1
|
Li S, Wang C, Chen J, Lan Y, Zhang W, Kang Z, Zheng Y, Zhang R, Yu J, Li W. Signaling pathways in brain tumors and therapeutic interventions. Signal Transduct Target Ther 2023; 8:8. [PMID: 36596785 PMCID: PMC9810702 DOI: 10.1038/s41392-022-01260-z] [Citation(s) in RCA: 18] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 11/16/2022] [Accepted: 11/21/2022] [Indexed: 01/05/2023] Open
Abstract
Brain tumors, although rare, contribute to distinct mortality and morbidity at all ages. Although there are few therapeutic options for brain tumors, enhanced biological understanding and unexampled innovations in targeted therapies and immunotherapies have considerably improved patients' prognoses. Nonetheless, the reduced response rates and unavoidable drug resistance of currently available treatment approaches have become a barrier to further improvement in brain tumor (glioma, meningioma, CNS germ cell tumors, and CNS lymphoma) treatment. Previous literature data revealed that several different signaling pathways are dysregulated in brain tumor. Importantly, a better understanding of targeting signaling pathways that influences malignant behavior of brain tumor cells might open the way for the development of novel targeted therapies. Thus, there is an urgent need for a more comprehensive understanding of the pathogenesis of these brain tumors, which might result in greater progress in therapeutic approaches. This paper began with a brief description of the epidemiology, incidence, risk factors, as well as survival of brain tumors. Next, the major signaling pathways underlying these brain tumors' pathogenesis and current progress in therapies, including clinical trials, targeted therapies, immunotherapies, and system therapies, have been systemically reviewed and discussed. Finally, future perspective and challenges of development of novel therapeutic strategies in brain tumor were emphasized.
Collapse
Affiliation(s)
- Shenglan Li
- grid.24696.3f0000 0004 0369 153XDepartment of Neuro-Oncology, Cancer Center, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Can Wang
- grid.24696.3f0000 0004 0369 153XDepartment of Neuro-Oncology, Cancer Center, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Jinyi Chen
- grid.24696.3f0000 0004 0369 153XDepartment of Neuro-Oncology, Cancer Center, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Yanjie Lan
- grid.24696.3f0000 0004 0369 153XDepartment of Neuro-Oncology, Cancer Center, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Weichunbai Zhang
- grid.24696.3f0000 0004 0369 153XDepartment of Neuro-Oncology, Cancer Center, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Zhuang Kang
- grid.24696.3f0000 0004 0369 153XDepartment of Neuro-Oncology, Cancer Center, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Yi Zheng
- grid.24696.3f0000 0004 0369 153XDepartment of Neuro-Oncology, Cancer Center, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Rong Zhang
- grid.24696.3f0000 0004 0369 153XDepartment of Neuro-Oncology, Cancer Center, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Jianyu Yu
- grid.24696.3f0000 0004 0369 153XDepartment of Neuro-Oncology, Cancer Center, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Wenbin Li
- Department of Neuro-Oncology, Cancer Center, Beijing Tiantan Hospital, Capital Medical University, Beijing, China.
| |
Collapse
|
2
|
Houweling M, Giczewska A, Abdul K, Nieuwenhuis N, Küçükosmanoglu A, Pastuszak K, Buijsman RC, Wesseling P, Wedekind L, Noske D, Supernat A, Bailey D, Watts C, Wurdinger T, Westerman BA. Screening of predicted synergistic multi-target therapies in glioblastoma identifies new treatment strategies. Neurooncol Adv 2023; 5:vdad073. [PMID: 37455945 PMCID: PMC10347974 DOI: 10.1093/noajnl/vdad073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/18/2023] Open
Abstract
Background IDH-wildtype glioblastoma (GBM) is a highly malignant primary brain tumor with a median survival of 15 months after standard of care, which highlights the need for improved therapy. Personalized combination therapy has shown to be successful in many other tumor types and could be beneficial for GBM patients. Methods We performed the largest drug combination screen to date in GBM, using a high-throughput effort where we selected 90 drug combinations for their activity onto 25 patient-derived GBM cultures. 43 drug combinations were selected for interaction analysis based on their monotherapy efficacy and were tested in a short-term (3 days) as well as long-term (18 days) assay. Synergy was assessed using dose-equivalence and multiplicative survival metrics. Results We observed a consistent synergistic interaction for 15 out of 43 drug combinations on patient-derived GBM cultures. From these combinations, 11 out of 15 drug combinations showed a longitudinal synergistic effect on GBM cultures. The highest synergies were observed in the drug combinations Lapatinib with Thapsigargin and Lapatinib with Obatoclax Mesylate, both targeting epidermal growth factor receptor and affecting the apoptosis pathway. To further elaborate on the apoptosis cascade, we investigated other, more clinically relevant, apoptosis inducers and observed a strong synergistic effect while combining Venetoclax (BCL targeting) and AZD5991 (MCL1 targeting). Conclusions Overall, we have identified via a high-throughput drug screening several new treatment strategies for GBM. Moreover, an exceptionally strong synergistic interaction was discovered between kinase targeting and apoptosis induction which is suitable for further clinical evaluation as multi-targeted combination therapy.
Collapse
Affiliation(s)
- Megan Houweling
- Department of Neurosurgery, Amsterdam UMC location Vrije Universiteit Amsterdam, Boelelaan 1117, Amsterdam, The Netherlands
- Cancer Center Amsterdam, Brain tumor center Amsterdam, Amsterdam, The Netherlands
- WINDOW consortium, Amsterdam, The Netherlands (www.window-consortium.org)
| | | | | | - Ninke Nieuwenhuis
- Department of Neurosurgery, Amsterdam UMC location Vrije Universiteit Amsterdam, Boelelaan 1117, Amsterdam, The Netherlands
- Cancer Center Amsterdam, Brain tumor center Amsterdam, Amsterdam, The Netherlands
| | - Asli Küçükosmanoglu
- Department of Neurosurgery, Amsterdam UMC location Vrije Universiteit Amsterdam, Boelelaan 1117, Amsterdam, The Netherlands
- Cancer Center Amsterdam, Brain tumor center Amsterdam, Amsterdam, The Netherlands
- WINDOW consortium, Amsterdam, The Netherlands (www.window-consortium.org)
| | - Krzysztof Pastuszak
- Medical University of Gdańsk, Laboratory of Translational Oncology, Intercollegiate Faculty of Biotechnology, 80-211 Gdańsk, Poland
- Department of Algorithms and Systems Modelling, Faculty of Electronics, Telecommunication and Informatics, Gdańsk University of Technology, 80-233 Gdańsk, Poland
- Medical University of Gdańsk, Centre of Biostatistics and Bioinformatics Analysis, 80-211 Gdańsk, Poland
| | | | - Pieter Wesseling
- Department of Pathology, Amsterdam UMC location Vrije Universiteit Amsterdam, Boelelaan 1117, Amsterdam, The Netherlands
- Princess Maxima Center for Pediatric Oncology, Laboratory for Childhood Cancer Pathology, Utrecht, The Netherlands
| | - Laurine Wedekind
- Department of Neurosurgery, Amsterdam UMC location Vrije Universiteit Amsterdam, Boelelaan 1117, Amsterdam, The Netherlands
- Cancer Center Amsterdam, Brain tumor center Amsterdam, Amsterdam, The Netherlands
- WINDOW consortium, Amsterdam, The Netherlands (www.window-consortium.org)
| | - David Noske
- Department of Neurosurgery, Amsterdam UMC location Vrije Universiteit Amsterdam, Boelelaan 1117, Amsterdam, The Netherlands
- Cancer Center Amsterdam, Brain tumor center Amsterdam, Amsterdam, The Netherlands
| | - Anna Supernat
- Medical University of Gdańsk, Laboratory of Translational Oncology, Intercollegiate Faculty of Biotechnology, 80-211 Gdańsk, Poland
- Medical University of Gdańsk, Centre of Biostatistics and Bioinformatics Analysis, 80-211 Gdańsk, Poland
| | - David Bailey
- IOTA Pharmaceuticals Ltd, St Johns Innovation Centre, Cowley Road, Cambridge, CB4 0WS, UK
- WINDOW consortium, Amsterdam, The Netherlands (www.window-consortium.org)
| | - Colin Watts
- Institute of Cancer and Genomic Sciences, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK
- WINDOW consortium, Amsterdam, The Netherlands (www.window-consortium.org)
| | - Thomas Wurdinger
- Department of Neurosurgery, Amsterdam UMC location Vrije Universiteit Amsterdam, Boelelaan 1117, Amsterdam, The Netherlands
- Cancer Center Amsterdam, Brain tumor center Amsterdam, Amsterdam, The Netherlands
- WINDOW consortium, Amsterdam, The Netherlands (www.window-consortium.org)
| | - Bart A Westerman
- Corresponding Author: Dr. Bart A. Westerman, Department of Neurosurgery, Amsterdam UMC location Vrije Universiteit Amsterdam, Boelelaan 1117, Amsterdam, The Netherlands ()
| |
Collapse
|
3
|
Abstract
INTRODUCTION Neurotrophic tyrosine receptor kinase (NTRK) gene fusions occur in ~ 0.3% of all solid tumours but are enriched in some rare tumour types. Tropomyosin receptor kinase (TRK) inhibitors larotrectinib and entrectinib are approved as tumour-agnostic therapies for solid tumours harbouring NTRK fusions. METHODS This study investigated the prevalence of NTRK fusions in Canadian patients and also aimed to help guide NTRK testing paradigms through analysis of data reported from a national clinical diagnostic testing program between September 2019 and July 2021. RESULTS Of 1,687 patients included in the final analysis, NTRK fusions were detected in 0.71% (n = 12) of patients representing salivary gland carcinoma (n = 3), soft tissue sarcoma (n = 3), CNS (n = 3), and one in each of melanoma, lung, and colorectal cancer. All three salivary gland carcinomas contained ETV6-NTRK3 fusions. Thirteen (0.77%) clinically actionable incidental findings were also detected. Two of the 13 samples containing incidental findings were NTRK fusion-positive (GFOD1-NTRK2, FGFR3-TACC3 in a glioblastoma and AFAP1-NTRK2, BRAF c.1799T>A in a glioma). The testing algorithm screened most patient samples via pan-TRK immunohistochemistry (IHC), whereas samples from the central nervous system (CNS), pathognomonic cancers, and confirmed/ putative NTRK fusion-positive samples identified under research protocols were reflexed straight to next-generation sequencing (NGS). CONCLUSION These findings highlight the benefit and practicality of a diagnostic testing program to identify patients suitable for tumour-agnostic TRK inhibitor therapies, as well as other targeted therapies, due to clinically actionable incidental findings identified. Collectively, these findings may inform future guidance on selecting the appropriate testing approach per tumour type and on optimal NTRK testing algorithms.
Collapse
|
4
|
NTRK Gene Fusions in Solid Tumors and TRK Inhibitors: A Systematic Review of Case Reports and Case Series. J Pers Med 2022; 12:jpm12111819. [PMID: 36579526 PMCID: PMC9695027 DOI: 10.3390/jpm12111819] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2022] [Revised: 10/27/2022] [Accepted: 10/30/2022] [Indexed: 11/06/2022] Open
Abstract
The approval of larotrectinib and entrectinib for cancer patients harboring an NTRK gene fusion has represented a milestone in the era of "histology-agnostic" drugs. Among the clinical trials that led to the approval of these two drugs, most of the enrolled patients were affected by soft tissue sarcomas, lung, and salivary gland cancer. However, as next-generation sequencing assays are increasingly available in the clinical setting, health care professionals may be able to detect NTRK gene fusions in patients affected by tumor types under or not represented in the clinical trials. To this aim, we systematically reviewed MEDLINE from its inception to 31 August 2022 for case reports and case series on patients with NTRK gene fusion-positive tumors treated with TRK inhibitors. A virtual cohort of 43 patients was created, excluding those enrolled in the above-mentioned clinical trials. Although our results align with those existing in the literature, various cases of central nervous system tumors were registered in our cohort, confirming the benefit of these agents in this subgroup of patients. Large, multi-institutional registries are needed to provide more information about the efficacy of TRK inhibitors in cancer patients affected by tumor types under or not represented in the clinical trials.
Collapse
|
5
|
Casado-Medrano V, O'Neill A, Halada S, Laetsch TW, Bauer AJ, Franco AT. NTRK-fusions in pediatric thyroid tumors: Current state and future perspectives. Cancer Genet 2022; 264-265:23-28. [DOI: 10.1016/j.cancergen.2022.02.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Revised: 01/31/2022] [Accepted: 02/27/2022] [Indexed: 11/02/2022]
|
6
|
Yang K, Wu Z, Zhang H, Zhang N, Wu W, Wang Z, Dai Z, Zhang X, Zhang L, Peng Y, Ye W, Zeng W, Liu Z, Cheng Q. Glioma targeted therapy: insight into future of molecular approaches. Mol Cancer 2022; 21:39. [PMID: 35135556 PMCID: PMC8822752 DOI: 10.1186/s12943-022-01513-z] [Citation(s) in RCA: 319] [Impact Index Per Article: 159.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2021] [Accepted: 01/12/2022] [Indexed: 12/13/2022] Open
Abstract
Gliomas are the common type of brain tumors originating from glial cells. Epidemiologically, gliomas occur among all ages, more often seen in adults, which males are more susceptible than females. According to the fifth edition of the WHO Classification of Tumors of the Central Nervous System (WHO CNS5), standard of care and prognosis of gliomas can be dramatically different. Generally, circumscribed gliomas are usually benign and recommended to early complete resection, with chemotherapy if necessary. Diffuse gliomas and other high-grade gliomas according to their molecule subtype are slightly intractable, with necessity of chemotherapy. However, for glioblastoma, feasible resection followed by radiotherapy plus temozolomide chemotherapy define the current standard of care. Here, we discuss novel feasible or potential targets for treatment of gliomas, especially IDH-wild type glioblastoma. Classic targets such as the p53 and retinoblastoma (RB) pathway and epidermal growth factor receptor (EGFR) gene alteration have met failure due to complex regulatory network. There is ever-increasing interest in immunotherapy (immune checkpoint molecule, tumor associated macrophage, dendritic cell vaccine, CAR-T), tumor microenvironment, and combination of several efficacious methods. With many targeted therapy options emerging, biomarkers guiding the prescription of a particular targeted therapy are also attractive. More pre-clinical and clinical trials are urgently needed to explore and evaluate the feasibility of targeted therapy with the corresponding biomarkers for effective personalized treatment options.
Collapse
Affiliation(s)
- Keyang Yang
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, China.,Xiangya School of Medicine, Central South University, Changsha, China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Zhijing Wu
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, China.,Xiangya School of Medicine, Central South University, Changsha, China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Hao Zhang
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Nan Zhang
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China.,One-Third Lab, College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, China
| | - Wantao Wu
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China.,Department of Oncology, Xiangya Hospital, Central South University, Changsha, China
| | - Zeyu Wang
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Ziyu Dai
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Xun Zhang
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Liyang Zhang
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Yun Peng
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China.,Department of Geriatrics, Xiangya Hospital, Central South University, Changsha, China.,Teaching and Research Section of Clinical Nursing, Xiangya Hospital of Central South University, Changsha, China
| | - Weijie Ye
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China.,Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, China
| | - Wenjing Zeng
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China.,Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, China
| | - Zhixiong Liu
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, China. .,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China.
| | - Quan Cheng
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, China. .,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China.
| |
Collapse
|