBeijingChina
| | - Yi Wang
- Department of UrologyThe Third Medical Center of PLA General HospitalBeijingChina
| | - Chen Liang
- Medical Service DepartmentThe PLA General HospitalBeijingChina
| | - Zhuomin Jia
- Department of UrologyThe Third Medical Center of PLA General HospitalBeijingChina
| | - Wei Ma
- Senior Department of Otolaryngology‐Head & Neck SurgeryThe Sixth Medical Center of PLA General HospitalBeijingChina
| |
Collapse
|
10
|
Cheng M, Liu L, Zeng Y, Li Z, Zhang T, Xu R, Wang Q, Wu Y. An inflammatory gene-related prognostic risk score model for prognosis and immune infiltration in glioblastoma. Mol Carcinog 2024; 63:326-338. [PMID: 37947182 DOI: 10.1002/mc.23655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 07/25/2023] [Accepted: 10/28/2023] [Indexed: 11/12/2023]
Abstract
This study aimed to screen for key genes related to the prognosis of patients with glioblastoma (GBM). First, bioinformatics analysis was performed based on databases such as TCGA and MSigDB. Inflammatory-related genes were obtained from the MSigDB database. The TCGA-tumor samples were divided into cluster A and B groups based on consensus clustering. Multivariate Cox regression was applied to construct the risk score model of inflammatory-related genes based on the TCGA database. Second, to understand the effects of model characteristic genes on GBM cells, U-87 MG cells were used for knockdown experiments, which are important means for studying gene function. PLAUR is an unfavorable prognostic biomarker for patients with glioma. Therefore, the model characteristic gene PLAUR was selected for knockdown experiments. The prognosis of cluster A was significantly better than that of cluster B. The verification results also demonstrate that the risk score could predict overall survival. Although the immune cells in cluster B and high-risk groups increased, no matching survival advantage was observed. It may be that stromal activation inhibits the antitumor effect of immune cells. PLAUR knockdown inhibits tumor cell proliferation, migration, and invasion, and promoted tumor cell apoptosis. In conclusion, a prognostic prediction model for GBM composed of inflammatory-related genes was successfully constructed. Increased immune cell expression may be linked to a poor prognosis for GBM, as stromal activation decreased the antitumor activity of immune cells in cluster B and high-risk groups. PLAUR may play an important role in tumor cell proliferation, migration, invasion, and apoptosis.
Collapse
Affiliation(s)
- Meixiong Cheng
- Department of Neurosurgery, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China
| | - Ling Liu
- Department of Neurosurgery, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China
| | - Yi Zeng
- Department of Neurosurgery Intensive Care Unit, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China
| | - Zhili Li
- Department of Neurosurgery, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China
| | - Tian Zhang
- Department of Neurosurgery, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China
| | - Ruxiang Xu
- Department of Neurosurgery, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China
| | - Qi Wang
- Department of Neurosurgery, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China
| | - Yaqiu Wu
- Department of Neurosurgery Intensive Care Unit, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China
| |
Collapse
|
11
|
Lin J, Huang G, Zeng Q, Zhang R, Lin Y, Li Y, Huang B, Pan H. IGFBP5, as a Prognostic Indicator Promotes Tumor Progression and Correlates with Immune Microenvironment in Glioma. J Cancer 2024; 15:232-250. [PMID: 38164271 PMCID: PMC10751672 DOI: 10.7150/jca.87733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Accepted: 10/18/2023] [Indexed: 01/03/2024] Open
Abstract
Background: Insulin-like growth factor binding protein 5 (IGFBP5) is highly expressed in multiple human cancers, including glioma. Despite this, it remains unclear what role it plays in glioma. The aim of the present study was to analyze whether IGFBP5 could be used as a predictor of prognosis and immune infiltration in glioma. Methods: Glioma patients' clinical information was collected from the Cancer Genome Atlas (TCGA), the Chinese Glioma Genome Atlas (CGGA), Rembrandt, and Gravendeel databases. The diagnostic and prognostic roles of IGFBP5 were assessed by the Kaplan-Meier survival curves, diagnostic receiver operating characteristic (ROC) curves, nomogram model, Cox regression analysis and Enrichment analysis by R software. Moreover, the correlation between IGFBP5 expression and immune cell infiltration, and immune checkpoint genes was conducted. Immunohistochemistry staining, CCK8, colony formation, scratch and transwell assays and western blot were used to interrogate the expression and function of IGFBP5 in glioma. Results: IGFBP5 levels were obviously increased in glioma with higher malignancy and predicted poor outcomes by Univariate and multivariate Cox analysis. The biological function analysis revealed that IGFBP5 correlated closely with immune signatures. Moreover, IGFBP5 expression was associated with tumor infiltration of B cells, T cells, macrophages, and NK cells. IGFBP5 affected glioma cell proliferation, migration, and invasion probably involved in the epithelial-to-mesenchymal transition (EMT) and Hippo-YAP signaling pathway. Further study showed that IGFBP5 induced the expression of PD-L1 and CXCR4. Conclusions: IGFBP5 as an oncogene is a useful biomarker of prognosis and correlates with progression and immune infiltration in glioma.
Collapse
Affiliation(s)
- Jiediao Lin
- Central laboratory, Cancer Hospital of Shantou University Medical College, Shantou, Guangdong 515041, China
- Guangdong Provincial Key Laboratory for Breast Cancer Diagnosis and Treatment, Cancer Hospital of Shantou University Medical College, Shantou, Guangdong 515041, China
| | - Guowei Huang
- Department of Pathology, Shantou University Medical College, Shantou, Guangdong, 515041, China
| | - Qianru Zeng
- Central laboratory, Cancer Hospital of Shantou University Medical College, Shantou, Guangdong 515041, China
| | - Rendong Zhang
- Central laboratory, Cancer Hospital of Shantou University Medical College, Shantou, Guangdong 515041, China
- The Breast Center, Surgical Oncology Session No. 1, Cancer Hospital of Shantou University Medical College, Shantou, Guangdong 515041, China
| | - Yun Lin
- Central laboratory, Cancer Hospital of Shantou University Medical College, Shantou, Guangdong 515041, China
| | - Yaochen Li
- Central laboratory, Cancer Hospital of Shantou University Medical College, Shantou, Guangdong 515041, China
| | - Baohua Huang
- Department of Pathology, Shantou Central Hospital, Shantou, Guangdong 515041, China
| | - Hongchao Pan
- Central laboratory, Cancer Hospital of Shantou University Medical College, Shantou, Guangdong 515041, China
| |
Collapse
|
12
|
Yang YC, Zhu Y, Sun SJ, Zhao CJ, Bai Y, Wang J, Ma LT. ROS regulation in gliomas: implications for treatment strategies. Front Immunol 2023; 14:1259797. [PMID: 38130720 PMCID: PMC10733468 DOI: 10.3389/fimmu.2023.1259797] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2023] [Accepted: 10/30/2023] [Indexed: 12/23/2023] Open
Abstract
Gliomas are one of the most common primary malignant tumours of the central nervous system (CNS), of which glioblastomas (GBMs) are the most common and destructive type. The glioma tumour microenvironment (TME) has unique characteristics, such as hypoxia, the blood-brain barrier (BBB), reactive oxygen species (ROS) and tumour neovascularization. Therefore, the traditional treatment effect is limited. As cellular oxidative metabolites, ROS not only promote the occurrence and development of gliomas but also affect immune cells in the immune microenvironment. In contrast, either too high or too low ROS levels are detrimental to the survival of glioma cells, which indicates the threshold of ROS. Therefore, an in-depth understanding of the mechanisms of ROS production and scavenging, the threshold of ROS, and the role of ROS in the glioma TME can provide new methods and strategies for glioma treatment. Current methods to increase ROS include photodynamic therapy (PDT), sonodynamic therapy (SDT), and chemodynamic therapy (CDT), etc., and methods to eliminate ROS include the ingestion of antioxidants. Increasing/scavenging ROS is potentially applicable treatment, and further studies will help to provide more effective strategies for glioma treatment.
Collapse
Affiliation(s)
- Yu-Chen Yang
- Department of Traditional Chinese Medicine, Tangdu Hospital, Air Force Medical University (Fourth Military Medical University), Xi’an, China
| | - Yu Zhu
- College of Health, Dongguan Polytechnic, Dongguan, China
- The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Si-Jia Sun
- Department of Postgraduate Work, Xi’an Medical University, Xi’an, China
| | - Can-Jun Zhao
- Department of Traditional Chinese Medicine, Tangdu Hospital, Air Force Medical University (Fourth Military Medical University), Xi’an, China
| | - Yang Bai
- Department of Neurosurgery, General Hospital of Northern Theater Command, Shenyang, China
| | - Jin Wang
- Department of Radiation Protection Medicine, Faculty of Preventive Medicine, Air Force Medical University (Fourth Military Medical University), Xi’an, China
- Shaanxi Key Laboratory of Free Radical and Medicine, Xi’an, China
| | - Li-Tian Ma
- Department of Traditional Chinese Medicine, Tangdu Hospital, Air Force Medical University (Fourth Military Medical University), Xi’an, China
- Key Laboratory of Integrated Traditional Chinese and Western Medicine Tumor Diagnosis and Treatment in Shaanxi Province, Xi’an, China
- Department of Gastroenterology, Tangdu Hospital, Air Force Medical University (Fourth Military Medical University), Xi’an, China
| |
Collapse
|
13
|
Peng H, Wu X, Liu S, He M, Tang C, Wen Y, Xie C, Zhong R, Li C, Xiong S, Liu J, Zheng H, He J, Lu X, Liang W. Cellular dynamics in tumour microenvironment along with lung cancer progression underscore spatial and evolutionary heterogeneity of neutrophil. Clin Transl Med 2023; 13:e1340. [PMID: 37491740 PMCID: PMC10368809 DOI: 10.1002/ctm2.1340] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 06/21/2023] [Accepted: 07/12/2023] [Indexed: 07/27/2023] Open
Abstract
BACKGROUND The cellular dynamics in the tumour microenvironment (TME) along with non-small cell lung cancer (NSCLC) progression remain unclear. METHODS Multiplex immunofluorescence test detecting 10 immune-related markers on 553 primary tumour (PT) samples of NSCLC was conducted and spatial information in TME was assessed by the StarDist depth learning model. The single-cell transcriptomic atlas of PT (n = 4) and paired tumour-draining lymph nodes (TDLNs) (n = 5 for tumour-invaded, n = 3 for tumour-free) microenvironment was profiled. Various bioinformatics analyses based on Gene Expression Omnibus, TCGA and Array-Express databases were also used to validate the discoveries. RESULTS Spatial distances of CD4+ T cells-CD38+ T cells, CD4+ T cells-neutrophils and CD38+ T cells-neutrophils prolonged and they were replaced by CD163+ macrophages in PT along with tumour progression. Neutrophils showed unique stage and location-dependent prognostic effects. A high abundance of stromal neutrophils improved disease-free survival in the early-stage, whereas high intratumoural neutrophil infiltrates predicted poor prognosis in the mid-to-late-stage. Significant molecular and functional reprogramming in PT and TDLN microenvironments was observed. Diverse interaction networks mediated by neutrophils were found between positive and negative TDLNs. Five phenotypically and functionally heterogeneous subtypes of tumour-associated neutrophil (TAN) were further identified by pseudotime analysis, including TAN-0 with antigen-presenting function, TAN-1 with strong expression of interferon (IFN)-stimulated genes, the pro-tumour TAN-2 subcluster, the classical subset (TAN-3) and the pro-inflammatory subtype (TAN-4). Loss of IFN-stimulated signature and growing angiogenesis activity were discovered along the transitional trajectory. Eventually, a robust six neutrophil differentiation relevant genes-based model was established, showing that low-risk patients had longer overall survival time and may respond better to immunotherapy. CONCLUSIONS The cellular composition, spatial location, molecular and functional changes in PT and TDLN microenvironments along with NSCLC progression were deciphered, highlighting the immunoregulatory roles and evolutionary heterogeneity of TANs.
Collapse
Affiliation(s)
- Haoxin Peng
- Department of Thoracic Oncology and Surgery, China State Key Laboratory of Respiratory Disease & National Clinical Research Center for Respiratory Diseasethe First Affiliated Hospital of Guangzhou Medical UniversityGuangzhouChina
- Deparment of Clinical MedicineNanshan SchoolGuangzhou Medical UniversityGuangzhouChina
- Department of OncologyPeking University Cancer Hospital & InstitutePeking University Health Science Center, Peking UniversityBeijingChina
| | - Xiangrong Wu
- Department of Thoracic Oncology and Surgery, China State Key Laboratory of Respiratory Disease & National Clinical Research Center for Respiratory Diseasethe First Affiliated Hospital of Guangzhou Medical UniversityGuangzhouChina
- Deparment of Clinical MedicineNanshan SchoolGuangzhou Medical UniversityGuangzhouChina
- Department of OncologyShanghai Medical College, Fudan UniversityShanghaiChina
| | - Shaopeng Liu
- Department of Computer ScienceGuangdong Polytechnic Normal UniversityGuangzhouChina
- Department of Artificial Intelligence ResearchPazhou LabGuangzhouChina
| | - Miao He
- Department of Thoracic Oncology and Surgery, China State Key Laboratory of Respiratory Disease & National Clinical Research Center for Respiratory Diseasethe First Affiliated Hospital of Guangzhou Medical UniversityGuangzhouChina
- Deparment of Clinical MedicineNanshan SchoolGuangzhou Medical UniversityGuangzhouChina
| | - Chenshuo Tang
- Department of Computer ScienceGuangdong Polytechnic Normal UniversityGuangzhouChina
| | - Yaokai Wen
- Deparment of Clinical MedicineTongji UniversityShanghaiChina
- Department of Medical OncologyShanghai Pulmonary Hospital & Thoracic Cancer Institute, Tongji University, School of MedicineShanghaiChina
| | - Chao Xie
- Department of Computer ScienceGuangdong Polytechnic Normal UniversityGuangzhouChina
| | - Ran Zhong
- Department of Thoracic Oncology and Surgery, China State Key Laboratory of Respiratory Disease & National Clinical Research Center for Respiratory Diseasethe First Affiliated Hospital of Guangzhou Medical UniversityGuangzhouChina
| | - Caichen Li
- Department of Thoracic Oncology and Surgery, China State Key Laboratory of Respiratory Disease & National Clinical Research Center for Respiratory Diseasethe First Affiliated Hospital of Guangzhou Medical UniversityGuangzhouChina
| | - Shan Xiong
- Department of Thoracic Oncology and Surgery, China State Key Laboratory of Respiratory Disease & National Clinical Research Center for Respiratory Diseasethe First Affiliated Hospital of Guangzhou Medical UniversityGuangzhouChina
| | - Jun Liu
- Department of Thoracic Oncology and Surgery, China State Key Laboratory of Respiratory Disease & National Clinical Research Center for Respiratory Diseasethe First Affiliated Hospital of Guangzhou Medical UniversityGuangzhouChina
| | - Hongbo Zheng
- Medical DepartmentGenecast Biotechnology Co., LtdBeijingChina
| | - Jianxing He
- Department of Thoracic Oncology and Surgery, China State Key Laboratory of Respiratory Disease & National Clinical Research Center for Respiratory Diseasethe First Affiliated Hospital of Guangzhou Medical UniversityGuangzhouChina
| | - Xu Lu
- Department of Computer ScienceGuangdong Polytechnic Normal UniversityGuangzhouChina
- Department of Artificial Intelligence ResearchPazhou LabGuangzhouChina
| | - Wenhua Liang
- Department of Thoracic Oncology and Surgery, China State Key Laboratory of Respiratory Disease & National Clinical Research Center for Respiratory Diseasethe First Affiliated Hospital of Guangzhou Medical UniversityGuangzhouChina
- Department of Medical OncologyThe First People's Hospital of ZhaoqingZhaoqingChina
| |
Collapse
|
14
|
Yue J, Huang R, Lan Z, Xiao B, Luo Z. Abnormal glycosylation in glioma: related changes in biology, biomarkers and targeted therapy. Biomark Res 2023; 11:54. [PMID: 37231524 DOI: 10.1186/s40364-023-00491-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2022] [Accepted: 04/26/2023] [Indexed: 05/27/2023] Open
Abstract
Glioma is a rapidly growing and aggressive primary malignant tumor of the central nervous system that can diffusely invade the brain tissue around, and the prognosis of patients is not significantly improved by traditional treatments. One of the most general posttranslational modifications of proteins is glycosylation, and the abnormal distribution of this modification in gliomas may shed light on how it affects biological behaviors of glioma cells, including proliferation, migration, and invasion, which may be produced by regulating protein function, cell-matrix and cell‒cell interactions, and affecting receptor downstream pathways. In this paper, from the perspective of regulating protein glycosylation changes and abnormal expression of glycosylation-related proteins (such as glycosyltransferases in gliomas), we summarize how glycosylation may play a crucial role in the discovery of novel biomarkers and new targeted treatment options for gliomas. Overall, the mechanistic basis of abnormal glycosylation affecting glioma progression remains to be more widely and deeply explored, which not only helps to inspire researchers to further explore related diagnostic and prognostic markers but also provides ideas for discovering effective treatment strategies and improving glioma patient survival and prognosis.
Collapse
Affiliation(s)
- Juan Yue
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
- Xiangya School of Medicine, Central South University, Changsha, 410013, Hunan, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, 87 Xiangya road of Kaifu district, 410008, Changsha, Hunan, China
| | - Roujie Huang
- Department of Obstetrics and Gynecology, Peking Union Medical College, Peking Union Medical College Hospital, Chinese Academy of Medical Science, Shuaifuyuan No. 1, Dongcheng District, 100730, Beijing, China
| | - Zehao Lan
- Xiangya School of Medicine, Central South University, Changsha, 410013, Hunan, China
| | - Bo Xiao
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, 87 Xiangya road of Kaifu district, 410008, Changsha, Hunan, China
- Clinical Research Center for Epileptic disease of Hunan Province, Central South University, 410008, Changsha, Hunan, P.R. China
| | - Zhaohui Luo
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China.
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, 87 Xiangya road of Kaifu district, 410008, Changsha, Hunan, China.
- Clinical Research Center for Epileptic disease of Hunan Province, Central South University, 410008, Changsha, Hunan, P.R. China.
| |
Collapse
|
15
|
Han Y, Tu L, Zhang Y, Liu Q, Dong Q, Sun Z. A New Urokinase Plasminogen Activator Receptor‐Targeted Near‐Infrared Fluorescence (NIR) Probe for Glioma Imaging. ChemistrySelect 2023. [DOI: 10.1002/slct.202204504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/22/2023]
Affiliation(s)
- Yunfeng Han
- Department of Nuclear Medicine Tongji Hospital, Tongji Medical College Huazhong University of Science and Technology Wuhan 430030 China
- Department of Nuclear Medicine Union Hospital, Tongji Medical College Huazhong University of Science and Technology Wuhan 430022 China
| | - Le Tu
- Key Laboratory of Pesticides and Chemical Biology, Ministry of Education College of Chemistry Central China Normal University Wuhan 430079 China
| | - Yongxue Zhang
- Department of Nuclear Medicine Union Hospital, Tongji Medical College Huazhong University of Science and Technology Wuhan 430022 China
| | - Qiuyu Liu
- Department of Radiology Tongji Hospital, Tongji Medical College Huazhong University of Science and Technology Wuhan 430030 China
| | - Qingjian Dong
- Department of Nuclear Medicine Tongji Hospital, Tongji Medical College Huazhong University of Science and Technology Wuhan 430030 China
| | - Ziyan Sun
- Department of Radiology Tongji Hospital, Tongji Medical College Huazhong University of Science and Technology Wuhan 430030 China
| |
Collapse
|
16
|
Bian Y, Wang Y, Chen X, Zhang Y, Xiong S, Su D. Image‐guided diagnosis and treatment of glioblastoma. VIEW 2023. [DOI: 10.1002/viw.20220069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Affiliation(s)
- Yongning Bian
- Center of Excellence for Environmental Safety and Biological Effects Beijing Key Laboratory for Green Catalysis and Separation Department of Chemistry Beijing University of Technology Beijing P. R. China
| | - Yaling Wang
- Center of Excellence for Environmental Safety and Biological Effects Beijing Key Laboratory for Green Catalysis and Separation Department of Chemistry Beijing University of Technology Beijing P. R. China
| | - Xueqian Chen
- Center of Excellence for Environmental Safety and Biological Effects Beijing Key Laboratory for Green Catalysis and Separation Department of Chemistry Beijing University of Technology Beijing P. R. China
| | - Yong Zhang
- Center of Excellence for Environmental Safety and Biological Effects Beijing Key Laboratory for Green Catalysis and Separation Department of Chemistry Beijing University of Technology Beijing P. R. China
| | - Shaoqing Xiong
- Center of Excellence for Environmental Safety and Biological Effects Beijing Key Laboratory for Green Catalysis and Separation Department of Chemistry Beijing University of Technology Beijing P. R. China
| | - Dongdong Su
- Center of Excellence for Environmental Safety and Biological Effects Beijing Key Laboratory for Green Catalysis and Separation Department of Chemistry Beijing University of Technology Beijing P. R. China
| |
Collapse
|
17
|
Tang L, Li T, Xie J, Huo Y. Diversity and heterogeneity in human breast cancer adipose tissue revealed at single-nucleus resolution. Front Immunol 2023; 14:1158027. [PMID: 37153595 PMCID: PMC10160491 DOI: 10.3389/fimmu.2023.1158027] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Accepted: 04/11/2023] [Indexed: 05/09/2023] Open
Abstract
Introduction There is increasing awareness of the role of adipose tissue in breast cancer occurrence and development, but no comparison of adipose adjacent to breast cancer tissues and adipose adjacent to normal breast tissues has been reported. Methods Single-nucleus RNA sequencing (snRNA-seq) was used to analyze cancer-adjacent and normal adipose tissues from the same breast cancer patient to characterize heterogeneity. SnRNA-seq was performed on 54513 cells from six samples of normal breast adipose tissue (N) distant from the tumor and tumor-adjacent adipose tissue (T) from the three patients (all surgically resected). Results and discussion Significant diversity was detected in cell subgroups, differentiation status and, gene expression profiles. Breast cancer induces inflammatory gene profiles in most adipose cell types, such as macrophages, endothelial cells, and adipocytes. Furthermore, breast cancer decreased lipid uptake and the lipolytic phenotype and caused a switch to lipid biosynthesis and an inflammatory state in adipocytes. The in vivo trajectory of adipogenesis revealed distinct transcriptional stages. Breast cancer induced reprogramming across many cell types in breast cancer adipose tissues. Cellular remodeling was investigated by alterations in cell proportions, transcriptional profiles and cell-cell interactions. Breast cancer biology and novel biomarkers and therapy targets may be exposed.
Collapse
Affiliation(s)
- Lina Tang
- Advanced Medical Research Center of Zhengzhou University, Zhengzhou Central Hospital Affiliated to Zhengzhou University, Zhengzhou, China
- *Correspondence: Lina Tang, ; Yanping Huo,
| | - Tingting Li
- Department of Cell Biology, Key Laboratory of Cell Biology, National Health Commission of the PRC and Key Laboratory of Medical Cell Biology, Ministry of Education of the PRC, China Medical University, Shenyang, Liaoning, China
| | - Jing Xie
- Department of Breast Surgery, Zhengzhou Central Hospital Affiliated to Zhengzhou University, Zhengzhou, China
| | - Yanping Huo
- Department of Breast Surgery, Zhengzhou Central Hospital Affiliated to Zhengzhou University, Zhengzhou, China
- *Correspondence: Lina Tang, ; Yanping Huo,
| |
Collapse
|
18
|
Wang T, Xu C, Xu D, Yang X, Liu Y, Li X, Li Z, Dang N, Lv Y, Zhang Z, Li L, Ye K. Integrating cell interaction with transcription factors to obtain a robust gene panel for prognostic prediction and therapies in cholangiocarcinoma. Front Genet 2022; 13:981145. [DOI: 10.3389/fgene.2022.981145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Accepted: 10/24/2022] [Indexed: 12/05/2022] Open
Abstract
Objective: The efficacy of immunotherapy for cholangiocarcinoma (CCA) is blocked by a high degree of tumor heterogeneity. Cell communication contributes to heterogeneity in the tumor microenvironment. This study aimed to explore critical cell signaling and biomarkers induced via cell communication during immune exhaustion in CCA.Methods: We constructed empirical Bayes and Markov random field models eLBP to determine transcription factors, interacting genes, and associated signaling pathways involved in cell-cell communication using single-cell RNAseq data. We then analyzed the mechanism of immune exhaustion during CCA progression.Results: We found that VEGFA-positive macrophages with high levels of LGALS9 could interact with HAVCR2 to promote the exhaustion of CD8+ T cells in CCA. Transcription factors SPI1 and IRF1 can upregulate the expression of LGALS9 in VEGFA-positive macrophages. Subsequently, we obtained a panel containing 54 genes through the model, which identified subtype S2 with high expression of immune checkpoint genes that are suitable for immunotherapy. Moreover, we found that patients with subtype S2 with a higher mutation ratio of MUC16 had immune-exhausted genes, such as HAVCR2 and TIGIT. Finally, we constructed a nine-gene eLBP-LASSO-COX risk model, which was designated the tumor microenvironment risk score (TMRS).Conclusion: Cell communication-related genes can be used as important markers for predicting patient prognosis and immunotherapy responses. The TMRS panel is a reliable tool for prognostic prediction and chemotherapeutic decision-making in CCA.
Collapse
|
19
|
Bou Zerdan M, Atoui A, Hijazi A, Basbous L, Abou Zeidane R, Alame SM, Assi HI. Latest updates on cellular and molecular biomarkers of gliomas. Front Oncol 2022; 12:1030366. [PMID: 36425564 PMCID: PMC9678906 DOI: 10.3389/fonc.2022.1030366] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2022] [Accepted: 10/05/2022] [Indexed: 03/05/2024] Open
Abstract
Gliomas are the most common central nervous system malignancies, compromising almost 80% of all brain tumors and is associated with significant mortality. The classification of gliomas has shifted from basic histological perspective to one that is based on molecular biomarkers. Treatment of this type of tumors consists currently of surgery, chemotherapy and radiation therapy. During the past years, there was a limited development of effective glioma diagnostics and therapeutics due to multiple factors including the presence of blood-brain barrier and the heterogeneity of this type of tumors. Currently, it is necessary to highlight the advantage of molecular diagnosis of gliomas to develop patient targeted therapies based on multiple oncogenic pathway. In this review, we will evaluate the development of cellular and molecular biomarkers for the diagnosis of gliomas and the impact of these diagnostic tools for better tailored and targeted therapies.
Collapse
Affiliation(s)
- Maroun Bou Zerdan
- Department of Internal Medicine, State University of New York (SUNY) Upstate Medical University, Syracuse, NY, United States
| | - Ali Atoui
- Hematology-Oncology Division, Internal Medicine Department, American University of Beirut Medical Center, Beirut, Lebanon
| | - Ali Hijazi
- Hematology-Oncology Division, Internal Medicine Department, American University of Beirut Medical Center, Beirut, Lebanon
| | - Lynn Basbous
- Hematology-Oncology Division, Internal Medicine Department, American University of Beirut Medical Center, Beirut, Lebanon
| | - Reine Abou Zeidane
- Hematology-Oncology Division, Internal Medicine Department, American University of Beirut Medical Center, Beirut, Lebanon
| | - Saada M Alame
- Department of Pediatrics, Faculty of Medicine, Lebanese University, Beirut, Lebanon
| | - Hazem I Assi
- Hematology-Oncology Division, Internal Medicine Department, American University of Beirut Medical Center, Beirut, Lebanon
| |
Collapse
|
20
|
Wang Z, Wang K, Gao X, Liu Z, Xing Z. Comprehensive analysis of the importance of PLAUR in the progression and immune microenvironment of renal clear cell carcinoma. PLoS One 2022; 17:e0269595. [PMID: 35675366 PMCID: PMC9176830 DOI: 10.1371/journal.pone.0269595] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Accepted: 05/24/2022] [Indexed: 11/18/2022] Open
Abstract
Clear cell renal cell carcinoma (ccRCC) is a common type of kidney cancer with a high mortality rate, and the discovery of new therapeutic markers is essential to improve patient survival. The plasminogen activator urokinase receptor (PLAUR) plays key roles in tissue remodeling and extracellular matrix degradation, which contribute to invasion and metastasis, a major feature of tumor malignancy. The role of PLAUR in ccRCC pathology has not been deeply studied. In this study, we collected the mRNA expression data of 33 tumor types, each derived from human patients obtained from TCGA database, and comprehensively analyzed the correlation between the expression of PLAUR in tumors and prognosis. Then, we studied the relationship between PLAUR expression in ccRCC and specific clinical features of ccRCC patients. In addition, we analyzed the function and mechanism of PLAUR in ccRCC. Our results showed that PLAUR was significantly overexpressed in ccRCC and that both PLAUR levels and PLAUR methylation levels significantly correlated with poor prognosis. Our results also suggest that PLAUR is involved in the progression of ccRCC. The results of functional and mechanistic analysis of PLAUR showed that PLAUR is involved in inflammatory and immune-related pathways in ccRCC; other data showed that PLAUR expression may affect the infiltration of multiple immune cell types in ccRCC and that PLAUR levels were significantly and positively correlated with the expression of immune checkpoints. In conclusion, our findings suggest that high PLAUR expression can promote the progression of ccRCC to poor prognosis, and thus PLAUR may serve as both a potential marker for predicting macrophage infiltration and immune microenvironment status and as an important immunotherapy target for ccRCC.
Collapse
Affiliation(s)
- Zhiwei Wang
- Department of Urology, Affiliated Haikou Hospital of Xiangya Medical College, Central South University, Haikou, Hainan, China
| | - Kunxiong Wang
- Department of Urology, Affiliated Haikou Hospital of Xiangya Medical College, Central South University, Haikou, Hainan, China
| | - Xin Gao
- Graduate School of Peking Union Medical College, Chinese Academy of Medical Sciences, Tsinghua University, Beijing, China
- Clinical Laboratory, The First People’s Hospital of Huaihua, Huaihua, Hunan, China
| | - Zhenxiang Liu
- Department of Urology, Affiliated Haikou Hospital of Xiangya Medical College, Central South University, Haikou, Hainan, China
| | - Zengshu Xing
- Department of Urology, Affiliated Haikou Hospital of Xiangya Medical College, Central South University, Haikou, Hainan, China
- * E-mail:
| |
Collapse
|
21
|
Wang J, Zhang W, Hou W, Zhao E, Li X. Molecular Characterization, Tumor Microenvironment Association, and Drug Susceptibility of DNA Methylation-Driven Genes in Renal Cell Carcinoma. Front Cell Dev Biol 2022; 10:837919. [PMID: 35386197 PMCID: PMC8978676 DOI: 10.3389/fcell.2022.837919] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Accepted: 02/21/2022] [Indexed: 11/13/2022] Open
Abstract
Accumulating evidence suggests that DNA methylation has essential roles in the development of renal cell carcinoma (RCC). Aberrant DNA methylation acts as a vital role in RCC progression through regulating the gene expression, yet little is known about the role of methylation and its association with prognosis in RCC. The purpose of this study is to explore the DNA methylation-driven genes for establishing prognostic-related molecular clusters and providing a basis for survival prediction. In this study, 5,198 differentially expressed genes (DEGs) and 270 DNA methylation-driven genes were selected to obtain 146 differentially expressed DNA methylation-driven genes (DEMDGs). Two clusters were distinguished by consensus clustering using 146 DEMDGs. We further evaluated the immune status of two clusters and selected 106 DEGs in cluster 1. Cluster-based immune status analysis and functional enrichment analysis of 106 DEGs provide new insights for the development of RCC. To predict the prognosis of patients with RCC, a prognostic model based on eight DEMDGs was constructed. The patients were divided into high-risk groups and low-risk groups based on their risk scores. The predictive nomogram and the web-based survival rate calculator (http://127.0.0.1:3496) were built to validate the predictive accuracy of the prognostic model. Gene set enrichment analysis was performed to annotate the signaling pathways in which the genes are enriched. The correlation of the risk score with clinical features, immune status, and drug susceptibility was also evaluated. These results suggested that the prognostic model might be a promising prognostic tool for RCC and might facilitate the management of patients with RCC.
Collapse
Affiliation(s)
- Jinpeng Wang
- Department of Urology, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Wei Zhang
- Department of Urology, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Wenbin Hou
- Department of Urology, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Enyang Zhao
- Department of Urology, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Xuedong Li
- Department of Urology, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| |
Collapse
|
22
|
The Mechanism Study of Common Flavonoids on Antiglioma Based on Network Pharmacology and Molecular Docking. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2022; 2022:2198722. [PMID: 35140796 PMCID: PMC8820855 DOI: 10.1155/2022/2198722] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Revised: 08/30/2021] [Accepted: 12/28/2021] [Indexed: 02/08/2023]
Abstract
BACKGROUND Glioma is the most common primary intracranial tumor in adult patients. Among them, glioblastoma is a highly malignant one with a poor prognosis. Flavonoids are a class of phenolic compounds widely distributed in plants and have many biological functions, such as anti-inflammatory, antioxidant, antiaging, and anticancer. Nowadays, flavonoids have been applied to the therapy of glioma; however, the molecular mechanism underlying the therapeutic effects has not been fully elaborated. This study was carried out to explore the mechanism of selected active flavonoid compounds in treating glioma using network pharmacology and molecular docking approaches. METHODS Active ingredients and associated targets of flavonoids were acquired by using the Traditional Chinese Medicine Database and Analysis Platform (TCMSP) and Swiss TargetPrediction platform. Genes related to glioma were obtained from the GeneCards and DisGeNET databases. The intersection targets between flavonoid targets and glioma-related genes were used to construct protein-protein interaction (PPI) network via the STRING database, and the results were analyzed by Cytoscape software. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analyses were performed and displayed by utilizing the Metascape portal and clusterProfiler R package. Molecular docking was carried out by iGEMDOCK and SwissDock, and the results were visually displayed by UCSF Chimera software. RESULTS Eighty-four active flavonoid compounds and 258 targets overlapped between flavonoid targets and glioma-related genes were achieved. PPI network revealed potential therapeutic targets, such as AKT1, EGFR, VEGFA, MAPK3, and CASP3, based on their node degree. GO and KEGG analyses showed that core targets were mainly enriched in the PI3K-Akt signaling pathway. Molecular docking simulation indicated that potential glioma-related targets-MAPK1 and HSP90AA1 were bounded more firmly with epigallocatechin-3-gallate (EGCG) than with quercetin. CONCLUSIONS The findings of this study indicated that selected active flavonoid compounds might play therapeutic roles in glioma mainly through the PI3K-Akt signaling pathway. Moreover, EGCG had the potential antiglioma activity by targeting MAPK1 and HSP90AA1.
Collapse
|
23
|
Ji H, Zhao H, Jin J, Liu Z, Gao X, Wang F, Dong J, Yan X, Zhang J, Wang N, Du J, Hu S. Novel Immune-Related Gene-Based Signature Characterizing an Inflamed Microenvironment Predicts Prognosis and Radiotherapy Efficacy in Glioblastoma. Front Genet 2022; 12:736187. [PMID: 35111196 PMCID: PMC8801921 DOI: 10.3389/fgene.2021.736187] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2021] [Accepted: 11/22/2021] [Indexed: 12/13/2022] Open
Abstract
Effective treatment of glioblastoma (GBM) remains an open challenge. Given the critical role of the immune microenvironment in the progression of cancers, we aimed to develop an immune-related gene (IRG) signature for predicting prognosis and improving the current treatment paradigm of GBM. Multi-omics data were collected, and various bioinformatics methods, as well as machine learning algorithms, were employed to construct and validate the IRG-based signature and to explore the characteristics of the immune microenvironment of GBM. A five-gene signature (ARPC1B, FCGR2B, NCF2, PLAUR, and S100A11) was identified based on the expression of IRGs, and an effective prognostic risk model was developed. The IRG-based risk model had superior time-dependent prognostic performance compared to well-studied molecular pathology markers. Besides, we found prominent inflamed features in the microenvironment of the high-risk group, including neutrophil infiltration, immune checkpoint expression, and activation of the adaptive immune response, which may be associated with increased hypoxia, epidermal growth factor receptor (EGFR) wild type, and necrosis. Notably, the IRG-based risk model had the potential to predict the effectiveness of radiotherapy. Together, our study offers insights into the immune microenvironment of GBM and provides useful information for clinical management of this desperate disease.
Collapse
Affiliation(s)
- Hang Ji
- Department of Neurosurgery, Zhejiang Provincial People’s Hospital, Hangzhou, China
- Department of Neurosurgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
- Translational Medicine Research and Cooperation Center of Northern China, Heilongjiang Academy of Medical Sciences, Harbin, China
| | - Hongtao Zhao
- Department of Neurosurgery, Zhejiang Provincial People’s Hospital, Hangzhou, China
- Department of Neurosurgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Jiaqi Jin
- Department of Neurosurgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
- The Key Laboratory of Myocardial Ischemia, Ministry of Education, Harbin, China
| | - Zhihui Liu
- Department of Neurosurgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Xin Gao
- Department of Neurosurgery, Zhejiang Provincial People’s Hospital, Hangzhou, China
- Department of Neurosurgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Fang Wang
- Department of Neurosurgery, Zhejiang Provincial People’s Hospital, Hangzhou, China
- Department of Neurosurgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Jiawei Dong
- Department of Neurosurgery, Zhejiang Provincial People’s Hospital, Hangzhou, China
- Department of Neurosurgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Xiuwei Yan
- Department of Neurosurgery, Zhejiang Provincial People’s Hospital, Hangzhou, China
- Department of Neurosurgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Jiheng Zhang
- Department of Neurosurgery, Zhejiang Provincial People’s Hospital, Hangzhou, China
- Department of Neurosurgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Nan Wang
- Department of Neurosurgery, Zhejiang Provincial People’s Hospital, Hangzhou, China
- Department of Neurosurgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Jianyang Du
- Department of Neurosurgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
- *Correspondence: Shaoshan Hu, ; Jianyang Du,
| | - Shaoshan Hu
- Department of Neurosurgery, Zhejiang Provincial People’s Hospital, Hangzhou, China
- Department of Neurosurgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
- *Correspondence: Shaoshan Hu, ; Jianyang Du,
| |
Collapse
|
24
|
Zhong A, Chen T, Xing Y, Pan X, Shi M. FUCA2 Is a Prognostic Biomarker and Correlated With an Immunosuppressive Microenvironment in Pan-Cancer. Front Immunol 2021; 12:758648. [PMID: 34745134 PMCID: PMC8565374 DOI: 10.3389/fimmu.2021.758648] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2021] [Accepted: 10/07/2021] [Indexed: 11/23/2022] Open
Abstract
Background The expression of Fucosidase, alpha-L-2 (FUCA2) varies across tumors. However, its role in various tumor types and relationship with the tumor immune microenvironment (TIME) is poorly defined. Methods We analyzed profiles of FUCA2 expression using datasets from The Cancer Genome Atlas (TCGA) and Genotype-Tissue Expression (GTEx) databases. Next, gene alteration, clinical characteristics and prognostic values of FUCA2 were elucidated based on TCGA pan-cancer data. This was followed by gene set enrichment analysis by R software. Relationships between FUCA2 expression and immune infiltration and immune-related genes were also evaluated. Moreover, the association of immune cell infiltration with FUCA2 expression was evaluated across three different sources of immune cell infiltration data, namely the TIMER online, ImmuCellAI databases, as well as a published study. In addition, MTT assays was also conducted to validate the oncogene role of FUCA2 in lung cancer cells. Results FUCA2 was upregulated in most tumors, and this was significantly associated with poor survival rates. Gene set enrichment analysis uncovered that FUCA2 correlated with immune pathways in different tumor types. FUCA2 expression was positively related to tumor associated macrophages (TAMs), especially M2-like TAMs. Moreover, FUCA2 level showed a positive relationship with most immunosuppression genes, including programmed death-ligand 1 (PD-L1), transforming growth factor beta 1 (TGFB1), and interleukin-10 (IL10) in most cancer types. FUCA2 knockdown inhibited the cell viability in lung cancer cells. Conclusions Our study reveals that FUCA2 is a potential oncogene and is indicative biomarker of a worse prognosis in pan-cancer. High FUCA2 expression may contribute to increased infiltration of TAMs and associates with an immunosuppressive microenvironment, providing a potential target for tumor therapy.
Collapse
Affiliation(s)
- Anyuan Zhong
- Department of Pulmonary and Critical Care Medicine, The Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Ting Chen
- Department of Pulmonary and Critical Care Medicine, The Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Yufei Xing
- Department of Pulmonary and Critical Care Medicine, The Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Xue Pan
- Department of Pulmonary and Critical Care Medicine, The Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Minhua Shi
- Department of Pulmonary and Critical Care Medicine, The Second Affiliated Hospital of Soochow University, Suzhou, China
| |
Collapse
|
25
|
Guo L, Li B, Lu Z, Liang H, Yang H, Chen Y, Zhu S, Zeng M, Wei Y, Liu T, Jiang T, Xuan M, Tang H. CCDC137 Is a Prognostic Biomarker and Correlates With Immunosuppressive Tumor Microenvironment Based on Pan-Cancer Analysis. Front Mol Biosci 2021; 8:674863. [PMID: 34055889 PMCID: PMC8155610 DOI: 10.3389/fmolb.2021.674863] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Accepted: 04/12/2021] [Indexed: 11/17/2022] Open
Abstract
Background The coiled-coil domain containing (CCDC) family proteins have important biological functions in various diseases. However, the coiled-coil domain containing 137 (CCDC137) was rarely studied. We aim to investigate the role of CCDC137 in pan-cancer. Methods CCDC137 expression was evaluated in RNA sequence expression profilers of pan-cancer and normal tissues from The Cancer Genome Atlas (TCGA) and Genotype-Tissue Expression (GTEx) database. The influence of CCDC137 on the prognosis of tumor patients was analyzed using clinical survival data from TCGA. Function and pathway enrichment analysis was performed to explore the role of CCDC137 using the R package “clusterProfiler.” We further analyzed the correlation of immune cell infiltration score of TCGA samples and CCDC137 expression using TIMER2 online database. Results CCDC137 was over-expressed and associated with worse survival status in various tumor types. CCDC137 expression was positively correlated with tumor associated macrophages (TAMs) and cancer associated fibroblasts (CAFs) in Lower Grade Glioma (LGG) and Uveal Melanoma (UVM). In addition, high CCDC137 expression was positively correlated with most immunosuppressive genes, including TGFB1, PD-L1, and IL10RB in LGG and UVM. Conclusions Our study identified CCDC137 as an oncogene and predictor of worse survival in most tumor types. High CCDC137 may contribute to elevated infiltration of TAMs and CAFs and be associated with tumor immunosuppressive status.
Collapse
Affiliation(s)
- Lihao Guo
- Dongguan Key Laboratory of Environmental Medicine, Department of Environmental and Occupational Health, School of Public Health, Guangdong Medical University, Dongguan, China
| | - Boxin Li
- Dongguan Key Laboratory of Environmental Medicine, Department of Environmental and Occupational Health, School of Public Health, Guangdong Medical University, Dongguan, China
| | - Zhaohong Lu
- Dongguan Key Laboratory of Environmental Medicine, Department of Environmental and Occupational Health, School of Public Health, Guangdong Medical University, Dongguan, China
| | - Hairong Liang
- Dongguan Key Laboratory of Environmental Medicine, Department of Environmental and Occupational Health, School of Public Health, Guangdong Medical University, Dongguan, China
| | - Hui Yang
- Dongguan Key Laboratory of Environmental Medicine, Department of Environmental and Occupational Health, School of Public Health, Guangdong Medical University, Dongguan, China
| | - Yuting Chen
- Dongguan Key Laboratory of Environmental Medicine, Department of Environmental and Occupational Health, School of Public Health, Guangdong Medical University, Dongguan, China
| | - Shiheng Zhu
- Dongguan Key Laboratory of Environmental Medicine, Department of Environmental and Occupational Health, School of Public Health, Guangdong Medical University, Dongguan, China
| | - Minjuan Zeng
- Dongguan Key Laboratory of Environmental Medicine, Department of Environmental and Occupational Health, School of Public Health, Guangdong Medical University, Dongguan, China
| | - Yixian Wei
- Dongguan Key Laboratory of Environmental Medicine, Department of Environmental and Occupational Health, School of Public Health, Guangdong Medical University, Dongguan, China
| | - Tonggong Liu
- Dongguan Key Laboratory of Environmental Medicine, Department of Environmental and Occupational Health, School of Public Health, Guangdong Medical University, Dongguan, China
| | - Tikeng Jiang
- Dongguan Key Laboratory of Environmental Medicine, Department of Environmental and Occupational Health, School of Public Health, Guangdong Medical University, Dongguan, China
| | - Mei Xuan
- Dongguan Key Laboratory of Environmental Medicine, Department of Environmental and Occupational Health, School of Public Health, Guangdong Medical University, Dongguan, China
| | - Huanwen Tang
- Dongguan Key Laboratory of Environmental Medicine, Department of Environmental and Occupational Health, School of Public Health, Guangdong Medical University, Dongguan, China
| |
Collapse
|