1
|
Falanga AP, D'Urso A, Travagliante G, Gangemi CMA, Marzano M, D'Errico S, Terracciano M, Greco F, De Stefano L, Dardano P, Rea I, Piccialli G, Oliviero G, Borbone N. Higher-order G-quadruplex structures and porphyrin ligands: Towards a non-ambiguous relationship. Int J Biol Macromol 2024; 268:131801. [PMID: 38670185 DOI: 10.1016/j.ijbiomac.2024.131801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 01/29/2024] [Accepted: 04/17/2024] [Indexed: 04/28/2024]
Abstract
Herein, we evaluated the interaction of the tetracationic porphyrin H2TCPPSpm4 with three distinct DNA G-quadruplex (G4) models, i.e., the tetramolecular G4 d(TGGGGT)4 (Q1), the 5'-5' stacked G4-dimer [d(CGGAGGT)4]2 (Q2), and a mixture of 5'-5' stacked G-wires [d(5'-CGGT-3'-3'-GGC-5')4]n (Qn). The combined data obtained from UV-Vis, CD, fluorescence, PAGE, RLS, AFM, NMR, and HPLC-SEC experiments allowed us to shed light on the binding mode of H2TCPPSpm4 with the three G4 models differing for the type and the number of available G4 ending faces, the length of the G4 units, and the number of stacked G4 building blocks. Specifically, we found that H2TCPPSpm4 interacted with the shortest Q1 as an end-stacking ligand, whereas the groove binding mode was ascertained in the case of the Q2 and Qn G4 models. In the case of the interaction with Q1 and Qn, we found that H2TCPPSpm4 induces the formation of supramolecular aggregates at porphyrin/G4 ratios higher than 2:1, whereas no significant aggregation was observed for the interaction with Q2 up to the 5:1 ratio. These results unambiguously demonstrated the suitability of porphyrins for the development of specific G4 ligands or G4-targeting diagnostic probes, being H2TCPPSpm4 capable to distinguish between different G4s.
Collapse
Affiliation(s)
- Andrea Patrizia Falanga
- Department of Pharmacy, University of Naples Federico II, via Domenico Montesano 49, 80131 Naples, Italy
| | - Alessandro D'Urso
- Department of Chemical Sciences, University of Catania, viale Andrea Doria 6, 95125 Catania, Italy
| | - Gabriele Travagliante
- Department of Chemical Sciences, University of Catania, viale Andrea Doria 6, 95125 Catania, Italy
| | | | - Maria Marzano
- CESTEV, University of Naples Federico II, via Tommaso De Amicis 95, 80145 Naples, Italy
| | - Stefano D'Errico
- Department of Pharmacy, University of Naples Federico II, via Domenico Montesano 49, 80131 Naples, Italy
| | - Monica Terracciano
- Department of Pharmacy, University of Naples Federico II, via Domenico Montesano 49, 80131 Naples, Italy
| | - Francesca Greco
- Department of Pharmacy, University of Naples Federico II, via Domenico Montesano 49, 80131 Naples, Italy
| | - Luca De Stefano
- Institute of Applied Sciences and Intelligent Systems, Unit of Naples, National Research Council, via Pietro Castellino 111, 80131 Naples, Italy
| | - Principia Dardano
- Institute of Applied Sciences and Intelligent Systems, Unit of Naples, National Research Council, via Pietro Castellino 111, 80131 Naples, Italy
| | - Ilaria Rea
- Institute of Applied Sciences and Intelligent Systems, Unit of Naples, National Research Council, via Pietro Castellino 111, 80131 Naples, Italy
| | - Gennaro Piccialli
- Department of Pharmacy, University of Naples Federico II, via Domenico Montesano 49, 80131 Naples, Italy
| | - Giorgia Oliviero
- Department of Molecular Medicine and Medical Biotechnologies, University of Naples Federico II, via Sergio Pansini 5, 80131 Naples, Italy
| | - Nicola Borbone
- Department of Pharmacy, University of Naples Federico II, via Domenico Montesano 49, 80131 Naples, Italy.
| |
Collapse
|
2
|
Marzano M, D'Errico S, Greco F, Falanga AP, Terracciano M, Di Prisco D, Piccialli G, Borbone N, Oliviero G. Polymorphism of G-quadruplexes formed by short oligonucleotides containing a 3'-3' inversion of polarity: From G:C:G:C tetrads to π-π stacked G-wires. Int J Biol Macromol 2023; 253:127062. [PMID: 37748594 DOI: 10.1016/j.ijbiomac.2023.127062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 09/11/2023] [Accepted: 09/21/2023] [Indexed: 09/27/2023]
Abstract
G-wires are supramolecular DNA structures based on the G-quadruplex (G4) structural motif obtained by the self-assembly of interlocked slipped G-rich oligonucleotide (ON) strands, or by end-to-end stacking of G4 units. Despite the increasing interest towards G-wires due to their potential applications in DNA nanotechnologies, the self-assembly process to obtain G-wires having a predefined length and stability is still neither completely understood nor controlled. In our previous studies, we demonstrated that the d(5'CG2-3'-3'-G2C5') ON, characterized by the presence of a 3'-3'-inversion of polarity site self-assembles into a G-wire structure when annealed in the presence of K+ ions. Herein, by using CD, PAGE, HPLC size exclusion chromatography, and NMR investigations we studied the propensity of shorter analogues having sequences 5'CGn-3'-3'-GmC5' (with n = 1 and 1 ≤ m ≤ 3) to form the corresponding G-quadruplexes and stacked G-wires. The results revealed that the formation of G-wires starting from d(5'CGn-3'-3'-GmC5') ONs is possible only for the sequences having n and m > 1 in which both guanosines flanking the 5'-ending cytosines are not involved into the 3'-3' phosphodiester bond.
Collapse
Affiliation(s)
- Maria Marzano
- CESTEV, University of Naples Federico II, Via Tommaso De Amicis 95, 80131 Naples, Italy
| | - Stefano D'Errico
- Department of Pharmacy, University of Naples Federico II, Via Domenico Montesano 49, 80131 Naples, Italy
| | - Francesca Greco
- Department of Pharmacy, University of Naples Federico II, Via Domenico Montesano 49, 80131 Naples, Italy
| | - Andrea Patrizia Falanga
- Department of Pharmacy, University of Naples Federico II, Via Domenico Montesano 49, 80131 Naples, Italy
| | - Monica Terracciano
- Department of Pharmacy, University of Naples Federico II, Via Domenico Montesano 49, 80131 Naples, Italy
| | - Daria Di Prisco
- Department of Pharmacy, University of Naples Federico II, Via Domenico Montesano 49, 80131 Naples, Italy
| | - Gennaro Piccialli
- Department of Pharmacy, University of Naples Federico II, Via Domenico Montesano 49, 80131 Naples, Italy; ISBE-IT, University of Naples Federico II, Corso Umberto I, 80138 Naples, Italy
| | - Nicola Borbone
- Department of Pharmacy, University of Naples Federico II, Via Domenico Montesano 49, 80131 Naples, Italy; ISBE-IT, University of Naples Federico II, Corso Umberto I, 80138 Naples, Italy.
| | - Giorgia Oliviero
- ISBE-IT, University of Naples Federico II, Corso Umberto I, 80138 Naples, Italy; Department of Molecular Medicine and Medical Biotechnologies, University of Naples Federico II, Via Sergio Pansini 5, 80131 Naples, Italy
| |
Collapse
|
3
|
Mizunuma M, Suzuki M, Kobayashi T, Hara Y, Kaneko A, Furukawa K, Chuman Y. Development of Mn 2+-Specific Biosensor Using G-Quadruplex-Based DNA. Int J Mol Sci 2023; 24:11556. [PMID: 37511324 PMCID: PMC10380348 DOI: 10.3390/ijms241411556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 07/14/2023] [Accepted: 07/15/2023] [Indexed: 07/30/2023] Open
Abstract
Metal ions are used in various situations in living organisms and as a part of functional materials. Since the excessive intake of metal ions can cause health hazards and environmental pollution, the development of new molecules that can monitor metal ion concentrations with high sensitivity and selectivity is strongly desired. DNA can form various structures, and these structures and their properties have been used in a wide range of fields, including materials, sensors, and drugs. Guanine-rich sequences respond to metal ions and form G-quadruplex structures and G-wires, which are the self-assembling macromolecules of G-quadruplex structures. Therefore, guanine-rich DNA can be applied to a metal ion-detection sensor and functional materials. In this study, the IRDAptamer library originally designed based on G-quadruplex structures was used to screen for Mn2+, which is known to induce neurodegenerative diseases. Circular dichroism and fluorescence analysis using Thioflavin T showed that the identified IRDAptamer sequence designated MnG4C1 forms a non-canonical G-quadruplex structure in response to low concentrations of Mn2+. A serum resistance and thermostability analysis revealed that MnG4C1 acquired stability in a Mn2+-dependent manner. A Förster resonance energy transfer (FRET) system using fluorescent molecules attached to the termini of MnG4C1 showed that FRET was effectively induced based on Mn2+-dependent conformational changes, and the limit of detection (LOD) was 0.76 µM for Mn2+. These results suggested that MnG4C1 can be used as a novel DNA-based Mn2+-detecting molecule.
Collapse
Affiliation(s)
- Masataka Mizunuma
- Department of Chemistry, Faculty of Science, Niigata University, Niigata 950-2181, Japan
| | - Mirai Suzuki
- Department of Chemistry, Faculty of Science, Niigata University, Niigata 950-2181, Japan
| | - Tamaki Kobayashi
- Department of Chemistry, Faculty of Science, Niigata University, Niigata 950-2181, Japan
| | - Yuki Hara
- Department of Chemistry, Faculty of Science, Niigata University, Niigata 950-2181, Japan
| | - Atsushi Kaneko
- Department of Chemistry, Faculty of Science, Niigata University, Niigata 950-2181, Japan
| | - Kazuhiro Furukawa
- Department of Chemistry, Faculty of Science, Niigata University, Niigata 950-2181, Japan
| | - Yoshiro Chuman
- Department of Chemistry, Faculty of Science, Niigata University, Niigata 950-2181, Japan
| |
Collapse
|
4
|
Caratelli V, Moccia M, Paggioro FR, Fiore L, Avitabile C, Saviano M, Imbriani AL, Dardano P, De Stefano L, Moscone D, Colabufo NA, Ghafir El Idrissi I, Russo F, Riezzo G, Giannelli G, Arduini F. Liquid Biopsy beyond Cancer: A miRNA Detection in Serum with Electrochemical Chip for Non‐Invasive Coeliac Disease Diagnosis. ADVANCED NANOBIOMED RESEARCH 2022. [DOI: 10.1002/anbr.202200015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Affiliation(s)
- Veronica Caratelli
- Department of Chemical Science and Tecnologies University of Rome “Tor Vergata” Via della Ricerca Scientifica 00133 Rome Italy
| | - Maria Moccia
- Institute of Crystallography National Research Council (CNR) Via G. Amendola 122/O 70126 Bari Italy
| | - Francesca R. Paggioro
- Department of Chemical Science and Tecnologies University of Rome “Tor Vergata” Via della Ricerca Scientifica 00133 Rome Italy
| | - Luca Fiore
- Department of Chemical Science and Tecnologies University of Rome “Tor Vergata” Via della Ricerca Scientifica 00133 Rome Italy
| | - Concetta Avitabile
- Institute of Crystallography National Research Council (CNR) Via G. Amendola 122/O 70126 Bari Italy
| | - Michele Saviano
- Institute of Crystallography National Research Council (CNR) Via G. Amendola 122/O 70126 Bari Italy
| | - Anna Lisa Imbriani
- Biochemical Systems International S.p.A. Loc, Palazzo del Pero, 23 52100 Arezzo Italy
| | - Principia Dardano
- Department of Physical Sciences and Matter Technology Institute for Applied Science and Intelligent Systems National Research Council Via Pietro Castellino 111 80131 Napoli Italy
| | - Luca De Stefano
- Department of Physical Sciences and Matter Technology Institute for Applied Science and Intelligent Systems National Research Council Via Pietro Castellino 111 80131 Napoli Italy
| | - Danila Moscone
- Department of Chemical Science and Tecnologies University of Rome “Tor Vergata” Via della Ricerca Scientifica 00133 Rome Italy
| | - Nicola A. Colabufo
- Department of Pharmacy-Pharmaceutical Science University of Bari Aldo Moro Via Orabona 4 70125 Bari Italy
- Biofordrug S.R.L Spin-off of the University of Bari Aldo Moro Via Dante 99, Triggiano 70019 Bari Italy
| | - Imane Ghafir El Idrissi
- Department of Pharmacy-Pharmaceutical Science University of Bari Aldo Moro Via Orabona 4 70125 Bari Italy
- Biofordrug S.R.L Spin-off of the University of Bari Aldo Moro Via Dante 99, Triggiano 70019 Bari Italy
| | - Francesco Russo
- National Institute of Gastroenterology “S. de Bellis” Research Hospital Castellana Grotte 70013 Bari Italy
| | - Giuseppe Riezzo
- National Institute of Gastroenterology “S. de Bellis” Research Hospital Castellana Grotte 70013 Bari Italy
| | - Gianluigi Giannelli
- National Institute of Gastroenterology “S. de Bellis” Research Hospital Castellana Grotte 70013 Bari Italy
| | - Fabiana Arduini
- Department of Chemical Science and Tecnologies University of Rome “Tor Vergata” Via della Ricerca Scientifica 00133 Rome Italy
- SENSE4MED S.R.L. Via della ricerca scientifica 00133 Rome Italy
| |
Collapse
|
5
|
G-Quadruplex Formed by the Promoter Region of the hTERT Gene: Structure-Driven Effects on DNA Mismatch Repair Functions. Biomedicines 2022; 10:biomedicines10081871. [PMID: 36009419 PMCID: PMC9405553 DOI: 10.3390/biomedicines10081871] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 07/25/2022] [Accepted: 07/29/2022] [Indexed: 11/17/2022] Open
Abstract
G-quadruplexes (G4s) are a unique class of noncanonical DNAs that play a key role in cellular processes and neoplastic transformation. Herein, we focused on the promoter region of human TERT oncogene, whose product is responsible for the immortality of cancer cells. It has been shown by chemical probing and spectroscopic methods that synthetic 96-nt DNAs modeling the wild-type G-rich strand of the hTERT promoter and its variants with G>A point substitutions corresponding to somatic driver mutations fold into three stacked parallel G4s with sites of local G4 destabilization caused by G>A substitutions in the G4 motif. These models were used to elucidate how the hTERT multiG4 affects the binding affinity and functional responses of two key proteins, MutS and MutL, involved in the initial stage of DNA mismatch repair (MMR) in Escherichiacoli and Neisseriagonorrhoeae with different MMR mechanisms. We have shown for the first time that (i) point substitutions do not affect the effective binding of these proteins to the hTERT G4 structure, and (ii) the endonuclease activity of MutL from N. gonorrhoeae is significantly suppressed by the stable G4 scaffold. It is likely that some of the genomic instability associated with G4 may be related to the blockage of human intrinsic methyl-independent MMR attempting to operate near G4 structures.
Collapse
|
6
|
Kihal N, Nazemi A, Bourgault S. Supramolecular Nanostructures Based on Perylene Diimide Bioconjugates: From Self-Assembly to Applications. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:1223. [PMID: 35407341 PMCID: PMC9000806 DOI: 10.3390/nano12071223] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/06/2022] [Revised: 03/31/2022] [Accepted: 04/02/2022] [Indexed: 12/18/2022]
Abstract
Self-assembling π-conjugated systems constitute efficient building blocks for the construction of supramolecular structures with tailored functional properties. In this context, perylene diimide (PDI) has attracted attention owing to its chemical robustness, thermal and photo-stability, and outstanding optical and electronic properties. Recently, the conjugation of PDI derivatives to biological molecules, including oligonucleotides and peptides, has opened new avenues for the design of nanoassemblies with unique structures and functionalities. In the present review, we offer a comprehensive summary of supramolecular bio-assemblies based on PDI. After briefly presenting the physicochemical, structural, and optical properties of PDI derivatives, we discuss the synthesis, self-assembly, and applications of PDI bioconjugates.
Collapse
Affiliation(s)
- Nadjib Kihal
- Department of Chemistry, Université du Québec, Montreal, QC H2X 2J6, Canada;
- Quebec Network for Research on Protein Function, Engineering and Applications, PROTEO, Quebec City, QC G1V 0A6, Canada
- Centre Québécois sur les Matériaux Fonctionnels/Québec Centre for Advanced Materials, CQMF/QCAM, Montreal, QC H3A 2A7, Canada
| | - Ali Nazemi
- Department of Chemistry, Université du Québec, Montreal, QC H2X 2J6, Canada;
- Centre Québécois sur les Matériaux Fonctionnels/Québec Centre for Advanced Materials, CQMF/QCAM, Montreal, QC H3A 2A7, Canada
| | - Steve Bourgault
- Department of Chemistry, Université du Québec, Montreal, QC H2X 2J6, Canada;
- Quebec Network for Research on Protein Function, Engineering and Applications, PROTEO, Quebec City, QC G1V 0A6, Canada
| |
Collapse
|
7
|
Falcigno L, D’Auria G, Palmieri G, Gogliettino M, Agrillo B, Tatè R, Dardano P, Nicolais L, Balestrieri M. Key Physicochemical Determinants in the Antimicrobial Peptide RiLK1 Promote Amphipathic Structures. Int J Mol Sci 2021; 22:10011. [PMID: 34576174 PMCID: PMC8472000 DOI: 10.3390/ijms221810011] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Revised: 09/09/2021] [Accepted: 09/14/2021] [Indexed: 12/14/2022] Open
Abstract
Antimicrobial peptides (AMPs) represent a skilled class of new antibiotics, due to their broad range of activity, rapid killing, and low bacterial resistance. Many efforts have been made to discover AMPs with improved performances, i.e., high antimicrobial activity, low cytotoxicity against human cells, stability against proteolytic degradation, and low costs of production. In the design of new AMPs, several physicochemical features, such as hydrophobicity, net positive charge, propensity to assume amphipathic conformation, and self-assembling properties, must be considered. Starting from the sequence of the dodecapeptide 1018-K6, we designed a new 10-aminoacid peptide, namely RiLK1, which is highly effective against both fungi and Gram-positive and -negative bacteria at low micromolar concentrations without causing human cell cytotoxicity. In order to find the structural reasons explaining the improved performance of RiLK1 versus 1018-K6, a comparative analysis of the two peptides was carried out with a combination of CD, NMR, and fluorescence spectroscopies, while their self-assembling properties were analyzed by optical and atomic force microscopies. Interestingly, the different spectroscopic and microscopic profiles exhibited by the two peptides, including the propensity of RiLK1 to adopt helix arrangements in contrast to 1018-K6, could explain the improved bactericidal, antifungal, and anti-biofilm activities shown by the new peptide against a panel of food pathogens.
Collapse
Affiliation(s)
- Lucia Falcigno
- Department of Pharmacy, University of Naples Federico II, Via D. Montesano 49, 80131 Naples, Italy; (L.F.); (G.D.)
| | - Gabriella D’Auria
- Department of Pharmacy, University of Naples Federico II, Via D. Montesano 49, 80131 Naples, Italy; (L.F.); (G.D.)
| | - Gianna Palmieri
- Institute of Biosciences and BioResources, National Research Council (IBBR-CNR), Via Pietro Castellino 111, 80131 Naples, Italy; (B.A.); (M.B.)
| | - Marta Gogliettino
- Institute of Biosciences and BioResources, National Research Council (IBBR-CNR), Via Pietro Castellino 111, 80131 Naples, Italy; (B.A.); (M.B.)
| | - Bruna Agrillo
- Institute of Biosciences and BioResources, National Research Council (IBBR-CNR), Via Pietro Castellino 111, 80131 Naples, Italy; (B.A.); (M.B.)
- Materias Srl, Corso N. Protopisani 70, 80146 Naples, Italy;
- Department of Biology, University of Naples Federico II di Monte Sant’Angelo, Via Cintia 21, 80126 Naples, Italy
| | - Rosarita Tatè
- Institute of Genetics and Biophysics, National Research Council (IGB-CNR), Via Pietro Castellino 111, 80131 Naples, Italy;
| | - Principia Dardano
- Institute of Applied Sciences & Intelligent Systems, National Research Council (ISASI-CNR), Via Pietro Castellino 111, 80131 Naples, Italy;
| | - Luigi Nicolais
- Materias Srl, Corso N. Protopisani 70, 80146 Naples, Italy;
| | - Marco Balestrieri
- Institute of Biosciences and BioResources, National Research Council (IBBR-CNR), Via Pietro Castellino 111, 80131 Naples, Italy; (B.A.); (M.B.)
| |
Collapse
|
8
|
Vallejo-Perez M, Ternon C, Spinelli N, Morisot F, Theodorou C, Jayakumar G, Hellström PE, Mouis M, Rapenne L, Mescot X, Salem B, Stambouli V. Optimization of GOPS-Based Functionalization Process and Impact of Aptamer Grafting on the Si Nanonet FET Electrical Properties as First Steps towards Thrombin Electrical Detection. NANOMATERIALS 2020; 10:nano10091842. [PMID: 32942692 PMCID: PMC7559082 DOI: 10.3390/nano10091842] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Revised: 09/07/2020] [Accepted: 09/09/2020] [Indexed: 02/07/2023]
Abstract
Field effect transistors (FETs) based on networks of randomly oriented Si nanowires (Si nanonets or Si NNs) were biomodified using Thrombin Binding Aptamer (TBA-15) probe with the final objective to sense thrombin by electrical detection. In this work, the impact of the biomodification on the electrical properties of the Si NN-FETs was studied. First, the results that were obtained for the optimization of the (3-Glycidyloxypropyl)trimethoxysilane (GOPS)-based biofunctionalization process by using UV radiation are reported. The biofunctionalized devices were analyzed by atomic force microscopy (AFM) and scanning transmission electron microscopy (STEM), proving that TBA-15 probes were properly grafted on the surface of the devices, and by means of epifluorescence microscopy it was possible to demonstrate that the UV-assisted GOPS-based functionalization notably improves the homogeneity of the surface DNA distribution. Later, the electrical characteristics of 80 devices were analyzed before and after the biofunctionalization process, indicating that the results are highly dependent on the experimental protocol. We found that the TBA-15 hybridization capacity with its complementary strand is time dependent and that the transfer characteristics of the Si NN-FETs obtained after the TBA-15 probe grafting are also time dependent. These results help to elucidate and define the experimental precautions that must be taken into account to fabricate reproducible devices.
Collapse
Affiliation(s)
- Monica Vallejo-Perez
- University Grenoble Alpes, CNRS, Grenoble INP, LMGP, F-38000 Grenoble, France; (M.V.-P.); (F.M.); (L.R.)
- University Grenoble Alpes, CNRS, DCM UMR 5250, F-38000 Grenoble, France;
| | - Céline Ternon
- University Grenoble Alpes, CNRS, Grenoble INP, LMGP, F-38000 Grenoble, France; (M.V.-P.); (F.M.); (L.R.)
- Correspondence: (C.T.); (V.S.)
| | - Nicolas Spinelli
- University Grenoble Alpes, CNRS, DCM UMR 5250, F-38000 Grenoble, France;
| | - Fanny Morisot
- University Grenoble Alpes, CNRS, Grenoble INP, LMGP, F-38000 Grenoble, France; (M.V.-P.); (F.M.); (L.R.)
- University Grenoble Alpes, Univ. Savoie Mont Blanc, CNRS, Grenoble INP, IMEP-LAHC, F-38000 Grenoble, France; (C.T.); (M.M.); (X.M.)
| | - Christoforos Theodorou
- University Grenoble Alpes, Univ. Savoie Mont Blanc, CNRS, Grenoble INP, IMEP-LAHC, F-38000 Grenoble, France; (C.T.); (M.M.); (X.M.)
| | - Ganesh Jayakumar
- KTH Royal Institute of Technology, Department of Electronics, School of Electrical Engineering and Computer Science, Electrum 229, SE-164 40 Kista, Sweden; (G.J.); (P.-E.H.)
| | - Per-Erik Hellström
- KTH Royal Institute of Technology, Department of Electronics, School of Electrical Engineering and Computer Science, Electrum 229, SE-164 40 Kista, Sweden; (G.J.); (P.-E.H.)
| | - Mireille Mouis
- University Grenoble Alpes, Univ. Savoie Mont Blanc, CNRS, Grenoble INP, IMEP-LAHC, F-38000 Grenoble, France; (C.T.); (M.M.); (X.M.)
| | - Laetitia Rapenne
- University Grenoble Alpes, CNRS, Grenoble INP, LMGP, F-38000 Grenoble, France; (M.V.-P.); (F.M.); (L.R.)
| | - Xavier Mescot
- University Grenoble Alpes, Univ. Savoie Mont Blanc, CNRS, Grenoble INP, IMEP-LAHC, F-38000 Grenoble, France; (C.T.); (M.M.); (X.M.)
| | - Bassem Salem
- University Grenoble Alpes, CNRS, CEA/LETI Minatec, Grenoble INP, LTM, F-38054 Grenoble, France;
| | - Valérie Stambouli
- University Grenoble Alpes, CNRS, Grenoble INP, LMGP, F-38000 Grenoble, France; (M.V.-P.); (F.M.); (L.R.)
- Correspondence: (C.T.); (V.S.)
| |
Collapse
|
9
|
A novel resonance Rayleigh scattering aptasensor for dopamine detection based on an Exonuclease III assisted signal amplification by G - quadruplex nanowires formation. ARAB J CHEM 2020. [DOI: 10.1016/j.arabjc.2020.06.016] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
|
10
|
Pavc D, Wang B, Spindler L, Drevenšek-Olenik I, Plavec J, Šket P. GC ends control topology of DNA G-quadruplexes and their cation-dependent assembly. Nucleic Acids Res 2020; 48:2749-2761. [PMID: 31996902 PMCID: PMC7049726 DOI: 10.1093/nar/gkaa058] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2019] [Revised: 01/17/2020] [Accepted: 01/21/2020] [Indexed: 01/22/2023] Open
Abstract
GCn and GCnCG, where n = (G2AG4AG2), fold into well-defined, dimeric G-quadruplexes with unprecedented folding topologies in the presence of Na+ ions as revealed by nuclear magnetic resonance spectroscopy. Both G-quadruplexes exhibit unique combination of structural elements among which are two G-quartets, A(GGGG)A hexad and GCGC-quartet. Detailed structural characterization uncovered the crucial role of 5'-GC ends in formation of GCn and GCnCG G-quadruplexes. Folding in the presence of 15NH4+ and K+ ions leads to 3'-3' stacking of terminal G-quartets of GCn G-quadruplexes, while 3'-GC overhangs in GCnCG prevent dimerization. Results of the present study expand repertoire of possible G-quadruplex structures. This knowledge will be useful in DNA sequence design for nanotechnological applications that may require specific folding topology and multimerization properties.
Collapse
Affiliation(s)
- Daša Pavc
- Slovenian NMR Center, National Institute of Chemistry, 1000 Ljubljana, Slovenia
- University of Ljubljana, Faculty of Chemistry and Chemical Technology, 1000 Ljubljana, Slovenia
| | - Baifan Wang
- Slovenian NMR Center, National Institute of Chemistry, 1000 Ljubljana, Slovenia
| | - Lea Spindler
- University of Maribor, Faculty of Mechanical Engineering, 2000 Maribor, Slovenia
- Department of Complex Matter, Jozef Stefan Institute, 1000 Ljubljana, Slovenia
| | - Irena Drevenšek-Olenik
- Department of Complex Matter, Jozef Stefan Institute, 1000 Ljubljana, Slovenia
- University of Ljubljana, Faculty of Mathematics and Physics, 1000 Ljubljana, Slovenia
| | - Janez Plavec
- Slovenian NMR Center, National Institute of Chemistry, 1000 Ljubljana, Slovenia
- University of Ljubljana, Faculty of Chemistry and Chemical Technology, 1000 Ljubljana, Slovenia
- EN-FIST Center of Excellence, 1000 Ljubljana, Slovenia
| | - Primož Šket
- Slovenian NMR Center, National Institute of Chemistry, 1000 Ljubljana, Slovenia
| |
Collapse
|
11
|
Marzano M, Falanga AP, Marasco D, Borbone N, D’Errico S, Piccialli G, Roviello GN, Oliviero G. Evaluation of an Analogue of the Marine ε-PLL Peptide as a Ligand of G-quadruplex DNA Structures. Mar Drugs 2020; 18:md18010049. [PMID: 31940851 PMCID: PMC7024349 DOI: 10.3390/md18010049] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Revised: 01/04/2020] [Accepted: 01/09/2020] [Indexed: 12/17/2022] Open
Abstract
ε-poly-l-Lysine (ε-PLL) peptide is a product of the marine bacterium Bacillus subtilis with antibacterial and anticancer activity largely used worldwide as a food preservative. ε-PLL and its synthetic analogue α,ε-poly-l-lysine (α,ε-PLL) are also employed in the biomedical field as enhancers of anticancer drugs and for drug and gene delivery applications. Recently, several studies reported the interaction between these non-canonical peptides and DNA targets. Among the most important DNA targets are the DNA secondary structures known as G-quadruplexes (G4s) which play relevant roles in many biological processes and disease-related mechanisms. The search for novel ligands capable of interfering with G4-driven biological processes elicits growing attention in the screening of new classes of G4 binders. In this context, we have here investigated the potential of α,ε-PLL as a G4 ligand. In particular, the effects of the incubation of two different models of G4 DNA, i.e., the parallel G4 formed by the Pu22 (d[TGAGGGTGGGTAGGGTGGGTAA]) sequence, a mutated and shorter analogue of the G4-forming sequence known as Pu27 located in the promoter of the c-myc oncogene, and the hybrid parallel/antiparallel G4 formed by the human Tel22 (d[AGGGTTAGGGTTAGGGTTAGGG]) telomeric sequence, with α,ε-PLL are discussed in the light of circular dichroism (CD), UV, fluorescence, size exclusion chromatography (SEC), and surface plasmon resonance (SPR) evidence. Even though the SPR results indicated that α,ε-PLL is capable of binding with µM affinity to both the G4 models, spectroscopic and SEC investigations disclosed significant differences in the structural properties of the resulting α,ε-PLL/G4 complexes which support the use of α,ε-PLL as a G4 ligand capable of discriminating among different G4 topologies.
Collapse
Affiliation(s)
- Maria Marzano
- Department of Pharmacy, University of Naples Federico II, Via Domenico Montesano 49, 80131 Naples, Italy
| | - Andrea Patrizia Falanga
- Department of Pharmacy, University of Naples Federico II, Via Domenico Montesano 49, 80131 Naples, Italy
| | - Daniela Marasco
- Department of Pharmacy, University of Naples Federico II, Via Domenico Montesano 49, 80131 Naples, Italy
- Institute of Biostructures and Bioimaging—CNR 1, Via Mezzocannone 16, 80134 Naples, Italy
| | - Nicola Borbone
- Department of Pharmacy, University of Naples Federico II, Via Domenico Montesano 49, 80131 Naples, Italy
| | - Stefano D’Errico
- Department of Pharmacy, University of Naples Federico II, Via Domenico Montesano 49, 80131 Naples, Italy
| | - Gennaro Piccialli
- Department of Pharmacy, University of Naples Federico II, Via Domenico Montesano 49, 80131 Naples, Italy
| | - Giovanni Nicola Roviello
- Institute of Biostructures and Bioimaging—CNR 1, Via Mezzocannone 16, 80134 Naples, Italy
- Correspondence:
| | - Giorgia Oliviero
- Department of Molecular Medicine and Medical Biotechnologies, University of Napoli Federico II, Via Sergio Pansini 5, 80131 Naples, Italy
| |
Collapse
|
12
|
Marzano M, Falanga AP, Dardano P, D'Errico S, Rea I, Terracciano M, De Stefano L, Piccialli G, Borbone N, Oliviero G. π–π stacked DNA G-wire nanostructures formed by a short G-rich oligonucleotide containing a 3′–3′ inversion of polarity site. Org Chem Front 2020. [DOI: 10.1039/d0qo00561d] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Rod-shaped G-wire assemblies potentially useful to obtain new hybrid and conducting materials were obtained by annealing short G-rich oligonucleotides incorporating a 3′–3′ inversion of polarity site in the presence of potassium or ammonium ions.
Collapse
Affiliation(s)
- Maria Marzano
- Department of Pharmacy
- University of Naples Federico II
- 80131 – Naples
- Italy
| | - Andrea P. Falanga
- Department of Pharmacy
- University of Naples Federico II
- 80131 – Naples
- Italy
| | - Principia Dardano
- Institute of Applied Sciences and Intelligent Systems
- National Council Research of Italy
- 80131 – Naples
- Italy
| | | | - Ilaria Rea
- Institute of Applied Sciences and Intelligent Systems
- National Council Research of Italy
- 80131 – Naples
- Italy
| | - Monica Terracciano
- Department of Pharmacy
- University of Naples Federico II
- 80131 – Naples
- Italy
| | - Luca De Stefano
- Institute of Applied Sciences and Intelligent Systems
- National Council Research of Italy
- 80131 – Naples
- Italy
| | - Gennaro Piccialli
- Department of Pharmacy
- University of Naples Federico II
- 80131 – Naples
- Italy
| | - Nicola Borbone
- Department of Pharmacy
- University of Naples Federico II
- 80131 – Naples
- Italy
| | - Giorgia Oliviero
- Department of Molecular Medicine and Medical Biotechnologies
- University of Naples Federico II
- 80131 – Naples
- Italy
| |
Collapse
|
13
|
Cicatiello P, Stanzione I, Dardano P, De Stefano L, Birolo L, De Chiaro A, Monti DM, Petruk G, D'Errico G, Giardina P. Characterization of a Surface-Active Protein Extracted from a Marine Strain of Penicillium chrysogenum. Int J Mol Sci 2019; 20:ijms20133242. [PMID: 31269636 PMCID: PMC6651339 DOI: 10.3390/ijms20133242] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2019] [Revised: 06/26/2019] [Accepted: 06/27/2019] [Indexed: 11/17/2022] Open
Abstract
Marine microorganisms represent a reservoir of new promising secondary metabolites. Surface-active proteins with good emulsification activity can be isolated from fungal species that inhabit the marine environment and can be promising candidates for different biotechnological applications. In this study a novel surface-active protein, named Sap-Pc, was purified from a marine strain of Penicillium chrysogenum. The effect of salt concentration and temperature on protein production was analyzed, and a purification method was set up. The purified protein, identified as Pc13g06930, was annotated as a hypothetical protein. It was able to form emulsions, which were stable for at least one month, with an emulsification index comparable to that of other known surface-active proteins. The surface tension reduction was analyzed as function of protein concentration and a critical micellar concentration of 2 μM was determined. At neutral or alkaline pH, secondary structure changes were monitored over time, concurrently with the appearance of protein precipitation. Formation of amyloid-like fibrils of SAP-Pc was demonstrated by spectroscopic and microscopic analyses. Moreover, the effect of protein concentration, a parameter affecting kinetics of fibril formation, was investigated and an on-pathway involvement of micellar aggregates during the fibril formation process was suggested.
Collapse
Affiliation(s)
- Paola Cicatiello
- Department of Chemical Sciences, University of Naples (Federico II), Via Cinthia, 80126 Naples, Italy
| | - Ilaria Stanzione
- Department of Chemical Sciences, University of Naples (Federico II), Via Cinthia, 80126 Naples, Italy
| | - Principia Dardano
- Institute for Microelectronics and Microsystems, Unit of Naples-National Research Council, Via P. Castellino 111, 80127 Naples, Italy
| | - Luca De Stefano
- Institute for Microelectronics and Microsystems, Unit of Naples-National Research Council, Via P. Castellino 111, 80127 Naples, Italy
| | - Leila Birolo
- Department of Chemical Sciences, University of Naples (Federico II), Via Cinthia, 80126 Naples, Italy
| | - Addolorata De Chiaro
- Department of Chemical Sciences, University of Naples (Federico II), Via Cinthia, 80126 Naples, Italy
| | - Daria Maria Monti
- Department of Chemical Sciences, University of Naples (Federico II), Via Cinthia, 80126 Naples, Italy
| | - Ganna Petruk
- Department of Chemical Sciences, University of Naples (Federico II), Via Cinthia, 80126 Naples, Italy
| | - Gerardino D'Errico
- Department of Chemical Sciences, University of Naples (Federico II), Via Cinthia, 80126 Naples, Italy
| | - Paola Giardina
- Department of Chemical Sciences, University of Naples (Federico II), Via Cinthia, 80126 Naples, Italy.
| |
Collapse
|
14
|
Nici F, Oliviero G, Falanga AP, D'Errico S, Marzano M, Musumeci D, Montesarchio D, Noppen S, Pannecouque C, Piccialli G, Borbone N. Anti-HIV activity of new higher order G-quadruplex aptamers obtained from tetra-end-linked oligonucleotides. Org Biomol Chem 2019. [PMID: 29543291 DOI: 10.1039/c7ob02346d] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
By combining the ability of short G-rich oligodeoxyribonucleotides (ODNs) containing the sequence 5'CGGA3' to form higher order G-quadruplex (G4) complexes with the tetra-end-linked (TEL) concept to produce aptamers targeting the HIV envelope glycoprotein 120 (gp120), three new TEL-ODNs (1-3) having the sequence 5'CGGAGG3' were synthesized with the aim of studying the effect of G4 dimerization on their anti-HIV activity. Furthermore, in order to investigate the effect of the groups at the 5' position, the 5' ends of 1-3 were left uncapped (1) or capped with either the lipophilic dimethoxytrityl (DMT) (2) or the hydrophilic glucosyl-4-phosphate (3) moieties. The here reported results demonstrate that only the DMT-substituted TEL-ODN 2 is effective in protecting human MT-4 cell cultures from HIV infection (76% max protection), notwithstanding all the three new aptamers proved to be capable of forming stable higher order dimeric G4s when annealed in K+-containing buffer, thus suggesting that the recognition of a hydrophobic pocket on the target glycoprotein by the aptamers represents a main structural feature for triggering their anti-HIV activity.
Collapse
Affiliation(s)
- F Nici
- Department of Pharmacy, University of Naples Federico II, Via Domenico Montesano 49, 80131, Napoli, Italy.
| | - G Oliviero
- Department of Molecular Medicine and Medical Biotechnologies, University of Naples Federico II, Napoli, Italy
| | - A P Falanga
- Department of Pharmacy, University of Naples Federico II, Via Domenico Montesano 49, 80131, Napoli, Italy.
| | - S D'Errico
- Department of Pharmacy, University of Naples Federico II, Via Domenico Montesano 49, 80131, Napoli, Italy.
| | - M Marzano
- Department of Pharmacy, University of Naples Federico II, Via Domenico Montesano 49, 80131, Napoli, Italy.
| | - D Musumeci
- Department of Chemical Sciences, University of Naples Federico II, Napoli, Italy
| | - D Montesarchio
- Department of Chemical Sciences, University of Naples Federico II, Napoli, Italy
| | - S Noppen
- KU Leuven, Department of Microbiology and Immunology, Laboratory of Virology and Chemotherapy, Rega Institute for Medical Research, Herestraat 49, B-3000 Leuven, Belgium
| | - C Pannecouque
- KU Leuven, Department of Microbiology and Immunology, Laboratory of Virology and Chemotherapy, Rega Institute for Medical Research, Herestraat 49, B-3000 Leuven, Belgium
| | - G Piccialli
- Department of Pharmacy, University of Naples Federico II, Via Domenico Montesano 49, 80131, Napoli, Italy.
| | - N Borbone
- Department of Pharmacy, University of Naples Federico II, Via Domenico Montesano 49, 80131, Napoli, Italy.
| |
Collapse
|
15
|
Marzano M, Falanga AP, D'Errico S, Pinto B, Roviello GN, Piccialli G, Oliviero G, Borbone N. New G-Quadruplex-Forming Oligodeoxynucleotides Incorporating a Bifunctional Double-Ended Linker (DEL): Effects of DEL Size and ODNs Orientation on the Topology, Stability, and Molecularity of DEL-G-Quadruplexes. Molecules 2019; 24:molecules24030654. [PMID: 30759875 PMCID: PMC6384581 DOI: 10.3390/molecules24030654] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2019] [Revised: 02/04/2019] [Accepted: 02/06/2019] [Indexed: 01/13/2023] Open
Abstract
G-quadruplexes (G4s) are unusual secondary structures of DNA occurring in guanosine-rich oligodeoxynucleotide (ODN) strands that are extensively studied for their relevance to the biological processes in which they are involved. In this study, we report the synthesis of a new kind of G4-forming molecule named double-ended-linker ODN (DEL-ODN), in which two TG₄T strands are attached to the two ends of symmetric, non-nucleotide linkers. Four DEL-ODNs differing for the incorporation of either a short or long linker and the directionality of the TG₄T strands were synthesized, and their ability to form G4 structures and/or multimeric species was investigated by PAGE, HPLC⁻size-exclusion chromatography (HPLC⁻SEC), circular dichroism (CD), and NMR studies in comparison with the previously reported monomeric tetra-ended-linker (TEL) analogues and with the corresponding tetramolecular species (TG₄T)₄. The structural characterization of DEL-ODNs confirmed the formation of stable, bimolecular DEL-G4s for all DEL-ODNs, as well as of additional DEL-G4 multimers with higher molecular weights, thus suggesting a way towards the obtainment of thermally stable DNA nanostructures based on reticulated DEL-G4s.
Collapse
Affiliation(s)
- Maria Marzano
- Dipartimento di Farmacia, Università degli Studi di Napoli Federico II, via Domenico Montesano 49, 80131 Napoli, Italy.
| | - Andrea Patrizia Falanga
- Dipartimento di Farmacia, Università degli Studi di Napoli Federico II, via Domenico Montesano 49, 80131 Napoli, Italy.
| | - Stefano D'Errico
- Dipartimento di Farmacia, Università degli Studi di Napoli Federico II, via Domenico Montesano 49, 80131 Napoli, Italy.
| | - Brunella Pinto
- Dipartimento di Chimica, Università degli Studi di Milano, via Camillo Golgi 19, 20133 Milano, Italy.
| | | | - Gennaro Piccialli
- Dipartimento di Farmacia, Università degli Studi di Napoli Federico II, via Domenico Montesano 49, 80131 Napoli, Italy.
| | - Giorgia Oliviero
- Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Università degli Studi di Napoli Federico II, via Sergio Pansini 5, 80131 Napoli, Italy.
| | - Nicola Borbone
- Dipartimento di Farmacia, Università degli Studi di Napoli Federico II, via Domenico Montesano 49, 80131 Napoli, Italy.
| |
Collapse
|
16
|
Abstract
DNA has played an early and powerful role in the development of bottom-up nanotechnologies, not least because of DNA's precise, predictable, and controllable properties of assembly on the nanometer scale. Watson-Crick complementarity has been used to build complex 2D and 3D architectures and design a number of nanometer-scale systems for molecular computing, transport, motors, and biosensing applications. Most of such devices are built with classical B-DNA helices and involve classical A-T/U and G-C base pairs. However, in addition to the above components underlying the iconic double helix, a number of alternative pairing schemes of nucleobases are known. This review focuses on two of these noncanonical classes of DNA helices: G-quadruplexes and the i-motif. The unique properties of these two classes of DNA helix have been utilized toward some remarkable constructions and applications: G-wires; nanostructures such as DNA origami; reconfigurable structures and nanodevices; the formation and utilization of hemin-utilizing DNAzymes, capable of generating varied outputs from biosensing nanostructures; composite nanostructures made up of DNA as well as inorganic materials; and the construction of nanocarriers that show promise for the therapeutics of diseases.
Collapse
Affiliation(s)
- Jean-Louis Mergny
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry & Chemical Engineering , Nanjing University , Nanjing 210023 , China.,ARNA Laboratory , Université de Bordeaux, Inserm U 1212, CNRS UMR5320, IECB , Pessac 33600 , France.,Institute of Biophysics of the CAS , v.v.i., Královopolská 135 , 612 65 Brno , Czech Republic
| | - Dipankar Sen
- Department of Molecular Biology & Biochemistry , Simon Fraser University , Burnaby , British Columbia V5A 1S6 , Canada.,Department of Chemistry , Simon Fraser University , Burnaby , British Columbia V5A 1S6 , Canada
| |
Collapse
|
17
|
Shankaraswamy J, Tyagi S, Singh A, Miyoshi D, Saxena S. Metal sensitive and DNA concentration dependent structural rearrangement of short oligonucleotide into large suprastructures. J Biomol Struct Dyn 2018; 37:2211-2218. [PMID: 30047312 DOI: 10.1080/07391102.2018.1484816] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Formation of higher order structures, such as G-quadruplexes and G-quadruplex based large suprastructures into long G-wires and liquid crystals is promising elements for use in healthcare for drug delivery as they are mechanically and thermally stable. In this study, we studied the structures of short 11-mer oligonucleotide 5'-G2AG5AG2-3'(11Pu) which is observed in 3'-UTR region of c-jun protooncogene. We used circular dichroism, UV-thermal melting, native gel electrophoresis and atomic force microscopy to determine the structure of 11Pu. CD results showed that 11Pu formed a mixed G-quadruplex in the presence of Na+ with and without Mg2+, while it formed a parallel G-quadruplex in the presence of 100 mM K+ with or without Mg2+. Cation selectivity in inducing the formation of large superstructures was observed in the presence of 100 mM K+ with 10 mM Mg2+. On the contrary, 10 mM Ca2+ did not induce the suprastructures. It was further demonstrated that Mg2+ at low concentration induced a parallel G-quadruplex of 11Pu, whereas at 10 mM Mg2+ induced a large suprastructure. AFM Images showed that 11Pu formed a G-wire, a liquid crystals and a crystalline lattice depending on the concentration of 11Pu and Mg2+. These insights may be employed to design G quadruplex-based nanowires for targeted drug delivery as well as interesting candidates for molecular nanowires. Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- J Shankaraswamy
- a Amity International Centre for Post Harvest Technology and Cold Chain Management, Amity University , Noida , Uttar Pradesh 201313 , India
| | - Shikhar Tyagi
- b Department of Biotechnology, Amity University Uttar Pradesh, Noida 201313, India
| | - Anju Singh
- c Department of Chemistry, Nucleic Acids Research laboratory , University of Delhi (North Campus) , Delhi 110007 , India
| | - Daisuke Miyoshi
- d Faculty of Frontiers of Innovative Research in Science and Technology (FIRST) , Konan University , 7-1-20 Minatojima-minamimachi , Chuo-ku, Kobe , Hyogo 650-0047 , Japan
| | - Sarika Saxena
- b Department of Biotechnology, Amity University Uttar Pradesh, Noida 201313, India
| |
Collapse
|
18
|
Varizhuk AM, Protopopova AD, Tsvetkov VB, Barinov NA, Podgorsky VV, Tankevich MV, Vlasenok MA, Severov VV, Smirnov IP, Dubrovin EV, Klinov DV, Pozmogova GE. Polymorphism of G4 associates: from stacks to wires via interlocks. Nucleic Acids Res 2018; 46:8978-8992. [PMID: 30107602 PMCID: PMC6158749 DOI: 10.1093/nar/gky729] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2018] [Revised: 07/30/2018] [Accepted: 07/31/2018] [Indexed: 01/16/2023] Open
Abstract
We examined the assembly of DNA G-quadruplexes (G4s) into higher-order structures using atomic force microscopy, optical and electrophoretic methods, NMR spectroscopy and molecular modeling. Our results suggest that parallel blunt-ended G4s with single-nucleotide or modified loops may form different types of multimers, ranging from stacks of intramolecular structures and/or interlocked dimers and trimers to wires. Decreasing the annealing rate and increasing salt or oligonucleotide concentrations shifted the equilibrium from intramolecular G4s to higher-order structures. Control antiparallel and hybrid G4s demonstrated no polymorphism or aggregation in our experiments. The modification that mimics abasic sites (1',2'-dideoxyribose residues) in loops enhanced the oligomerization/multimerization of both the 2-tetrad and 3-tetrad G4 motifs. Our results shed light on the rules that govern G4 rearrangements. Gaining control over G4 folding enables the harnessing of the full potential of such structures for guided assembly of supramolecular DNA structures for nanotechnology.
Collapse
Affiliation(s)
- Anna M Varizhuk
- Biophysics Department, Federal Research and Clinical Center of Physical-Chemical Medicine, Moscow 119435, Russia
| | - Anna D Protopopova
- Biophysics Department, Federal Research and Clinical Center of Physical-Chemical Medicine, Moscow 119435, Russia
| | - Vladimir B Tsvetkov
- Biophysics Department, Federal Research and Clinical Center of Physical-Chemical Medicine, Moscow 119435, Russia
| | - Nikolay A Barinov
- Biophysics Department, Federal Research and Clinical Center of Physical-Chemical Medicine, Moscow 119435, Russia
| | - Victor V Podgorsky
- Biophysics Department, Federal Research and Clinical Center of Physical-Chemical Medicine, Moscow 119435, Russia
| | - Maria V Tankevich
- Biophysics Department, Federal Research and Clinical Center of Physical-Chemical Medicine, Moscow 119435, Russia
| | - Maria A Vlasenok
- Biophysics Department, Federal Research and Clinical Center of Physical-Chemical Medicine, Moscow 119435, Russia
| | - Vyacheslav V Severov
- Biophysics Department, Federal Research and Clinical Center of Physical-Chemical Medicine, Moscow 119435, Russia
| | - Igor P Smirnov
- Biophysics Department, Federal Research and Clinical Center of Physical-Chemical Medicine, Moscow 119435, Russia
| | - Evgeniy V Dubrovin
- Biophysics Department, Federal Research and Clinical Center of Physical-Chemical Medicine, Moscow 119435, Russia
| | - Dmitry V Klinov
- Biophysics Department, Federal Research and Clinical Center of Physical-Chemical Medicine, Moscow 119435, Russia
| | - Galina E Pozmogova
- Biophysics Department, Federal Research and Clinical Center of Physical-Chemical Medicine, Moscow 119435, Russia
| |
Collapse
|
19
|
Maguire D, Neytchev O, Talwar D, McMillan D, Shiels PG. Telomere Homeostasis: Interplay with Magnesium. Int J Mol Sci 2018; 19:E157. [PMID: 29303978 PMCID: PMC5796106 DOI: 10.3390/ijms19010157] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2017] [Revised: 12/21/2017] [Accepted: 01/03/2018] [Indexed: 12/14/2022] Open
Abstract
Telomere biology, a key component of the hallmarks of ageing, offers insight into dysregulation of normative ageing processes that accompany age-related diseases such as cancer. Telomere homeostasis is tightly linked to cellular metabolism, and in particular with mitochondrial physiology, which is also diminished during cellular senescence and normative physiological ageing. Inherent in the biochemistry of these processes is the role of magnesium, one of the main cellular ions and an essential cofactor in all reactions that use ATP. Magnesium plays an important role in many of the processes involved in regulating telomere structure, integrity and function. This review explores the mechanisms that maintain telomere structure and function, their influence on circadian rhythms and their impact on health and age-related disease. The pervasive role of magnesium in telomere homeostasis is also highlighted.
Collapse
Affiliation(s)
- Donogh Maguire
- Emergency Medicine Department, Glasgow Royal Infirmary, Glasgow G4 0SF, UK.
- Academic Unit of Surgery, School of Medicine, University of Glasgow, Glasgow Royal Infirmary, Glasgow G4 0SF, UK.
| | - Ognian Neytchev
- Section of Epigenetics, Institute of Cancer Sciences, University of Glasgow, Glasgow G61 1QH, UK.
| | - Dinesh Talwar
- The Scottish Trace Element and Micronutrient Reference Laboratory, Department of Biochemistry, Royal Infirmary, Glasgow G31 2ER, UK.
| | - Donald McMillan
- Academic Unit of Surgery, School of Medicine, University of Glasgow, Glasgow Royal Infirmary, Glasgow G4 0SF, UK.
| | - Paul G Shiels
- Section of Epigenetics, Institute of Cancer Sciences, University of Glasgow, Glasgow G61 1QH, UK.
| |
Collapse
|
20
|
Sagi J. In What Ways Do Synthetic Nucleotides and Natural Base Lesions Alter the Structural Stability of G-Quadruplex Nucleic Acids? J Nucleic Acids 2017; 2017:1641845. [PMID: 29181193 PMCID: PMC5664352 DOI: 10.1155/2017/1641845] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2017] [Accepted: 08/15/2017] [Indexed: 01/03/2023] Open
Abstract
Synthetic analogs of natural nucleotides have long been utilized for structural studies of canonical and noncanonical nucleic acids, including the extensively investigated polymorphic G-quadruplexes (GQs). Dependence on the sequence and nucleotide modifications of the folding landscape of GQs has been reviewed by several recent studies. Here, an overview is compiled on the thermodynamic stability of the modified GQ folds and on how the stereochemical preferences of more than 70 synthetic and natural derivatives of nucleotides substituting for natural ones determine the stability as well as the conformation. Groups of nucleotide analogs only stabilize or only destabilize the GQ, while the majority of analogs alter the GQ stability in both ways. This depends on the preferred syn or anti N-glycosidic linkage of the modified building blocks, the position of substitution, and the folding architecture of the native GQ. Natural base lesions and epigenetic modifications of GQs explored so far also stabilize or destabilize the GQ assemblies. Learning the effect of synthetic nucleotide analogs on the stability of GQs can assist in engineering a required stable GQ topology, and exploring the in vitro action of the single and clustered natural base damage on GQ architectures may provide indications for the cellular events.
Collapse
Affiliation(s)
- Janos Sagi
- Rimstone Laboratory, RLI, Carlsbad, CA 92010, USA
| |
Collapse
|
21
|
Oliviero G, D'Errico S, Pinto B, Nici F, Dardano P, Rea I, De Stefano L, Mayol L, Piccialli G, Borbone N. Self-Assembly of G-Rich Oligonucleotides Incorporating a 3'-3' Inversion of Polarity Site: A New Route Towards G-Wire DNA Nanostructures. ChemistryOpen 2017; 6:599-605. [PMID: 28794955 PMCID: PMC5542749 DOI: 10.1002/open.201700024] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2017] [Indexed: 01/20/2023] Open
Abstract
Obtaining DNA nanostructures with potential applications in drug discovery, diagnostics, and electronics in a simple and affordable way represents one of the hottest topics in nanotechnological and medical sciences. Herein, we report a novel strategy to obtain structurally homogeneous DNA G-wire nanostructures of known length, starting from the short unmodified G-rich oligonucleotide d(5'-CGGT-3'-3'-GGC-5') (1) incorporating a 3'-3' inversion of polarity site. The reported approach allowed us to obtain long G-wire assemblies through 5'-5' π-π stacking interactions in between the tetramolecular G-quadruplex building blocks that form when 1 is annealed in the presence of potassium ions. Our results expand the repertoire of synthetic methodologies to obtain new tailored DNA G-wire nanostructures.
Collapse
Affiliation(s)
- Giorgia Oliviero
- Department of Molecular Medicine and Medical Biotechnologies Via S. Pansini 5 80131 Napoli Italy
| | - Stefano D'Errico
- Department of Pharmacy Università degli Studi di Napoli Federico II Via D. Montesano 49 80131 Napoli Italy
| | - Brunella Pinto
- Department of Pharmacy Università degli Studi di Napoli Federico II Via D. Montesano 49 80131 Napoli Italy
| | - Fabrizia Nici
- Department of Pharmacy Università degli Studi di Napoli Federico II Via D. Montesano 49 80131 Napoli Italy
| | - Principia Dardano
- Institute for Microelectronics and Microsystems Consiglio Nazionale delle Ricerche Via P. Castellino 111 80131 Napoli Italy
| | - Ilaria Rea
- Institute for Microelectronics and Microsystems Consiglio Nazionale delle Ricerche Via P. Castellino 111 80131 Napoli Italy
| | - Luca De Stefano
- Institute for Microelectronics and Microsystems Consiglio Nazionale delle Ricerche Via P. Castellino 111 80131 Napoli Italy
| | - Luciano Mayol
- Department of Pharmacy Università degli Studi di Napoli Federico II Via D. Montesano 49 80131 Napoli Italy
| | - Gennaro Piccialli
- Department of Pharmacy Università degli Studi di Napoli Federico II Via D. Montesano 49 80131 Napoli Italy
| | - Nicola Borbone
- Department of Pharmacy Università degli Studi di Napoli Federico II Via D. Montesano 49 80131 Napoli Italy
| |
Collapse
|
22
|
Li ZQ, Liao TC, Dong C, Yang JW, Chen XJ, Liu L, Luo Y, Liang YY, Chen WH, Zhou CQ. Specifically targeting mixed-type dimeric G-quadruplexes using berberine dimers. Org Biomol Chem 2017; 15:10221-10229. [DOI: 10.1039/c7ob02326j] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Berberine dimer (1a) with the shortest polyether linker demonstrates highest binding affinity, selectivity and thermal stabilization towards mixed-type dimeric quadruplexes.
Collapse
|