1
|
Kitahara M, Suzuki S, Matsudaira K, Yagi S, Fujiki M, Imai Y. Red‐Green‐Blue‐Yellow (RGBY) Magnetic Circularly Polarised Luminescence (MCPL) from Optically Inactive Phosphorescent Ir(III) Complexes. ChemistrySelect 2021. [DOI: 10.1002/slct.202103117] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Maho Kitahara
- Department of Applied Chemistry Faculty of Science and Engineering Kindai University 3-4-1 Kowakae Higashi Osaka 577-8502
| | - Seika Suzuki
- Department of Applied Chemistry Faculty of Science and Engineering Kindai University 3-4-1 Kowakae Higashi Osaka 577-8502
| | - Kana Matsudaira
- Department of Applied Chemistry Faculty of Science and Engineering Kindai University 3-4-1 Kowakae Higashi Osaka 577-8502
| | - Shigeyuki Yagi
- Department of Applied Chemistry Graduate School of Engineering Osaka Prefecture University, 1–1 Gakuen-cho, Naka-ku Sakai Osaka 599-8531 Japan
| | - Michiya Fujiki
- Graduate School of Science and Technology Nara Institute of Science and Technology, 8916–5 Takayama Ikoma Nara 630-0192 Japan
| | - Yoshitane Imai
- Department of Applied Chemistry Faculty of Science and Engineering Kindai University 3-4-1 Kowakae Higashi Osaka 577-8502
| |
Collapse
|
2
|
Yang S, Harris JD, Lambai A, Jeliazkov LL, Mohanty G, Zeng H, Priimagi A, Aprahamian I. Multistage Reversible Tg Photomodulation and Hardening of Hydrazone-Containing Polymers. J Am Chem Soc 2021; 143:16348-16353. [PMID: 34590854 DOI: 10.1021/jacs.1c07504] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The glass transition temperature (Tg) of a series of polyacrylate- and polymethacrylate-based polymers having bistable hydrazone photoswitches as pendants increases upon photoisomerization. The ensuing photohardening of the polymeric network was corroborated using nanoindentation measurements. The bistability of the switch allowed us to lock-in and sustain multiple Tg values in the same polymeric material as a function of the hydrazone switch's Z/E isomer ratio, even at elevated temperatures.
Collapse
Affiliation(s)
- Sirun Yang
- Department of Chemistry, Dartmouth College, Hanover, New Hampshire 03755, United States
| | - Jared D Harris
- Department of Chemistry, Dartmouth College, Hanover, New Hampshire 03755, United States
| | - Aloshious Lambai
- Faculty of Engineering and Natural Sciences, Tampere University, Korkeakoulunkatu 10, Tampere, 33720 Finland
| | - Laura L Jeliazkov
- Department of Chemistry, Dartmouth College, Hanover, New Hampshire 03755, United States
| | - Gaurav Mohanty
- Faculty of Engineering and Natural Sciences, Tampere University, Korkeakoulunkatu 10, Tampere, 33720 Finland
| | - Hao Zeng
- Faculty of Engineering and Natural Sciences, Tampere University, Korkeakoulunkatu 10, Tampere, 33720 Finland
| | - Arri Priimagi
- Faculty of Engineering and Natural Sciences, Tampere University, Korkeakoulunkatu 10, Tampere, 33720 Finland
| | - Ivan Aprahamian
- Department of Chemistry, Dartmouth College, Hanover, New Hampshire 03755, United States
| |
Collapse
|
3
|
Kim Y, Mafy NN, Maisonneuve S, Lin C, Tamaoki N, Xie J. Glycomacrocycle-Based Azobenzene Derivatives as Chiral Dopants for Photoresponsive Cholesteric Liquid Crystals. ACS APPLIED MATERIALS & INTERFACES 2020; 12:52146-52155. [PMID: 33141559 DOI: 10.1021/acsami.0c14880] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
We demonstrate photoresponsive cholesteric liquid crystals (CLCs) doped with glycomacrocyclic azobenzene derivatives, which exhibit large conformational changes, providing dynamic control of helical superstructures in response to a light stimulus. An unprecedented shortening of the helical pitch length and the empowerment of helical twisting power up to 500% are observed upon trans (E) to cis (Z) photoisomerization. Light-driven dynamic helix twisting and untwisting behavior affords the first example of glycomacrocyclic azobenzene-based CLCs, which can drive the mechanical movement of micro-objects. Two modes of rotation-two-directional or one-directional rotational motion (crankshaft mode)-are realized. In particular, the latter mode based on the reversible cholesteric texture transition between homogeneous stripes and focal conics leads to the accumulation of the rotation angles achieving the amplified mechanical movements.
Collapse
Affiliation(s)
- Yuna Kim
- Research Institute for Electronic Science, Hokkaido University, N-20, W-10, Kita-Ku, Sapporo 001-0020, Japan
| | - Noushaba Nusrat Mafy
- Research Institute for Electronic Science, Hokkaido University, N-20, W-10, Kita-Ku, Sapporo 001-0020, Japan
| | - Stéphane Maisonneuve
- Photophysique et Photochimie Supramoléculaires et Macromoléculaires, Institut d'Alembert, Université Paris-Saclay, ENS Paris-Saclay, CNRS, 4 Avenue des Sciences, 91190 Gif-sur-Yvette, France
| | - Chaoqi Lin
- Photophysique et Photochimie Supramoléculaires et Macromoléculaires, Institut d'Alembert, Université Paris-Saclay, ENS Paris-Saclay, CNRS, 4 Avenue des Sciences, 91190 Gif-sur-Yvette, France
| | - Nobuyuki Tamaoki
- Research Institute for Electronic Science, Hokkaido University, N-20, W-10, Kita-Ku, Sapporo 001-0020, Japan
| | - Juan Xie
- Photophysique et Photochimie Supramoléculaires et Macromoléculaires, Institut d'Alembert, Université Paris-Saclay, ENS Paris-Saclay, CNRS, 4 Avenue des Sciences, 91190 Gif-sur-Yvette, France
| |
Collapse
|
4
|
Sang Y, Han J, Zhao T, Duan P, Liu M. Circularly Polarized Luminescence in Nanoassemblies: Generation, Amplification, and Application. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2020; 32:e1900110. [PMID: 31394014 DOI: 10.1002/adma.201900110] [Citation(s) in RCA: 448] [Impact Index Per Article: 112.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2019] [Revised: 05/13/2019] [Indexed: 05/22/2023]
Abstract
Currently, the development of circularly polarized luminescent (CPL) materials has drawn extensive attention due to the numerous potential applications in optical data storage, displays, backlights in 3D displays, and so on. While the fabrication of CPL-active materials generally requires chiral luminescent molecules, the introduction of the "self-assembly" concept offers a new perspective in obtaining the CPL-active materials. Following this approach, various self-assembled materials, including organic-, inorganic-, and hybrid systems can be endowed with CPL properties. Benefiting from the advantages of self-assembly, not only chiral molecules, but also achiral species, as well as inorganic nanoparticles have potential to be self-assembled into chiral nanoassemblies showing CPL activity. In addition, the dissymmetry factor, an important parameter of CPL materials, can be enhanced through various pathways of self-assembly. Here, the present status and progress of self-assembled nanomaterials with CPL activity are reviewed. An overview of the key factors in regulating chiral emission materials at the supramolecular level will largely boost their application in multidisciplinary fields.
Collapse
Affiliation(s)
- Yutao Sang
- Beijing National Laboratory for Molecular Science, CAS Key Laboratory of Colloid Interface and Chemical Thermodynamics, Institute of Chemistry, Chinese Academy of Sciences, No. 2 ZhongGuanCun BeiYiJie, Beijing, 100190, P. R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Jianlei Han
- CAS Center for Excellence in Nanoscience, CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, Division of Nanophotonics, National Center for Nanoscience and Technology (NCNST), No. 11 ZhongGuanCun BeiYiTiao, Beijing, 100190, P. R. China
| | - Tonghan Zhao
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
- CAS Center for Excellence in Nanoscience, CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, Division of Nanophotonics, National Center for Nanoscience and Technology (NCNST), No. 11 ZhongGuanCun BeiYiTiao, Beijing, 100190, P. R. China
| | - Pengfei Duan
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
- CAS Center for Excellence in Nanoscience, CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, Division of Nanophotonics, National Center for Nanoscience and Technology (NCNST), No. 11 ZhongGuanCun BeiYiTiao, Beijing, 100190, P. R. China
| | - Minghua Liu
- Beijing National Laboratory for Molecular Science, CAS Key Laboratory of Colloid Interface and Chemical Thermodynamics, Institute of Chemistry, Chinese Academy of Sciences, No. 2 ZhongGuanCun BeiYiJie, Beijing, 100190, P. R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
- CAS Center for Excellence in Nanoscience, CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, Division of Nanophotonics, National Center for Nanoscience and Technology (NCNST), No. 11 ZhongGuanCun BeiYiTiao, Beijing, 100190, P. R. China
| |
Collapse
|
5
|
Hou J, Liao J, Feng Y, Feringa BL, Chen J, Li H, Zhou G. Binary Supramolecular Chirality "1/0" Switched by Hierarchical Photoisomerization of a Flower-Like Compound with a Binaphthol Core and Alkyl-Functionalized Azobenzene Side Chains. Chempluschem 2020; 85:1104-1110. [PMID: 32133756 DOI: 10.1002/cplu.202000049] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Revised: 02/17/2020] [Indexed: 01/03/2023]
Abstract
Chiral supramolecular assemblies are abundant in nature, but controlling the chirality of artificial systems still remains a challenge. In this work, we developed a system where supramolecular chirality can be controlled between chiral and achiral states, namely a chiral "1/0" switch using a flower-like azobenzene compound with a binaphthol core. Upon photoisomerization by ultraviolet irradiation, the terminal alkyl tails envelop the chiral "centre" with a reduction in the dihedral angle of the binaphthol moiety from 76.1° to 61.4°, like "closing petals". In the doped liquid crystal E7 matrix, this hierarchical conformational transition prevents the transfer of chirality to the host liquid crystal, resulting in a degradation from cholesteric phase (HTP value: 13.84 μm-1 ) to an achiral nematic phase.
Collapse
Affiliation(s)
- Jiaxin Hou
- Guangdong Provincial Key Laboratory of Optical Information Materials and Technology & Institute of Electronic Paper Displays South China Academy of Advanced Optoelectronics, South China Normal University, Guangzhou, 510006, P. R. China.,National Center for International Research on Green Optoelectronics, South China Normal University, Guangzhou, 510006, P. R. China
| | - Jinglun Liao
- Guangdong Provincial Key Laboratory of Optical Information Materials and Technology & Institute of Electronic Paper Displays South China Academy of Advanced Optoelectronics, South China Normal University, Guangzhou, 510006, P. R. China.,National Center for International Research on Green Optoelectronics, South China Normal University, Guangzhou, 510006, P. R. China
| | - Yancong Feng
- Guangdong Provincial Key Laboratory of Optical Information Materials and Technology & Institute of Electronic Paper Displays South China Academy of Advanced Optoelectronics, South China Normal University, Guangzhou, 510006, P. R. China.,National Center for International Research on Green Optoelectronics, South China Normal University, Guangzhou, 510006, P. R. China
| | - Ben L Feringa
- Guangdong Provincial Key Laboratory of Optical Information Materials and Technology & Institute of Electronic Paper Displays South China Academy of Advanced Optoelectronics, South China Normal University, Guangzhou, 510006, P. R. China.,National Center for International Research on Green Optoelectronics, South China Normal University, Guangzhou, 510006, P. R. China
| | - Jiawen Chen
- Guangdong Provincial Key Laboratory of Optical Information Materials and Technology & Institute of Electronic Paper Displays South China Academy of Advanced Optoelectronics, South China Normal University, Guangzhou, 510006, P. R. China.,National Center for International Research on Green Optoelectronics, South China Normal University, Guangzhou, 510006, P. R. China
| | - Hao Li
- Guangdong Provincial Key Laboratory of Optical Information Materials and Technology & Institute of Electronic Paper Displays South China Academy of Advanced Optoelectronics, South China Normal University, Guangzhou, 510006, P. R. China.,National Center for International Research on Green Optoelectronics, South China Normal University, Guangzhou, 510006, P. R. China
| | - Guofu Zhou
- Guangdong Provincial Key Laboratory of Optical Information Materials and Technology & Institute of Electronic Paper Displays South China Academy of Advanced Optoelectronics, South China Normal University, Guangzhou, 510006, P. R. China.,National Center for International Research on Green Optoelectronics, South China Normal University, Guangzhou, 510006, P. R. China
| |
Collapse
|
6
|
Kim Y, Tamaoki N. Photoresponsive Chiral Dopants: Light‐Driven Helicity Manipulation in Cholesteric Liquid Crystals for Optical and Mechanical Functions. CHEMPHOTOCHEM 2019. [DOI: 10.1002/cptc.201900034] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Yuna Kim
- Research Institute for Electronic ScienceHokkaido University N-20, W-10, Kita-Ku, Sapporo Hokkaido 001-0020 JAPAN
| | - Nobuyuki Tamaoki
- Research Institute for Electronic ScienceHokkaido University N-20, W-10, Kita-Ku, Sapporo Hokkaido 001-0020 JAPAN
| |
Collapse
|
7
|
Moran MJ, Magrini M, Walba DM, Aprahamian I. Driving a Liquid Crystal Phase Transition Using a Photochromic Hydrazone. J Am Chem Soc 2018; 140:13623-13627. [DOI: 10.1021/jacs.8b09622] [Citation(s) in RCA: 57] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Mark J. Moran
- Department of Chemistry, Dartmouth College, Hanover, New Hampshire 03755, United States
| | - Mitchell Magrini
- Department of Chemistry and Biochemistry, University of Colorado, Boulder, Colorado 80309, United States
| | - David M. Walba
- Department of Chemistry and Biochemistry, University of Colorado, Boulder, Colorado 80309, United States
| | - Ivan Aprahamian
- Department of Chemistry, Dartmouth College, Hanover, New Hampshire 03755, United States
| |
Collapse
|
8
|
Narazaki Y, Nishikawa H, Higuchi H, Okumura Y, Kikuchi H. Substituent effects of bridged binaphthyl-type chiral dopants on the helical twisting power in dopant-induced chiral liquid crystals. RSC Adv 2018; 8:971-979. [PMID: 35538948 PMCID: PMC9077017 DOI: 10.1039/c7ra12465a] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2017] [Accepted: 12/18/2017] [Indexed: 11/26/2022] Open
Abstract
A new series of chiral dopants, (R)-6,6′-halogenated (1b–1e, X = F, Cl, Br and I) and -methylated (1f) binaphthyl compounds, were designed and synthesized to create chiral liquid crystals by doping them into an achiral nematic liquid crystal (NLC). The influence of halogen (X = F, Cl, Br and I) and methyl substituent factors, such as steric, polar, and polarizability properties, on the helical twisting power (HTP) and their temperature dependences on the chiral dopants were investigated in two host NLCs with different characteristics, fluorinated JC-1041XX and N-(4-methoxybenzylidene)-4-butylaniline (MBBA). The chiral dopants possessing less steric and larger polarizability factors increased the HTP values. The structural similarity and electrostatic arene–arene interactions between the chiral dopants and the NLC molecules also exerted important influences on these values. The temperature dependence of the HTP (HTPt.d.) values also correlated well with the steric and polarizability substituents factors in the two host NLCs. Their correlation coefficients (R2) depended on the molecular structural similarity between the chiral dopant and the NLC. A systematic study of the induced helical twisting power by the 6,6′-substituted bridged binaphthyl-type chiral dopants.![]()
Collapse
Affiliation(s)
- Yu Narazaki
- Interdisciplinary Graduate School of Engineering Sciences, Kyushu University 6-1, Kasuga-koen Kasuga Fukuoka 816-8580 Japan
| | - Hiroya Nishikawa
- Institute for Materials Chemistry and Engineering, Kyushu University 6-1, Kasuga-koen Kasuga Fukuoka 816-8580 Japan
| | - Hiroki Higuchi
- Institute for Materials Chemistry and Engineering, Kyushu University 6-1, Kasuga-koen Kasuga Fukuoka 816-8580 Japan
| | - Yasushi Okumura
- Institute for Materials Chemistry and Engineering, Kyushu University 6-1, Kasuga-koen Kasuga Fukuoka 816-8580 Japan
| | - Hirotsugu Kikuchi
- Institute for Materials Chemistry and Engineering, Kyushu University 6-1, Kasuga-koen Kasuga Fukuoka 816-8580 Japan
| |
Collapse
|
9
|
Nishikawa H, Mochizuki D, Higuchi H, Okumura Y, Kikuchi H. Reversible Broad-Spectrum Control of Selective Reflections of Chiral Nematic Phases by Closed-/Open-Type Axially Chiral Azo Dopants. ChemistryOpen 2017; 6:710-720. [PMID: 29226059 PMCID: PMC5715284 DOI: 10.1002/open.201700121] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2017] [Indexed: 12/12/2022] Open
Abstract
We demonstrate reversible RGB-color photocontrol of a chiral nematic liquid crystal (N*LC) by using newly synthesized closed- and open-type chiral dopants. The photoswitching elements in the dopants are azobenzene units on axially chiral binaphthyl cores. Owing to cis-trans photoisomerization of the azobenzene units, both closed- and open-type compounds showed higher solubility, larger helical twisting power (HTP), and larger changes in HTP than conventional chiral dopants in host LCs. Thus, even at very low dopant concentrations, we successfully controlled the chirality of the induced helical structure of the N*LCs. Consequently, the N*LCs reflected right- and left-handed circularly polarized light (CPL) under a light stimulus. In the N*LCs with closed-type chiral dopants, the RGB-color reflection was reversibly controlled within several seconds. Interestingly, the open-type chiral dopant reversibly inverted CPL with opposite handedness in the near and short-wave IR regions. These novel materials are expected to realize new applications and perspectives in color information and similar technologies.
Collapse
Affiliation(s)
- Hiroya Nishikawa
- Institute for Material Chemistry and EngineeringKyushu University6-1 Kasuga-Koen, KasugaFukuoka816-8580Japan
| | - Daigou Mochizuki
- Interdisciplinary Graduate School of Engineering SciencesKyushu University6-1 Kasuga-Koen, KasugaFukuoka816–8580Japan
| | - Hiroki Higuchi
- Institute for Material Chemistry and EngineeringKyushu University6-1 Kasuga-Koen, KasugaFukuoka816-8580Japan
| | - Yasushi Okumura
- Institute for Material Chemistry and EngineeringKyushu University6-1 Kasuga-Koen, KasugaFukuoka816-8580Japan
| | - Hirotsugu Kikuchi
- Institute for Material Chemistry and EngineeringKyushu University6-1 Kasuga-Koen, KasugaFukuoka816-8580Japan
| |
Collapse
|