Popik O, Pasternak-Suder M, Baś S, Mlynarski J. Organocatalytic Synthesis of Higher-Carbon Sugars: Efficient Protocol for the Synthesis of Natural Sedoheptulose and d-Glycero-l-galacto-oct-2-ulose.
ChemistryOpen 2015;
4:717-21. [PMID:
27308197 PMCID:
PMC4906512 DOI:
10.1002/open.201500099]
[Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2015] [Indexed: 01/06/2023] Open
Abstract
Herein we report a short and efficient protocol for the synthesis of naturally occurring higher-carbon sugars-sedoheptulose (d-altro-hept-2-ulose) and d-glycero-l-galacto-oct-2-ulose-from readily available sugar aldehydes and dihydroxyacetone (DHA). The key step includes a diastereoselective organocatalytic syn-selective aldol reaction of DHA with d-erythrose and d-xylose, respectively. The methodology presented can be expanded to the synthesis of various higher sugars by means of syn-selective carbon-carbon-bond-forming aldol reactions promoted by primary-based organocatalysts. For example, this methodology provided useful access to d-glycero-d-galacto-oct-2-ulose and 1-deoxy-d-glycero-d-galacto-oct-2-ulose from d-arabinose in high yield (85 and 74 %, respectively) and high stereoselectivity (99:1).
Collapse