1
|
Redcenko O, Tumova M, Draber P. Simplified PCR-Based Quantification of Proteins with DNA Aptamers and Methylcellulose as a Blocking Agent. Int J Mol Sci 2023; 25:347. [PMID: 38203527 PMCID: PMC10779054 DOI: 10.3390/ijms25010347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2023] [Revised: 12/19/2023] [Accepted: 12/22/2023] [Indexed: 01/12/2024] Open
Abstract
Due to their unique three-dimensional structure, DNA or RNA oligonucleotide aptamers bind to various molecules with high affinity and specificity. Aptamers, alone or in combination with antibodies, can be used to sensitively quantify target molecules by quantitative real-time polymerase chain reaction (qPCR). However, the assays are often complicated and unreliable. In this study, we explored the feasibility of performing the entire assay on wells of routinely used polypropylene PCR plates. We found that polypropylene wells efficiently bind proteins. This allows the entire assay to be run in a single well. To minimize nonspecific binding of the assay components to the polypropylene wells, we tested various blocking agents and identified methylcellulose as an effective alternative to the commonly used BSA. Methylcellulose not only demonstrates comparable or superior blocking capabilities but also offers the advantage of a well-defined composition and non-animal origin. Our findings support the utilization of aptamers, either alone or in combination with antibodies, for sensitive quantification of selected molecules immobilized in polypropylene PCR wells in a streamlined one-well qPCR assay under well-defined conditions.
Collapse
Affiliation(s)
| | | | - Petr Draber
- Laboratory of Signal Transduction, Institute of Molecular Genetics of the Czech Academy of Sciences, Vídeňská 1083, 142 20 Prague, Czech Republic; (O.R.); (M.T.)
| |
Collapse
|
2
|
Epstein RJ, Lin FPY, Brink RA, Blackburn J. Synonymous alterations of cancer-associated Trp53 CpG mutational hotspots cause fatal developmental jaw malocclusions but no tumors in knock-in mice. PLoS One 2023; 18:e0284327. [PMID: 37053216 PMCID: PMC10101519 DOI: 10.1371/journal.pone.0284327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Accepted: 03/28/2023] [Indexed: 04/14/2023] Open
Abstract
Intragenic CpG dinucleotides are tightly conserved in evolution yet are also vulnerable to methylation-dependent mutation, raising the question as to why these functionally critical sites have not been deselected by more stable coding sequences. We previously showed in cell lines that altered exonic CpG methylation can modify promoter start sites, and hence protein isoform expression, for the human TP53 tumor suppressor gene. Here we extend this work to the in vivo setting by testing whether synonymous germline modifications of exonic CpG sites affect murine development, fertility, longevity, or cancer incidence. We substituted the DNA-binding exons 5-8 of Trp53, the mouse ortholog of human TP53, with variant-CpG (either CpG-depleted or -enriched) sequences predicted to encode the normal p53 amino acid sequence; a control construct was also created in which all non-CpG sites were synonymously substituted. Homozygous Trp53-null mice were the only genotype to develop tumors. Mice with variant-CpG Trp53 sequences remained tumor-free, but were uniquely prone to dental anomalies causing jaw malocclusion (p < .0001). Since the latter phenotype also characterises murine Rett syndrome due to dysfunction of the trans-repressive MeCP2 methyl-CpG-binding protein, we hypothesise that CpG sites may exert non-coding phenotypic effects via pre-translational cis-interactions of 5-methylcytosine with methyl-binding proteins which regulate mRNA transcript initiation, expression or splicing, although direct effects on mRNA structure or translation are also possible.
Collapse
Affiliation(s)
- Richard J Epstein
- University of New South Wales, St Vincent's Hospital Campus, Sydney, Australia
- Garvan Institute of Medical Research, Sydney, Australia
| | - Frank P Y Lin
- University of New South Wales, St Vincent's Hospital Campus, Sydney, Australia
- Centre for Clinical Genomics, The Kinghorn Cancer Centre, Sydney, Australia
| | - Robert A Brink
- University of New South Wales, St Vincent's Hospital Campus, Sydney, Australia
- Garvan Institute of Medical Research, Sydney, Australia
| | - James Blackburn
- University of New South Wales, St Vincent's Hospital Campus, Sydney, Australia
- Garvan Institute of Medical Research, Sydney, Australia
| |
Collapse
|
3
|
Capobianco A, Landi A, Peluso A. Duplex DNA Retains the Conformational Features of Single Strands: Perspectives from MD Simulations and Quantum Chemical Computations. Int J Mol Sci 2022; 23:ijms232214452. [PMID: 36430930 PMCID: PMC9697240 DOI: 10.3390/ijms232214452] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2022] [Revised: 11/09/2022] [Accepted: 11/13/2022] [Indexed: 11/22/2022] Open
Abstract
Molecular dynamics simulations and geometry optimizations carried out at the quantum level as well as by quantum mechanical/molecular mechanics methods predict that short, single-stranded DNA oligonucleotides adopt conformations very similar to those observed in crystallographic double-stranded B-DNA, with rise coordinates close to ≈3.3 Å. In agreement with the experimental evidence, the computational results show that DNA single strands rich in adjacent purine nucleobases assume more regular arrangements than poly-thymine. The preliminary results suggest that single-stranded poly-cytosine DNA should also retain a substantial helical order in solution. A comparison of the structures of single and double helices confirms that the B-DNA motif is a favorable arrangement also for single strands. Indeed, the optimal geometry of the complementary single helices is changed to a very small extent in the formation of the duplex.
Collapse
|
4
|
Nieuwland C, Hamlin TA, Fonseca Guerra C, Barone G, Bickelhaupt FM. B-DNA Structure and Stability: The Role of Nucleotide Composition and Order. ChemistryOpen 2022; 11:e202100231. [PMID: 35083880 PMCID: PMC8805170 DOI: 10.1002/open.202100231] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Revised: 12/10/2021] [Indexed: 11/08/2022] Open
Abstract
We have quantum chemically analyzed the influence of nucleotide composition and sequence (that is, order) on the stability of double-stranded B-DNA triplets in aqueous solution. To this end, we have investigated the structure and bonding of all 32 possible DNA duplexes with Watson-Crick base pairing, using dispersion-corrected DFT at the BLYP-D3(BJ)/TZ2P level and COSMO for simulating aqueous solvation. We find enhanced stabilities for duplexes possessing a higher GC base pair content. Our activation strain analyses unexpectedly identify the loss of stacking interactions within individual strands as a destabilizing factor in the duplex formation, in addition to the better-known effects of partial desolvation. Furthermore, we show that the sequence-dependent differences in the interaction energy for duplexes of the same overall base pair composition result from the so-called "diagonal interactions" or "cross terms". Whether cross terms are stabilizing or destabilizing depends on the nature of the electrostatic interaction between polar functional groups in the pertinent nucleobases.
Collapse
Affiliation(s)
- Celine Nieuwland
- Department of Theoretical ChemistryAmsterdam Institute of Molecular and Life Sciences (AIMMS)Amsterdam Center for Multiscale Modeling (ACMM)Vrije Universiteit AmsterdamDe Boelelaan 10831081 HVAmsterdam (TheNetherlands
| | - Trevor A. Hamlin
- Department of Theoretical ChemistryAmsterdam Institute of Molecular and Life Sciences (AIMMS)Amsterdam Center for Multiscale Modeling (ACMM)Vrije Universiteit AmsterdamDe Boelelaan 10831081 HVAmsterdam (TheNetherlands
| | - Célia Fonseca Guerra
- Department of Theoretical ChemistryAmsterdam Institute of Molecular and Life Sciences (AIMMS)Amsterdam Center for Multiscale Modeling (ACMM)Vrije Universiteit AmsterdamDe Boelelaan 10831081 HVAmsterdam (TheNetherlands
- Leiden Institute of ChemistryGorlaeus LaboratoriesLeiden UniversityEinsteinweg 552300 CCLeiden (TheNetherlands
| | - Giampaolo Barone
- Dipartimento di Scienze e Tecnologie Biologiche, Chimiche e FarmaceuticheUniversità degli Studi di PalermoViale delle Scienze, Edificio 1790128PalermoItaly
| | - F. Matthias Bickelhaupt
- Department of Theoretical ChemistryAmsterdam Institute of Molecular and Life Sciences (AIMMS)Amsterdam Center for Multiscale Modeling (ACMM)Vrije Universiteit AmsterdamDe Boelelaan 10831081 HVAmsterdam (TheNetherlands
- Institute of Molecules and MaterialsRadboud University NijmegenHeyendaalseweg 1356525 AJNijmegen (TheNetherlands
| |
Collapse
|
5
|
Altun A, Garcia-Ratés M, Neese F, Bistoni G. Unveiling the complex pattern of intermolecular interactions responsible for the stability of the DNA duplex. Chem Sci 2021; 12:12785-12793. [PMID: 34703565 PMCID: PMC8494058 DOI: 10.1039/d1sc03868k] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Accepted: 08/26/2021] [Indexed: 01/21/2023] Open
Abstract
Herein, we provide new insights into the intermolecular interactions responsible for the intrinsic stability of the duplex structure of a large portion of human B-DNA by using advanced quantum mechanical methods. Our results indicate that (i) the effect of non-neighboring bases on the inter-strand interaction is negligibly small, (ii) London dispersion effects are essential for the stability of the duplex structure, (iii) the largest contribution to the stability of the duplex structure is the Watson-Crick base pairing - consistent with previous computational investigations, (iv) the effect of stacking between adjacent bases is relatively small but still essential for the duplex structure stability and (v) there are no cooperativity effects between intra-strand stacking and inter-strand base pairing interactions. These results are consistent with atomic force microscope measurements and provide the first theoretical validation of nearest neighbor approaches for predicting thermodynamic data of arbitrary DNA sequences.
Collapse
Affiliation(s)
- Ahmet Altun
- Max-Planck-Institut für Kohlenforschung Kaiser-Wilhelm-Platz 1 D-45470 Mülheim an der Ruhr Germany
| | - Miquel Garcia-Ratés
- Max-Planck-Institut für Kohlenforschung Kaiser-Wilhelm-Platz 1 D-45470 Mülheim an der Ruhr Germany
| | - Frank Neese
- Max-Planck-Institut für Kohlenforschung Kaiser-Wilhelm-Platz 1 D-45470 Mülheim an der Ruhr Germany
| | - Giovanni Bistoni
- Max-Planck-Institut für Kohlenforschung Kaiser-Wilhelm-Platz 1 D-45470 Mülheim an der Ruhr Germany
| |
Collapse
|
6
|
Yoshinaga M, Rocha WR. Theoretical Investigation of the 4,5-Dibromorodamine Methyl Ester (TH9402) Photosensitizer Used in Photodynamic Therapy: Photophysics, Reactions in the Excited State, and Interactions with DNA. J Phys Chem B 2021; 125:8932-8943. [PMID: 34324360 DOI: 10.1021/acs.jpcb.1c05463] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Photosensitizer (PS) molecules play a critical role in photodynamic therapy of cancer and the understanding of the molecular mechanism involved in the photophysics of these compounds, and their reactions in the excited state are, therefore, of great interest for the development of this technique. In this article, the photophysics of the cationic PS 4,5-dibromorodamine methyl ester (TH9402), its electron- and energy-transfer reactions in the excited triplet state, with molecular oxygen, nitric oxide, guanosine-5'-monophosphate (GMP), and guanine, and the interaction with DNA were evaluated. Time-dependent density functional theory calculations at the TPSSh/Def2-TZVP//B3LYP/Def2-TZVP level of theory in water solution reveals that the PS has a bright S1 state 2.33 eV above the ground state that produces a fluorescent rate constant of 5.40 × 107 s-1, calculated using Fermi's golden rule within a path integral formalism. Once excited to the bright state, the main intersystem crossing (ISC) channel involves the coupling with the T2 state just below S1 (S1 → T2 → T1) with an overall ISC rate constant of 10.1 × 107 s-1, in good agreement with the experimental data. Excited-state reaction thermodynamics, computed at the M06-2X/Def2-TZVP//B3LYP/Def2-TZVP level of theory in water, showed that from all the excited-state electron-transfer reactions studied, only the transfer from GMP to the PS is thermodynamically favorable, independent of the protonation state of guanosine, which indicates a possible DNA photo-oxidation mechanism for the PS. Triplet-triplet energy-transfer reactions from TH9402 to molecular oxygen, producing reactive singlet oxygen, and to the deprotonated guanosine, producing 3GMP2-, are also thermodynamically favorable, with ΔG = -2.0 and -24.0 kcal//mol, respectively. However, the energy transfer to the monoprotonated guanosine is not favorable, (ΔG = 36.1), suggesting that in the DNA double-strand environment, this energy-transfer process may not be observed. The results show that the PS can act through electron transfer and triplet-triplet energy-transfer reactions involved in mechanism types I and II in photodynamic therapy. Interactions of TH9402 with the d(AGACGTCT)2 octanucleotide revealed that the PS can intercalate between the d(GpC)-d(CpG) base pairs in three different orientations and, upon intercalation, the π → π* transition of the PS shows a bathochromic shift up to 90 nm and up to 60% decrease in intensity. Interactions through groove binding showed a smaller bathochromic shift of 52.2 nm and a 56% decrease in intensity of the main transition band.
Collapse
Affiliation(s)
- Mariana Yoshinaga
- Laboratório de Estudos Computacionais em Sistemas Moleculares, eCsMolab, Departamento de Química, ICEx, Universidade Federal de Minas Gerais, Pampulha, 31270-901 Belo Horizonte, Minas Gerais, Brazil
| | - Willian R Rocha
- Laboratório de Estudos Computacionais em Sistemas Moleculares, eCsMolab, Departamento de Química, ICEx, Universidade Federal de Minas Gerais, Pampulha, 31270-901 Belo Horizonte, Minas Gerais, Brazil
| |
Collapse
|
7
|
Park G, Kang B, Park SV, Lee D, Oh SS. A unified computational view of DNA duplex, triplex, quadruplex and their donor-acceptor interactions. Nucleic Acids Res 2021; 49:4919-4933. [PMID: 33893806 PMCID: PMC8136788 DOI: 10.1093/nar/gkab285] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Revised: 04/07/2021] [Accepted: 04/14/2021] [Indexed: 01/09/2023] Open
Abstract
DNA can assume various structures as a result of interactions at atomic and molecular levels (e.g., hydrogen bonds, π–π stacking interactions, and electrostatic potentials), so understanding of the consequences of these interactions could guide development of ways to produce elaborate programmable DNA for applications in bio- and nanotechnology. We conducted advanced ab initio calculations to investigate nucleobase model structures by componentizing their donor-acceptor interactions. By unifying computational conditions, we compared the independent interactions of DNA duplexes, triplexes, and quadruplexes, which led us to evaluate a stability trend among Watson–Crick and Hoogsteen base pairing, stacking, and even ion binding. For a realistic solution-like environment, the influence of water molecules was carefully considered, and the potassium-ion preference of G-quadruplex was first analyzed at an ab initio level by considering both base-base and ion-water interactions. We devised new structure factors including hydrogen bond length, glycosidic vector angle, and twist angle, which were highly effective for comparison between computationally-predicted and experimentally-determined structures; we clarified the function of phosphate backbone during nucleobase ordering. The simulated tendency of net interaction energies agreed well with that of real world, and this agreement validates the potential of ab initio study to guide programming of complicated DNA constructs.
Collapse
Affiliation(s)
- Gyuri Park
- Department of Materials Science and Engineering, Pohang University of Science and Technology (POSTECH), Pohang 37673, South Korea
| | - Byunghwa Kang
- Department of Materials Science and Engineering, Pohang University of Science and Technology (POSTECH), Pohang 37673, South Korea
| | - Soyeon V Park
- Department of Materials Science and Engineering, Pohang University of Science and Technology (POSTECH), Pohang 37673, South Korea
| | - Donghwa Lee
- Department of Materials Science and Engineering, Pohang University of Science and Technology (POSTECH), Pohang 37673, South Korea.,Division of Advanced Materials Science, Pohang University of Science and Technology (POSTECH), Pohang 37673, South Korea.,Institute for Convergence Research and Education in Advanced Technology (I-CREATE), Yonsei University, Incheon 21983, South Korea
| | - Seung Soo Oh
- Department of Materials Science and Engineering, Pohang University of Science and Technology (POSTECH), Pohang 37673, South Korea.,Institute for Convergence Research and Education in Advanced Technology (I-CREATE), Yonsei University, Incheon 21983, South Korea.,School of Interdisciplinary Bioscience and Bioengineering, Pohang University of Science and Technology (POSTECH), Pohang 37673, South Korea
| |
Collapse
|
8
|
Effect of N7-methylation on base pairing patterns of guanine: a DFT study. J Mol Model 2021; 27:184. [PMID: 34036469 DOI: 10.1007/s00894-021-04792-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Accepted: 05/11/2021] [Indexed: 10/21/2022]
Abstract
In this paper, we aim to determine whether the N7-methylation can influence the base pairing properties of guanine by promoting the formation of guanine enol-tautomers. The keto- to -enol-tautomerization of N7-methylguanine (N7mG) and its base pairing patterns with all the canonical DNA bases have been investigated at the M06-2X/6-311+G(d,p) level of density functional theory. The barrier free energy calculations reveal that N7-methylation does not promote the keto- to enol- tautomerization of guanine. The Watson-Crick-like enol-N7mG:T1 or enol-N7mG:T2 base pair similar to what is observed experimentally is found to be energetically more stable than the keto-N7mG:T base pairs. However, the keto-N7mG:C1 which is structurally similar to the canonical G:C base pair is the most stable base pair among all the base pairs studied here. Thus, our calculations predict that N7mG would pair preferably with cytosine during DNA replication but there is also a probability that it can cause mutation through mispairing with thymine, in agreement with experimental observations.
Collapse
|
9
|
Beiranvand N, Freindorf M, Kraka E. Hydrogen Bonding in Natural and Unnatural Base Pairs-A Local Vibrational Mode Study. Molecules 2021; 26:2268. [PMID: 33919989 PMCID: PMC8071019 DOI: 10.3390/molecules26082268] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Revised: 04/08/2021] [Accepted: 04/09/2021] [Indexed: 12/13/2022] Open
Abstract
In this work hydrogen bonding in a diverse set of 36 unnatural and the three natural Watson Crick base pairs adenine (A)-thymine (T), adenine (A)-uracil (U) and guanine (G)-cytosine (C) was assessed utilizing local vibrational force constants derived from the local mode analysis, originally introduced by Konkoli and Cremer as a unique bond strength measure based on vibrational spectroscopy. The local mode analysis was complemented by the topological analysis of the electronic density and the natural bond orbital analysis. The most interesting findings of our study are that (i) hydrogen bonding in Watson Crick base pairs is not exceptionally strong and (ii) the N-H⋯N is the most favorable hydrogen bond in both unnatural and natural base pairs while O-H⋯N/O bonds are the less favorable in unnatural base pairs and not found at all in natural base pairs. In addition, the important role of non-classical C-H⋯N/O bonds for the stabilization of base pairs was revealed, especially the role of C-H⋯O bonds in Watson Crick base pairs. Hydrogen bonding in Watson Crick base pairs modeled in the DNA via a QM/MM approach showed that the DNA environment increases the strength of the central N-H⋯N bond and the C-H⋯O bonds, and at the same time decreases the strength of the N-H⋯O bond. However, the general trends observed in the gas phase calculations remain unchanged. The new methodology presented and tested in this work provides the bioengineering community with an efficient design tool to assess and predict the type and strength of hydrogen bonding in artificial base pairs.
Collapse
Affiliation(s)
| | | | - Elfi Kraka
- Computational and Theoretical Chemistry Group (CATCO), Department of Chemistry, Southern Methodist University, 3215 Daniel Ave, Dallas, TX 75275-0314, USA; (N.B.); (M.F.)
| |
Collapse
|
10
|
Baruah P, Phanrang PT, Konthoujam I, Aguan K, Mitra S. Cholinergic drugs bind at the minor groove and reverse induced oxidative stress of calf thymus DNA: a new perspective towards an unexplored therapeutic efficacy. NEW J CHEM 2021. [DOI: 10.1039/d1nj01911b] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Four FDA approved cholinesterase inhibitors reverse the hydrogen peroxide induced oxidative damage of ct-DNA.
Collapse
Affiliation(s)
- Prayasee Baruah
- Centre for Advanced Studies
- Department of Chemistry
- North-Eastern Hill University
- Shillong 793 022
- India
| | | | - Ibemhanbi Konthoujam
- Department of Biotechnology & Bioinformatics
- North-Eastern Hill University
- Shillong 793 022
- India
| | - Kripamoy Aguan
- Department of Biotechnology & Bioinformatics
- North-Eastern Hill University
- Shillong 793 022
- India
| | - Sivaprasad Mitra
- Centre for Advanced Studies
- Department of Chemistry
- North-Eastern Hill University
- Shillong 793 022
- India
| |
Collapse
|
11
|
Bhai S, Ganguly B. Role of the backbone of nucleic acids in the stability of Hg2+-mediated canonical base pairs and thymine–thymine mispair: a DFT study. RSC Adv 2020; 10:40969-40982. [PMID: 35519218 PMCID: PMC9057718 DOI: 10.1039/d0ra07526d] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Accepted: 10/26/2020] [Indexed: 11/21/2022] Open
Abstract
Metal-mediated base pairs have attracted attention in nucleic acid research and molecular devices. Herein, we report a systematic computational study on Hg2+-mediated base pairs with canonical and TT mispair dimers. The computed results revealed that the model DTTD (thymine–thymine with DNA backbone) mispair is more energetically favored than the canonical base pairs. The DTTTTD mispair dimer is more energetically stable by ∼36.0 kcal mol−1 than the corresponding canonical DATGCD base pairs. The Hg⋯Hg metallophilic interaction was observed with the DTTTTD mispair and not the canonical base pairs. The DATGCD (adenine: thymine, guanine: cytosine) base pairs were significantly perturbed upon interaction with the mercury ion; however, the TTTT mispairs were aligned upon interaction with the Hg2+ ion. The DTTTTD mispair adopts a B-type conformation with proper alignment of its nucleobases along the axis. The MESP calculations showed a larger Vmin value for the interacting nitrogen centers of the thymine nucleobase, supporting its stronger binding with the Hg2+ ion compared to the other nucleobases. The role of the backbone is crucial in nucleic acids to determine many useful properties, and PNAs have been exploited extensively in the literature. Thus, this study was further extended to metal-mediated PNA-containing dimer mispairs such as DTTTTP (thymine–thymine dimer model with hybrid DNA and PNA backbone) and PTTTTP (thymine–thymine dimer model with PNA backbone). The calculated results showed that the PTTTTP PNA mispair is thermodynamically more stable than the canonical dimers. The enthalpy calculated for DTTTTD and PTTTTP at the B3LYP-D3/6-31G* level of theory showed that PTTTTP is ∼3.0 kcal mol−1 more stable than DTTTTD. The metallophilic interaction of Hg2+ ions in the PTTTTP mispair was not observed; however, the metal ions interact with the nitrogen of the thymine bases, presumably enhancing the stability of this mispair by strong electrostatic interactions. These interactions arise due to the P-type conformations of PNAs, which lack metallophilic interactions between the metal ions and can adopt a wider and more unwounded helix. The interaction of the mispair dimers with the explicit water molecules also showed a similar stability trend to that observed with the implicit solvation model. The metallophilic interaction (Hg⋯Hg) was found to be conserved in DTTTTD. The AIM analysis performed for these dimers revealed that the interactions are primarily electrostatic in nature. The UV-vis absorption spectra of the mispair systems calculated at the B3LYP-D3/6-31G* level of theory using the TD-DFT method in the aqueous phase suggested that the absorption maximum is located at a longer wavelength in the case of PTTTTP compared to the corresponding DTTTTD and can be a signature to identify the formation of metal-mediated nucleic acid systems. Hg2+-mediated PNA–PNA mispair duplex (PTTTTP) is more energetically favoured compared to DNA–DNA mispair duplex (DTTTTD).![]()
Collapse
Affiliation(s)
- Surjit Bhai
- Computation and Simulation Unit (Analytical and Environmental Science Division and Centralized Instrument Facility)
- CSIR-Central Salt and Marine Chemicals Research Institute
- Bhavnagar
- India-364 002
- Academy of Scientific and Innovative Research (AcSIR)
| | - Bishwajit Ganguly
- Computation and Simulation Unit (Analytical and Environmental Science Division and Centralized Instrument Facility)
- CSIR-Central Salt and Marine Chemicals Research Institute
- Bhavnagar
- India-364 002
| |
Collapse
|
12
|
Maganti L, Bhattacharyya D. Sequence specificity in DNA–drug intercalation: MD simulation and density functional theory approaches. J Comput Aided Mol Des 2019; 34:83-95. [DOI: 10.1007/s10822-019-00268-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2019] [Accepted: 11/29/2019] [Indexed: 12/14/2022]
|
13
|
Kruse H, Banáš P, Šponer J. Investigations of Stacked DNA Base-Pair Steps: Highly Accurate Stacking Interaction Energies, Energy Decomposition, and Many-Body Stacking Effects. J Chem Theory Comput 2018; 15:95-115. [DOI: 10.1021/acs.jctc.8b00643] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Holger Kruse
- Institute of Biophysics of the Czech Academy of Sciences, Královopolská 135, 612 65 Brno, Czech Republic
| | - Pavel Banáš
- Institute of Biophysics of the Czech Academy of Sciences, Královopolská 135, 612 65 Brno, Czech Republic
- Regional Centre of Advanced Technologies and Materials, Department of Physical Chemistry, Faculty of Science, Palacky University, 17 Listopadu 12, 77146 Olomouc, Czech Republic
| | - Jiřı́ Šponer
- Institute of Biophysics of the Czech Academy of Sciences, Královopolská 135, 612 65 Brno, Czech Republic
- Regional Centre of Advanced Technologies and Materials, Department of Physical Chemistry, Faculty of Science, Palacky University, 17 Listopadu 12, 77146 Olomouc, Czech Republic
| |
Collapse
|
14
|
Capobianco A, Velardo A, Peluso A. Single-Stranded DNA Oligonucleotides Retain Rise Coordinates Characteristic of Double Helices. J Phys Chem B 2018; 122:7978-7989. [PMID: 30070843 DOI: 10.1021/acs.jpcb.8b04542] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The structures of single-stranded DNA oligonucleotides from dimeric to hexameric sequences have been thoroughly investigated. Computations performed at the density functional level of theory including dispersion forces and solvation show that single-stranded helices adopt conformations very close to crystallographic B-DNA, with rise coordinates amounting up to 3.3 Å. Previous results, suggesting that single strands should be shorter than double helices, largely originated from the incompleteness of the adopted basis set. Although sensible deviations with respect to standard B-DNA are predicted, computations indicate that sequences rich in stacked adenines are the most ordered ones, favoring the B-DNA pattern and inducing regular arrangements also on flanking nucleobases. Several structural properties of double helices rich in adenine are indeed already reflected by the corresponding single strands.
Collapse
Affiliation(s)
- Amedeo Capobianco
- Dipartimento di Chimica e Biologia "A. Zambelli" , Università di Salerno , Via Giovanni Paolo II , I-84084 Fisciano (SA) , Italy
| | - Amalia Velardo
- Dipartimento di Chimica e Biologia "A. Zambelli" , Università di Salerno , Via Giovanni Paolo II , I-84084 Fisciano (SA) , Italy
| | - Andrea Peluso
- Dipartimento di Chimica e Biologia "A. Zambelli" , Università di Salerno , Via Giovanni Paolo II , I-84084 Fisciano (SA) , Italy
| |
Collapse
|
15
|
Sharma A, Delile S, Jabri M, Adamo C, Fave C, Marchal D, Perrier A. Interaction of osmium(ii) redox probes with DNA: insights from theory. Phys Chem Chem Phys 2018; 18:30029-30039. [PMID: 27774536 DOI: 10.1039/c6cp05105g] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
In the course of developing ultrasensitive and quantitative electrochemical point-of-care analytical tools for genetic detection of infectious diseases, osmium(ii) metallointercalators were revealed to be suitable and efficient redox probes to monitor the in vitro DNA amplification [Defever etal, Anal. Chem., 2011, 83, 1815-1821]. In this work, we thus propose a complete computational protocol in order to evaluate the affinity between Os(ii) complexes with double-stranded DNA. This protocol is based on molecular dynamics, with the parametrization of the GAFF force field for the Os(ii) complexes presenting an octahedral environment with polypyridine ligands, and QM/QM' calculations to evaluate the binding energy. For three Os(ii) probes and different binding sites, molecular dynamics simulations and interaction energies calculated at the QM/QM' level are successively discussed and compared to experimental data in order to identify the most stable binding sites. The computational protocol we propose should then be used to design more efficient Os(ii) metallointercalators.
Collapse
Affiliation(s)
- Ashwani Sharma
- Chimie ParisTech, PSL Research University, CNRS, Institut de Recherche de Chimie Paris (IRCP), F-75005 Paris, France and Laboratoire d'Electrochimie Moléculaire, UMR 7591 CNRS, Université Paris Diderot, Sorbonne Paris Cité, 15 rue J-A de Baif, F-75205 Paris Cedex 13, France.
| | - Sebastien Delile
- Laboratoire d'Electrochimie Moléculaire, UMR 7591 CNRS, Université Paris Diderot, Sorbonne Paris Cité, 15 rue J-A de Baif, F-75205 Paris Cedex 13, France.
| | - Mohamed Jabri
- Chimie ParisTech, PSL Research University, CNRS, Institut de Recherche de Chimie Paris (IRCP), F-75005 Paris, France and E-pôle de génoinformatique, Institut Jacques Monod, UMR7592, CNRS, Université Paris Diderot, Sorbonne Paris Cité, F-75013 Paris, France
| | - Carlo Adamo
- Chimie ParisTech, PSL Research University, CNRS, Institut de Recherche de Chimie Paris (IRCP), F-75005 Paris, France and Institut Universitaire de France, 103 Boulevard Saint Michel, F-75005 Paris, France
| | - Claire Fave
- Laboratoire d'Electrochimie Moléculaire, UMR 7591 CNRS, Université Paris Diderot, Sorbonne Paris Cité, 15 rue J-A de Baif, F-75205 Paris Cedex 13, France.
| | - Damien Marchal
- Laboratoire d'Electrochimie Moléculaire, UMR 7591 CNRS, Université Paris Diderot, Sorbonne Paris Cité, 15 rue J-A de Baif, F-75205 Paris Cedex 13, France.
| | - Aurélie Perrier
- Chimie ParisTech, PSL Research University, CNRS, Institut de Recherche de Chimie Paris (IRCP), F-75005 Paris, France and Université Paris Diderot, Sorbonne Paris Cité, 5 rue Thomas Mann, F-75205 Paris Cedex 13, France.
| |
Collapse
|
16
|
Smith DA, Holroyd LF, van Mourik T, Jones AC. A DFT study of 2-aminopurine-containing dinucleotides: prediction of stacked conformations with B-DNA structure. Phys Chem Chem Phys 2017; 18:14691-700. [PMID: 27186599 DOI: 10.1039/c5cp07816d] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
The fluorescence properties of dinucleotides incorporating 2-aminopurine (2AP) suggest that the simplest oligonucleotides adopt conformations similar to those found in duplex DNA. However, there is a lack of structural data for these systems. We report a density functional theory (DFT) study of the structures of 2AP-containing dinucleotides (deoxydinucleoside monophosphates), including full geometry optimisation of the sugar-phosphate backbone. Our DFT calculations employ the M06-2X functional for reliable treatment of dispersion interactions and include implicit aqueous solvation. Dinucleotides with 2AP in the 5'-position and each of the natural bases in the 3'-position are examined, together with the analogous 5'-adenine-containing systems. Computed structures are compared in detail with typical B-DNA base-step parameters, backbone torsional angles and sugar pucker, derived from crystallographic data. We find that 2AP-containing dinucleotides adopt structures that closely conform to B-DNA in all characteristic parameters. The structures of 2AP-containing dinucleotides closely resemble those of their adenine-containing counterparts, demonstrating the fidelity of 2AP as a mimic of the natural base. As a first step towards exploring the conformational heterogeneity of dinucleotides, we also characterise an imperfectly stacked conformation and one in which the bases are completely unstacked.
Collapse
Affiliation(s)
- Darren A Smith
- EaStCHEM School of Chemistry, The University of Edinburgh, David Brewster Road, Edinburgh, EH9 3FJ, UK.
| | - Leo F Holroyd
- EaStCHEM School of Chemistry, University of St Andrews, North Haugh, St Andrews, Fife, KY16 9ST, UK
| | - Tanja van Mourik
- EaStCHEM School of Chemistry, University of St Andrews, North Haugh, St Andrews, Fife, KY16 9ST, UK
| | - Anita C Jones
- EaStCHEM School of Chemistry, The University of Edinburgh, David Brewster Road, Edinburgh, EH9 3FJ, UK.
| |
Collapse
|
17
|
Szabla R, Havrila M, Kruse H, Šponer J. Comparative Assessment of Different RNA Tetranucleotides from the DFT-D3 and Force Field Perspective. J Phys Chem B 2016; 120:10635-10648. [PMID: 27681853 DOI: 10.1021/acs.jpcb.6b07551] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Classical force field (FF) molecular dynamics (MD) simulations of RNA tetranucleotides have substantial problems in reproducing conformer populations indicated by NMR experiments. To provide more information about the possible sources of errors, we performed quantum mechanical (QM, TPSS-D3/def2-TZVP) and molecular mechanics (MM, AMBER parm99bsc0+χOL3) calculations of different r(CCCC), r(GACC), and r(UUUU) conformers obtained from explicit solvent MD simulations. Solvent effects in the static QM and MM calculations were mimicked using implicit solvent models (COSMO and Poisson-Boltzmann, respectively). The comparison of QM and MM geometries and energies revealed that the two methodologies provide qualitatively consistent results in most of the cases. Even though we found some differences, these were insufficient to indicate any systematic corrections of the RNA FF terms that could improve the performance of classical MD in simulating tetranucleotides. On the basis of these findings, we inferred that the overpopulation of intercalated conformers in the MD simulations of RNA tetramers, which were not observed experimentally, might be predominantly caused by imbalanced water-solvent and water-water interactions. Apart from the large-scale QM calculations performed to assess the performance of the AMBER FF, a representative spectrum of faster QM methods was tested.
Collapse
Affiliation(s)
- Rafał Szabla
- Institute of Biophysics, Academy of Sciences of the Czech Republic , Královopolská 135, CZ-61265 Brno, Czech Republic
| | - Marek Havrila
- Institute of Biophysics, Academy of Sciences of the Czech Republic , Královopolská 135, CZ-61265 Brno, Czech Republic.,CEITEC - Central European Institute of Technology, Masaryk University , Campus Bohunice, Kamenice 5, CZ-62500 Brno, Czech Republic
| | - Holger Kruse
- Institute of Biophysics, Academy of Sciences of the Czech Republic , Královopolská 135, CZ-61265 Brno, Czech Republic
| | - Jiří Šponer
- Institute of Biophysics, Academy of Sciences of the Czech Republic , Královopolská 135, CZ-61265 Brno, Czech Republic.,CEITEC - Central European Institute of Technology, Masaryk University , Campus Bohunice, Kamenice 5, CZ-62500 Brno, Czech Republic
| |
Collapse
|
18
|
Zaccaria F, Paragi G, Fonseca Guerra C. The role of alkali metal cations in the stabilization of guanine quadruplexes: why K+ is the best. Phys Chem Chem Phys 2016; 18:20895-904. [DOI: 10.1039/c6cp01030j] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
The desolvation and size of monovalent alkali metal ions are of equal importance for the cation affinity of guanine quadruplexes.
Collapse
Affiliation(s)
- F. Zaccaria
- Department of Theoretical Chemistry and Amsterdam Center for Multiscale Modeling
- Vrije Universiteit Amsterdam
- 1081 HV Amsterdam
- The Netherlands
| | - G. Paragi
- Department of Theoretical Chemistry and Amsterdam Center for Multiscale Modeling
- Vrije Universiteit Amsterdam
- 1081 HV Amsterdam
- The Netherlands
- MTA-SZTE Supramolecular and Nanostructured Materials Research Group
| | - C. Fonseca Guerra
- Department of Theoretical Chemistry and Amsterdam Center for Multiscale Modeling
- Vrije Universiteit Amsterdam
- 1081 HV Amsterdam
- The Netherlands
| |
Collapse
|
19
|
Mondal M, Halder S, Chakrabarti J, Bhattacharyya D. Hybrid simulation approach incorporating microscopic interaction along with rigid body degrees of freedom for stacking between base pairs. Biopolymers 2015; 105:212-26. [PMID: 26600167 DOI: 10.1002/bip.22787] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2015] [Revised: 10/19/2015] [Accepted: 11/17/2015] [Indexed: 11/07/2022]
Abstract
Stacking interaction between the aromatic heterocyclic bases plays an important role in the double helical structures of nucleic acids. Considering the base as rigid body, there are total of 18 degrees of freedom of a dinucleotide step. Some of these parameters show sequence preferences, indicating that the detailed atomic interactions are important in the stacking. Large variants of non-canonical base pairs have been seen in the crystallographic structures of RNA. However, their stacking preferences are not thoroughly deciphered yet from experimental results. The current theoretical approaches use either the rigid body degrees of freedom where the atomic information are lost or computationally expensive all atom simulations. We have used a hybrid simulation approach incorporating Monte-Carlo Metropolis sampling in the hyperspace of 18 stacking parameters where the interaction energies using AMBER-parm99bsc0 and CHARMM-36 force-fields were calculated from atomic positions. We have also performed stacking energy calculations for structures from Monte-Carlo ensemble by Dispersion corrected density functional theory. The available experimental data with Watson-Crick base pairs are compared to establish the validity of the method. Stacking interaction involving A:U and G:C base pairs with non-canonical G:U base pairs also were calculated and showed that these structures were also sequence dependent. This approach could be useful to generate multiscale modeling of nucleic acids in terms of coarse-grained parameters where the atomic interactions are preserved. This method would also be useful to predict structure and dynamics of different base pair steps containing non Watson-Crick base pairs, as found often in the non-coding RNA structures. © 2015 Wiley Periodicals, Inc. Biopolymers 105: 212-226, 2016.
Collapse
Affiliation(s)
- Manas Mondal
- Computational Science Division, Saha Institute of Nuclear Physics, 1/AF Bidhannagar, Kolkata, 700 064, India
| | - Sukanya Halder
- Computational Science Division, Saha Institute of Nuclear Physics, 1/AF Bidhannagar, Kolkata, 700 064, India
| | - Jaydeb Chakrabarti
- Department of Chemical, Biological and Macro-Molecular Sciences, S.N. Bose National Center for Basic Sciences, Sector III, Salt Lake, Kolkata, 700 098, India
| | - Dhananjay Bhattacharyya
- Computational Science Division, Saha Institute of Nuclear Physics, 1/AF Bidhannagar, Kolkata, 700 064, India
| |
Collapse
|
20
|
Yurenko YP, Novotný J, Sklenář V, Marek R. Substituting CF2 for O4' in Components of Nucleic Acids: Towards Systems with Reduced Propensity to Form Abasic Lesions. Chemistry 2015; 21:17933-43. [PMID: 26493955 DOI: 10.1002/chem.201502977] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2015] [Indexed: 01/22/2023]
Abstract
Intrinsic structural features and energetics of nucleotides containing variously fluorinated sugars as potential building blocks of DNA duplexes and quadruplexes are explored systematically using the modern methods of density functional theory (DFT) and quantum chemical topology (QCT). Our results suggest that fluorination at the 2'-β or 2'-α,β positions somewhat stabilizes in vacuo the AI relative to the BI conformations. In contrast, substitution of the CF2 group for the O4' atom (O4'-CF2 modification) leads to a preference of the BI relative to AI DNA-like conformers. All the studied modifications result in a noticeable increase in the stability of the glycosidic bond [estimated by the relaxed force constants (RFC) approach], with particularly encouraging results for the O4'-CF2 derivative. Consequently, the O4'-CF2 modified systems are suggested and explored as promising scaffolds for the development of duplex and quadruplex structures with reduced propensity to form abasic lesions and to undergo DNA damage.
Collapse
Affiliation(s)
- Yevgen P Yurenko
- CEITEC - Central European Institute of Technology, Masaryk University, Kamenice 5, 62500 Brno (Czech Republic).
| | - Jan Novotný
- CEITEC - Central European Institute of Technology, Masaryk University, Kamenice 5, 62500 Brno (Czech Republic)
| | - Vladimir Sklenář
- CEITEC - Central European Institute of Technology, Masaryk University, Kamenice 5, 62500 Brno (Czech Republic).,National Center for Biomolecular Research, Faculty of Science, Masaryk University, Kamenice 5, 62500 Brno (Czech Republic).,Department of Chemistry, Faculty of Science, Masaryk University, Kamenice 5, 62500 Brno (Czech Republic)
| | - Radek Marek
- CEITEC - Central European Institute of Technology, Masaryk University, Kamenice 5, 62500 Brno (Czech Republic). .,National Center for Biomolecular Research, Faculty of Science, Masaryk University, Kamenice 5, 62500 Brno (Czech Republic). .,Department of Chemistry, Faculty of Science, Masaryk University, Kamenice 5, 62500 Brno (Czech Republic).
| |
Collapse
|
21
|
Kruse H, Mladek A, Gkionis K, Hansen A, Grimme S, Sponer J. Quantum chemical benchmark study on 46 RNA backbone families using a dinucleotide unit. J Chem Theory Comput 2015; 11:4972-91. [PMID: 26574283 DOI: 10.1021/acs.jctc.5b00515] [Citation(s) in RCA: 80] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
We have created a benchmark set of quantum chemical structure-energy data denoted as UpU46, which consists of 46 uracil dinucleotides (UpU), representing all known 46 RNA backbone conformational families. Penalty-function-based restrained optimizations with COSMO TPSS-D3/def2-TZVP ensure a balance between keeping the target conformation and geometry relaxation. The backbone geometries are close to the clustering-means of their respective RNA bioinformatics family classification. High-level wave function methods (DLPNO-CCSD(T) as reference) and a wide-range of dispersion-corrected or inclusive DFT methods (DFT-D3, VV10, LC-BOP-LRD, M06-2X, M11, and more) are used to evaluate the conformational energies. The results are compared to the Amber RNA bsc0χOL3 force field. Most dispersion-corrected DFT methods surpass the Amber force field significantly in accuracy and yield mean absolute deviations (MADs) for relative conformational energies of ∼0.4-0.6 kcal/mol. Double-hybrid density functionals represent the most accurate class of density functionals. Low-cost quantum chemical methods such as PM6-D3H+, HF-3c, DFTB3-D3, as well as small basis set calculations corrected for basis set superposition errors (BSSEs) by the gCP procedure are also tested. Unfortunately, the presently available low-cost methods are struggling to describe the UpU conformational energies with satisfactory accuracy. The UpU46 benchmark is an ideal test for benchmarking and development of fast methods to describe nucleic acids, including force fields.
Collapse
Affiliation(s)
- Holger Kruse
- Institute of Biophysics, Academy of Sciences of the Czech Republic , Královopolská 135, 612 65 Brno, Czech Republic.,CEITEC-Central European Institute of Technology, Campus Bohunice, Kamenice 5, 625 00 Brno, Czech Republic
| | - Arnost Mladek
- Institute of Biophysics, Academy of Sciences of the Czech Republic , Královopolská 135, 612 65 Brno, Czech Republic
| | - Konstantinos Gkionis
- Institute of Biophysics, Academy of Sciences of the Czech Republic , Královopolská 135, 612 65 Brno, Czech Republic.,CEITEC-Central European Institute of Technology, Campus Bohunice, Kamenice 5, 625 00 Brno, Czech Republic
| | - Andreas Hansen
- Mulliken Center for Theoretical Chemistry, Institut für Physikalische und Theoretische Chemie der Universität Bonn , Beringstr. 4, D-53115 Bonn, Germany
| | - Stefan Grimme
- Mulliken Center for Theoretical Chemistry, Institut für Physikalische und Theoretische Chemie der Universität Bonn , Beringstr. 4, D-53115 Bonn, Germany
| | - Jiri Sponer
- Institute of Biophysics, Academy of Sciences of the Czech Republic , Královopolská 135, 612 65 Brno, Czech Republic.,CEITEC-Central European Institute of Technology, Campus Bohunice, Kamenice 5, 625 00 Brno, Czech Republic
| |
Collapse
|
22
|
Carvalho ATP, Gouveia L, Kanna CR, Wärmländer SKTS, Platts JA, Kamerlin SCL. Understanding the structural and dynamic consequences of DNA epigenetic modifications: computational insights into cytosine methylation and hydroxymethylation. Epigenetics 2015; 9:1604-12. [PMID: 25625845 PMCID: PMC4622728 DOI: 10.4161/15592294.2014.988043] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
We report a series of molecular dynamics (MD) simulations of up to a microsecond combined simulation time designed to probe epigenetically modified DNA sequences. More specifically, by monitoring the effects of methylation and hydroxymethylation of cytosine in different DNA sequences, we show, for the first time, that DNA epigenetic modifications change the molecule's dynamical landscape, increasing the propensity of DNA toward different values of twist and/or roll/tilt angles (in relation to the unmodified DNA) at the modification sites. Moreover, both the extent and position of different modifications have significant effects on the amount of structural variation observed. We propose that these conformational differences, which are dependent on the sequence environment, can provide specificity for protein binding.
Collapse
Key Words
- AFM, Atomic Force Microscopy
- DDD, Dickerson-Drew Dodecamer
- DFT, Density Functional Theory
- DNA methylation
- DNA, Deoxyribonucleic Acid
- DNMT, DNA Methyltransferase
- LINEs, Long Interspred Transposable Elements
- MD, Molecular Dynamics
- MM, Molecular Mechanics
- MeCP, Methylated CpG-binding proteins
- PBC, Periodic Boundary Conditions
- QM, Quantum Mechanics
- RDF, Radial Distribution Functions
- RESP, Restrained Electrostatic Potentials Model
- SINEs, Short Interspred Transposable Elements
- SPME, Smooth Particle-Mesh Ewald
- TET, Translocation Proteins
- WT, Wild Type
- epigenetics
- indirect readout
- molecular dynamics
- recognition
Collapse
Affiliation(s)
- Alexandra T P Carvalho
- a Science for Life Laboratory; Department of Cell and Molecular Biology ; Uppsala University ; Uppsala , Sweden
| | | | | | | | | | | |
Collapse
|
23
|
Mondal M, Mukherjee S, Halder S, Bhattacharyya D. Stacking geometry for non-canonical G:U wobble base pair containing dinucleotide sequences in RNA: dispersion-corrected DFT-D study. Biopolymers 2015; 103:328-38. [DOI: 10.1002/bip.22616] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2014] [Revised: 01/01/2015] [Accepted: 01/08/2015] [Indexed: 01/06/2023]
Affiliation(s)
- Manas Mondal
- Computational Science Division; Saha Institute of Nuclear Physics; 1/AF Bidhannagar Kolkata 700064 India
| | - Sanchita Mukherjee
- Computational Science Division; Saha Institute of Nuclear Physics; 1/AF Bidhannagar Kolkata 700064 India
| | - Sukanya Halder
- Computational Science Division; Saha Institute of Nuclear Physics; 1/AF Bidhannagar Kolkata 700064 India
| | - Dhananjay Bhattacharyya
- Computational Science Division; Saha Institute of Nuclear Physics; 1/AF Bidhannagar Kolkata 700064 India
| |
Collapse
|
24
|
Carvalho ATP, Gouveia ML, Raju Kanna C, Wärmländer SKTS, Platts J, Kamerlin SCL. Theoretical modelling of epigenetically modified DNA sequences. F1000Res 2015; 4:52. [PMID: 26448859 DOI: 10.12688/f1000research.6148.1] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 02/19/2015] [Indexed: 11/20/2022] Open
Abstract
We report herein a set of calculations designed to examine the effects of epigenetic modifications on the structure of DNA. The incorporation of methyl, hydroxymethyl, formyl and carboxy substituents at the 5-position of cytosine is shown to hardly affect the geometry of CG base pairs, but to result in rather larger changes to hydrogen-bond and stacking binding energies, as predicted by dispersion-corrected density functional theory (DFT) methods. The same modifications within double-stranded GCG and ACA trimers exhibit rather larger structural effects, when including the sugar-phosphate backbone as well as sodium counterions and implicit aqueous solvation. In particular, changes are observed in the buckle and propeller angles within base pairs and the slide and roll values of base pair steps, but these leave the overall helical shape of DNA essentially intact. The structures so obtained are useful as a benchmark of faster methods, including molecular mechanics (MM) and hybrid quantum mechanics/molecular mechanics (QM/MM) methods. We show that previously developed MM parameters satisfactorily reproduce the trimer structures, as do QM/MM calculations which treat bases with dispersion-corrected DFT and the sugar-phosphate backbone with AMBER. The latter are improved by inclusion of all six bases in the QM region, since a truncated model including only the central CG base pair in the QM region is considerably further from the DFT structure. This QM/MM method is then applied to a set of double-stranded DNA heptamers derived from a recent X-ray crystallographic study, whose size puts a DFT study beyond our current computational resources. These data show that still larger structural changes are observed than in base pairs or trimers, leading us to conclude that it is important to model epigenetic modifications within realistic molecular contexts.
Collapse
Affiliation(s)
| | - Maria Leonor Gouveia
- Science for Life Laboratory, Department of Cell and Molecular Biology, Uppsala University, Uppsala, S-751 24, Sweden.,Department of Immunology, Genetics and Pathology, Rudbeck Laboratory, Uppsala, S-751 85, Sweden
| | - Charan Raju Kanna
- Science for Life Laboratory, Department of Cell and Molecular Biology, Uppsala University, Uppsala, S-751 24, Sweden
| | | | - Jamie Platts
- School of Chemistry, Cardiff University, Cardiff, CF10 3AT, UK
| | - Shina Caroline Lynn Kamerlin
- Science for Life Laboratory, Department of Cell and Molecular Biology, Uppsala University, Uppsala, S-751 24, Sweden
| |
Collapse
|
25
|
Carvalho ATP, Gouveia ML, Raju Kanna C, Wärmländer SKTS, Platts J, Kamerlin SCL. Theoretical modelling of epigenetically modified DNA sequences. F1000Res 2015; 4:52. [PMID: 26448859 PMCID: PMC4582758 DOI: 10.12688/f1000research.6148.2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 05/01/2015] [Indexed: 12/20/2022] Open
Abstract
We report herein a set of calculations designed to examine the effects of epigenetic modifications on the structure of DNA. The incorporation of methyl, hydroxymethyl, formyl and carboxy substituents at the 5-position of cytosine is shown to hardly affect the geometry of CG base pairs, but to result in rather larger changes to hydrogen-bond and stacking binding energies, as predicted by dispersion-corrected density functional theory (DFT) methods. The same modifications within double-stranded GCG and ACA trimers exhibit rather larger structural effects, when including the sugar-phosphate backbone as well as sodium counterions and implicit aqueous solvation. In particular, changes are observed in the buckle and propeller angles within base pairs and the slide and roll values of base pair steps, but these leave the overall helical shape of DNA essentially intact. The structures so obtained are useful as a benchmark of faster methods, including molecular mechanics (MM) and hybrid quantum mechanics/molecular mechanics (QM/MM) methods. We show that previously developed MM parameters satisfactorily reproduce the trimer structures, as do QM/MM calculations which treat bases with dispersion-corrected DFT and the sugar-phosphate backbone with AMBER. The latter are improved by inclusion of all six bases in the QM region, since a truncated model including only the central CG base pair in the QM region is considerably further from the DFT structure. This QM/MM method is then applied to a set of double-stranded DNA heptamers derived from a recent X-ray crystallographic study, whose size puts a DFT study beyond our current computational resources. These data show that still larger structural changes are observed than in base pairs or trimers, leading us to conclude that it is important to model epigenetic modifications within realistic molecular contexts.
Collapse
Affiliation(s)
| | - Maria Leonor Gouveia
- Science for Life Laboratory, Department of Cell and Molecular Biology, Uppsala University, Uppsala, S-751 24, Sweden.,Department of Immunology, Genetics and Pathology, Rudbeck Laboratory, Uppsala, S-751 85, Sweden
| | - Charan Raju Kanna
- Science for Life Laboratory, Department of Cell and Molecular Biology, Uppsala University, Uppsala, S-751 24, Sweden
| | | | - Jamie Platts
- School of Chemistry, Cardiff University, Cardiff, CF10 3AT, UK
| | - Shina Caroline Lynn Kamerlin
- Science for Life Laboratory, Department of Cell and Molecular Biology, Uppsala University, Uppsala, S-751 24, Sweden
| |
Collapse
|
26
|
Contribution of phenylalanine side chain intercalation to the TATA-box binding protein–DNA interaction: molecular dynamics and dispersion-corrected density functional theory studies. J Mol Model 2014; 20:2499. [DOI: 10.1007/s00894-014-2499-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2014] [Accepted: 10/13/2014] [Indexed: 10/24/2022]
|
27
|
Capobianco A, Peluso A. The oxidization potential of AA steps in single strand DNA oligomers. RSC Adv 2014. [DOI: 10.1039/c4ra09270h] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
|
28
|
Kruse H, Havrila M, Šponer J. QM Computations on Complete Nucleic Acids Building Blocks: Analysis of the Sarcin–Ricin RNA Motif Using DFT-D3, HF-3c, PM6-D3H, and MM Approaches. J Chem Theory Comput 2014; 10:2615-29. [DOI: 10.1021/ct500183w] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Affiliation(s)
- Holger Kruse
- CEITEC
− Central European Institute of Technology, Campus Bohunice, Kamenice
5, 625 00 Brno, Czech Republic
| | - Marek Havrila
- CEITEC
− Central European Institute of Technology, Campus Bohunice, Kamenice
5, 625 00 Brno, Czech Republic
- Institute
of Biophysics, Academy of Sciences of the Czech Republic, Královopolská
135, 612 65 Brno, Czech Republic
| | - Jiřı́ Šponer
- CEITEC
− Central European Institute of Technology, Campus Bohunice, Kamenice
5, 625 00 Brno, Czech Republic
- Institute
of Biophysics, Academy of Sciences of the Czech Republic, Královopolská
135, 612 65 Brno, Czech Republic
| |
Collapse
|
29
|
Poater J, Swart M, Bickelhaupt FM, Fonseca Guerra C. B-DNA structure and stability: the role of hydrogen bonding, π–π stacking interactions, twist-angle, and solvation. Org Biomol Chem 2014; 12:4691-700. [DOI: 10.1039/c4ob00427b] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Insight into structure and stability of B-DNA is obtained through systematic quantum chemical analyses of the roles played by hydrogen bonding, π–π stacking, solvation, and twist-angle.
Collapse
Affiliation(s)
- Jordi Poater
- Department of Theoretical Chemistry and Amsterdam Center for Multiscale Modeling
- VU University Amsterdam
- NL-1081 HV Amsterdam, The Netherlands
| | - Marcel Swart
- Institut de Química Computacional i Catàlisi and Departament de Química
- Universitat de Girona
- 17071 Girona, Spain
- Institució Catalana de Recerca i Estudis Avançats (ICREA)
- 08010 Barcelona, Spain
| | - F. Matthias Bickelhaupt
- Department of Theoretical Chemistry and Amsterdam Center for Multiscale Modeling
- VU University Amsterdam
- NL-1081 HV Amsterdam, The Netherlands
- Institute of Molecules and Materials
- Radboud University Nijmegen
| | - Célia Fonseca Guerra
- Department of Theoretical Chemistry and Amsterdam Center for Multiscale Modeling
- VU University Amsterdam
- NL-1081 HV Amsterdam, The Netherlands
| |
Collapse
|