1
|
Antimicrobial Activity of Lactones. Antibiotics (Basel) 2022; 11:antibiotics11101327. [PMID: 36289985 PMCID: PMC9598898 DOI: 10.3390/antibiotics11101327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 09/23/2022] [Accepted: 09/27/2022] [Indexed: 11/17/2022] Open
Abstract
The development of bacterial resistance to antibiotics and the consequent lack of effective therapy is one of the biggest problems in modern medicine. A consequence of these processes is an urgent need to continuously design and develop novel antimicrobial agents. Among the compounds showing antimicrobial potential, lactones are a group to explore. For centuries, their antimicrobial activities have been used in folk medicine. Currently, novel lactone compounds are continuously described in the literature. Some of those structures exhibit high antimicrobial potential and some are an inspiration for design and synthesis of future drugs. This paper describes recent developments on antimicrobial lactones with smaller ring sizes, up to seven membered ε-lactones. Their isolation from natural sources, chemical synthesis, synergistic activity with antibiotics, and effects on quorum sensing are presented herein.
Collapse
|
2
|
Lipase-mediated Baeyer-Villiger oxidation of benzylcyclopentanones in ester solvents and deep eutectic solvents. Sci Rep 2022; 12:14795. [PMID: 36042323 PMCID: PMC9427991 DOI: 10.1038/s41598-022-18913-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Accepted: 08/22/2022] [Indexed: 11/08/2022] Open
Abstract
This work presents the chemo-enzymatic Baeyer-Villiger oxidation of α-benzylcyclopentanones in ester solvents as well as deep eutectic solvents (DES). In the first part of the work the effect of selected reaction conditions on the reaction rate was determined. The oxidation process was most effective in ethyl acetate at 55 °C, with the use of lipase B from Candida antarctica immobilized on acrylic resin and UHP as oxidant. Ultimately, these preliminary studies prompted the development of an effective method for the implementation of lipase-mediated Baeyer-Villiger oxidation of benzylcyclopentanones in DES. The highest conversion was indicated when the oxidizing agent was a component of DESs (minimal DESs). The fastest conversion of ketones to lactones was observed in a mixture of choline chloride with urea hydrogen peroxide. In this case, after 3 days, the conversion of the ketones to lactones products exceeded 92% for all substrates. As a result, two new lactones were obtained and fully characterized by spectroscopic data.
Collapse
|
3
|
Drzeżdżon J, Pawlak M, Gawdzik B, Wypych A, Kramkowski K, Kowalczyk P, Jacewicz D. Dipicolinate Complexes of Oxovanadium(IV) and Dioxovanadium(V) with 2-Phenylpyridine and 4,4'-Dimethoxy-2,2'-bipyridyl as New Precatalysts for Olefin Oligomerization. MATERIALS (BASEL, SWITZERLAND) 2022; 15:1379. [PMID: 35207920 PMCID: PMC8875215 DOI: 10.3390/ma15041379] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Revised: 02/07/2022] [Accepted: 02/10/2022] [Indexed: 02/04/2023]
Abstract
Polyolefins are used in everyday life, including in the production of many types of plastic. In addition, polyolefins account for over 50% of the polymers produced in the world. After conducting the oligomerization reactions of 2-propen-1-ol, 2-chloro-2-propen-1-ol, and norborene, polyolefins are obtained. In this report, two complexes of oxovanadium(IV) and dioxovanadium(V) with dipicolinate, 2-phenylyridine, and 4,4'-dimethoxy-2,2'-bipyridyl as precatalysts for 2-propen-1-ol, 2-chloro-2-propen-1-ol, and norborene oligomerizations are prepared. We present for the first time the new dipicolinate complex compound of oxovanadium(IV) with 4,4'-dimetoxy-2,2'-bipyridyl. Both complexes were tested for catalytic activity in the oligomerization reactions of 2-propen-1-ol, 2-chloro-2-propen-1-ol, and norbornene. Both synthesized complexes showed high catalytic activity in these oligomerization reactions, except for the oligomerization of norbornene.
Collapse
Affiliation(s)
- Joanna Drzeżdżon
- Department of Environmental Technology, Faculty of Chemistry, University of Gdansk, Wita Stwosza 63, 80-308 Gdansk, Poland; (M.P.); (D.J.)
| | - Marta Pawlak
- Department of Environmental Technology, Faculty of Chemistry, University of Gdansk, Wita Stwosza 63, 80-308 Gdansk, Poland; (M.P.); (D.J.)
| | - Barbara Gawdzik
- Institute of Chemistry, Jan Kochanowski University, Uniwersytecka 7, 25406 Kielce, Poland;
| | - Aleksandra Wypych
- Centre for Modern Interdisciplinary Technologies Nicolaus Copernicus, University in Torun ul. Wileńska 4, 87-100 Toruń, Poland;
| | - Karol Kramkowski
- Department of Physical Chemistry, Medical University of Bialystok, Kilińskiego 1, 15-089 Białystok, Poland;
| | - Paweł Kowalczyk
- Department of Animal Nutrition, The Kielanowski Institute of Animal Physiology and Nutrition, Polish Academy of Sciences, Instytucka 3, 05-110 Jabłonna, Poland
| | - Dagmara Jacewicz
- Department of Environmental Technology, Faculty of Chemistry, University of Gdansk, Wita Stwosza 63, 80-308 Gdansk, Poland; (M.P.); (D.J.)
| |
Collapse
|
4
|
Drzeżdżon J, Mokwa C, Sikorski A, Parnicka P, Zaleska-Medynska A, Malinowski J, Kwiatkowska M, Gawdzik B, Jacewicz D. Bis(5-chloroquinolin-8-olato)-bis(pyridine)-cobalt(II) as new catalytic material. Sci Rep 2022; 12:2151. [PMID: 35140320 PMCID: PMC8828837 DOI: 10.1038/s41598-022-06312-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Accepted: 01/14/2022] [Indexed: 11/09/2022] Open
Abstract
Nowadays, studies are carried out on the design and synthesis of new catalysts for olefin oligomerization and polymerization, which would contain non-toxic metals and at the same time show high catalytic activities. Complex compounds of transition metal ions such as Fe(II), Cr(III) and Zr(II) containing pyridine or quinoline as ligands show at least moderate catalytic activity in ethylene and propylene polymerizations. To investigate the catalytic activity of the complex containing pyridine ligands and quinoline derivatives, here we have synthesized the crystals of new bis(5-chloroquinolin-8-olato)-bis(pyridine)-cobalt(II) solvate. The synthesized cobalt(II) complex compound was tested in reactions of 2-chloro-2-propen-1-ol and norbornene oligomerizations. Our studies showed that bis(5-chloroquinolin-8-olato)-bis(pyridine)-cobalt(II) after activation by MMAO-12 catalyzes the formation of oligomers in nitrogen atmosphere, under atmospheric pressure and at room temperature. Bis(5-chloroquinolin-8-olato)-bis(pyridine)-cobalt(II) possesses moderate catalytic activity in the formation of norbornene oligomers process and low catalytic activity in 2-chloro-2-propen-1-ol oligomerization.
Collapse
Affiliation(s)
- Joanna Drzeżdżon
- Faculty of Chemistry, University of Gdańsk, Wita Stwosza 63, 80-308, Gdańsk, Poland
| | - Celina Mokwa
- Faculty of Chemistry, University of Gdańsk, Wita Stwosza 63, 80-308, Gdańsk, Poland
| | - Artur Sikorski
- Faculty of Chemistry, University of Gdańsk, Wita Stwosza 63, 80-308, Gdańsk, Poland
| | - Patrycja Parnicka
- Faculty of Chemistry, University of Gdańsk, Wita Stwosza 63, 80-308, Gdańsk, Poland
| | | | - Jacek Malinowski
- Faculty of Chemistry, University of Gdańsk, Wita Stwosza 63, 80-308, Gdańsk, Poland
| | - Magdalena Kwiatkowska
- Institute of Chemistry, Jan Kochanowski University, Świętokrzyska 15 G, 25-406, Kielce, Poland
| | - Barbara Gawdzik
- Institute of Chemistry, Jan Kochanowski University, Świętokrzyska 15 G, 25-406, Kielce, Poland.
| | - Dagmara Jacewicz
- Faculty of Chemistry, University of Gdańsk, Wita Stwosza 63, 80-308, Gdańsk, Poland.
| |
Collapse
|
5
|
Pobłocki K, Jacewicz D, Walczak J, Gawdzik B, Kramkowski K, Drzeżdżon J, Kowalczyk P. Preparation of Allyl Alcohol Oligomers Using Dipicolinate Oxovanadium(IV) Coordination Compound. MATERIALS (BASEL, SWITZERLAND) 2022; 15:695. [PMID: 35160642 PMCID: PMC8836411 DOI: 10.3390/ma15030695] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/05/2021] [Revised: 01/08/2022] [Accepted: 01/10/2022] [Indexed: 12/13/2022]
Abstract
Currently, new precatalysts for olefin oligomerization are being sought in the group of vanadium(IV) complexes. Thus, the aim of our research was to examine the catalytic activity of the oxovanadium(IV) dipicolinate complex [VO(dipic)(H2O)2] 2 H2O (dipic = pyridine-2,6-dicarboxylate anion) in 2-propen-1-ol oligomerization as well as to characterize oligomerization products using matrix-assisted laser desorption/ionization-time-of-flight mass spectrometry (MALDI-TOF-MS), infrared spectroscopy (IR) and nuclear magnetic resonance (NMR). The oligomerization process took place at room temperature, under atmospheric pressure and under nitrogen atmosphere to prevent oxidation of the activator MMAO-12-the modified methylaluminoxane (7 wt.%) aluminum in toluene. The last point was to determine the catalytic activity of the complex in the oligomerization reaction of 2-propen-1-ol. The aspect that enriches this work is the proposed mechanism of oligomerization of allyl alcohol based on the literature.
Collapse
Affiliation(s)
- Kacper Pobłocki
- Department of Environmental Technology, Faculty of Chemistry, University of Gdansk, Wita Stwosza 63, 80-308 Gdansk, Poland; (K.P.); (D.J.)
| | - Dagmara Jacewicz
- Department of Environmental Technology, Faculty of Chemistry, University of Gdansk, Wita Stwosza 63, 80-308 Gdansk, Poland; (K.P.); (D.J.)
| | - Juliusz Walczak
- Department of Organic Chemistry, Faculty of Chemistry, Gdansk University of Technology, Narutowicza 11/12, 80-233 Gdansk, Poland;
| | - Barbara Gawdzik
- Institute of Chemistry, Jan Kochanowski University, Uniwersytecka 7, 25-406 Kielce, Poland;
| | - Karol Kramkowski
- Department of Physical Chemistry, Medical University of Bialystok, 15-089 Bialystok, Poland;
| | - Joanna Drzeżdżon
- Department of Environmental Technology, Faculty of Chemistry, University of Gdansk, Wita Stwosza 63, 80-308 Gdansk, Poland; (K.P.); (D.J.)
| | - Paweł Kowalczyk
- Department of Animal Nutrition, The Kielanowski Institute of Animal Physiology and Nutrition, Polish Academy of Sciences, Instytucka 3, 05-110 Jabłonna, Poland
| |
Collapse
|
6
|
Gawdzik B, Drzeżdżon J, Siarhei T, Sikorski A, Malankowska A, Kowalczyk P, Jacewicz D. Catalytic Activity of New Oxovanadium(IV) Microclusters with 2-Phenylpyridine in Olefin Oligomerization. MATERIALS 2021; 14:ma14247670. [PMID: 34947266 PMCID: PMC8705632 DOI: 10.3390/ma14247670] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Revised: 11/29/2021] [Accepted: 12/09/2021] [Indexed: 01/03/2023]
Abstract
So far, few microclusters containing vanadium have been described in the literature. In this report, the synthesis protocol for the preparation of oxovanadium (IV) microclusters with 2-phenylpyridine is shown for the first time. Moreover, the crystal structure of these microclusters is also studied through the use of X-rays. The morphology of the prepared crystals is investigated using a field-emission Scanning Electron Microscope (SEM). The new compound, after activation by modified methylaluminoxane as the catalytic system, is investigated regarding the oligomerizations of 3-buten-1-ol, 2-chloro-2-propen-1-ol, allyl alcohol, and 2,3-dibromo-2-propen-1-ol. The products of oligomerization are tested by the TG-FTIR and MALDI-TOF-MS methods. Moreover, the values of catalytic activities for the new oxovanadium(IV) microclusters with 2-phenylpyridine are determined for the 3-buten-1-ol, 2-chloro-2-propen-1-ol, allyl alcohol, and 2,3-dibromo-2-propen-1-ol oligomerizations. Oxovanadium(IV) microclusters with 2-phenylpyridine are shown to be very highly active precatalysts for the oligomerization of allyl alcohol, 2,3-dibromo-2-propen-1-ol, and 3-buten-1-ol. However, in the case of 2-chloro-2-propen-1-ol oligomerization, the new microclusters are seen as highly active precatalysts.
Collapse
Affiliation(s)
- Barbara Gawdzik
- Institute of Chemistry, Jan Kochanowski University, Uniwersytecka 7, 25-406 Kielce, Poland
- Correspondence: ; Tel.: +48-41-349-70-11
| | - Joanna Drzeżdżon
- Faculty of Chemistry, University of Gdańsk, Wita Stwosza 63, 80-308 Gdańsk, Poland; (J.D.); (T.S.); (A.S.); (A.M.); (D.J.)
| | - Tatsiana Siarhei
- Faculty of Chemistry, University of Gdańsk, Wita Stwosza 63, 80-308 Gdańsk, Poland; (J.D.); (T.S.); (A.S.); (A.M.); (D.J.)
| | - Artur Sikorski
- Faculty of Chemistry, University of Gdańsk, Wita Stwosza 63, 80-308 Gdańsk, Poland; (J.D.); (T.S.); (A.S.); (A.M.); (D.J.)
| | - Anna Malankowska
- Faculty of Chemistry, University of Gdańsk, Wita Stwosza 63, 80-308 Gdańsk, Poland; (J.D.); (T.S.); (A.S.); (A.M.); (D.J.)
| | - Paweł Kowalczyk
- Department of Animal Nutrition, The Kielanowski Institute of Animal Physiology and Nutrition, Polish Academy of Sciences, Instytucka 3, 05-110 Jabłonna, Poland;
| | - Dagmara Jacewicz
- Faculty of Chemistry, University of Gdańsk, Wita Stwosza 63, 80-308 Gdańsk, Poland; (J.D.); (T.S.); (A.S.); (A.M.); (D.J.)
| |
Collapse
|
7
|
δ-Lactones-A New Class of Compounds That Are Toxic to E. coli K12 and R2-R4 Strains. MATERIALS 2021; 14:ma14112956. [PMID: 34070884 PMCID: PMC8199173 DOI: 10.3390/ma14112956] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Revised: 05/14/2021] [Accepted: 05/27/2021] [Indexed: 11/23/2022]
Abstract
Lactones are among the well-known organic substances with a specific taste and smell. They are characterized by antibacterial, antiviral, anti-inflammatory, and anti-cancer properties. In recent years, among this group of compounds, new biologically active substances have been searched by modifying the main (leading) structure with new analogs with stronger or different responses that may have a toxic effect on the cells of pathogenic bacteria and constitute an alternative to commonly used antibiotics. A preliminary study of δ-lactone derivatives as new potential candidates for antibacterial drugs was conducted. Particular emphasis was placed on the selection of the structure of lactones with the highest biological activity, especially those with fluorine in their structure as a substituent in terms of action on bacterial lipopolysaccharide (LPS) in the model strains of Escherichia coli K12 (without LPS in its structure) and R2–R4 (LPS of different lengths in its structure). In the presented studies, on the basis of the conducted MIC and MBC tests, it was shown that the antibacterial (toxic) activity of lactones depends on their structure and the length of the bacterial LPS in the membrane of specific strains. Moreover, oxidative damage of bacterial DNA isolated from bacteria after modification with newly synthesized compounds after application of the repair enzyme Fpg glycosylase was analyzed. The analyzed damage values were compared with the modification with appropriate antibiotics: ciprofloxacin, bleomycin, and cloxacillin. The presented research clearly shows that lactone derivatives can be potential candidates as substitutes for drugs, e.g., the analyzed antibiotics. Their chemical and biological activity is related to coumarin derivatives and the corresponding δ-lactone groups in the structure of the substituent. The observed results are of particular importance in the case of increasing bacterial resistance to various drugs and antibiotics, especially in nosocomial infections and neoplasms, and in the era of a microbial pandemic.
Collapse
|
8
|
Włoch A, Stygar D, Bahri F, Bażanów B, Kuropka P, Chełmecka E, Pruchnik H, Gładkowski W. Antiproliferative, Antimicrobial and Antiviral Activity of β-Aryl-δ-iodo-γ-lactones, Their Effect on Cellular Oxidative Stress Markers and Biological Membranes. Biomolecules 2020; 10:biom10121594. [PMID: 33255306 PMCID: PMC7760079 DOI: 10.3390/biom10121594] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Revised: 11/18/2020] [Accepted: 11/22/2020] [Indexed: 02/08/2023] Open
Abstract
The aim of this work was the examination of biological activity of three selected racemic cis-β-aryl-δ-iodo-γ-lactones. Tested iodolactones differed in the structure of the aromatic fragment of molecule, bearing isopropyl (1), methyl (2), or no substituent (3) on the para position of the benzene ring. A broad spectrum of biological activity as antimicrobial, antiviral, antitumor, cytotoxic, antioxidant, and hemolytic activity was examined. All iodolactones showed bactericidal activity against Proteus mirabilis, and lactones 1,2 were active against Bacillus cereus. The highest cytotoxic activity towards HeLa and MCF7 cancer cell lines and NHDF normal cell line was found for lactone 1. All assessed lactones significantly disrupted antioxidative/oxidative balance of the NHDF, and the most harmful effect was determined by lactone 1. Contrary to lactone 1, lactones 2 and 3 did not induce the hemolysis of erythrocytes after 48 h of incubation. The differences in activity of iodolactones 1–3 in biological tests may be explained by their different impact on physicochemical properties of membrane as the packing order in the hydrophilic area and fluidity of hydrocarbon chains. This was dependent on the presence and type of alkyl substituent. The highest effect on the membrane organization was observed for lactone 1 due to the presence of bulky isopropyl group on the benzene ring.
Collapse
Affiliation(s)
- Aleksandra Włoch
- Department of Physics and Biophysics, Wrocław University of Environmental and Life Sciences, C.K. Norwida 25, 50-375 Wrocław, Poland;
- Correspondence: (A.W.); (W.G.); Tel.: +48-713205461 (W.G.)
| | - Dominika Stygar
- Department of Physiology in Zabrze, Medical University of Silesia, Poniatowskiego 15, 40-751 Katowice, Poland;
| | - Fouad Bahri
- Laboratory of Microbiology and Plant Biology, University of Mostaganem, Mostaganem 27000, Algeria;
| | - Barbara Bażanów
- Department of Veterinary Microbiology, Wroclaw University of Environmental and Life Sciences, Norwida 31, 50-375 Wrocław, Poland;
| | - Piotr Kuropka
- Department of Biostructure and Animal Physiology, Wrocław University of Environmental and Life Sciences, C.K. Norwida 31, 50-375 Wrocław, Poland;
| | - Elżbieta Chełmecka
- Department of Statistics, Department of Instrumental Analysis, Medical University of Silesia, Ostrogórska 30, 41-200 Sosnowiec, Poland;
| | - Hanna Pruchnik
- Department of Physics and Biophysics, Wrocław University of Environmental and Life Sciences, C.K. Norwida 25, 50-375 Wrocław, Poland;
| | - Witold Gładkowski
- Department of Chemistry, Wrocław University of Environmental and Life Sciences, Norwida 25, 50-375 Wrocław, Poland
- Correspondence: (A.W.); (W.G.); Tel.: +48-713205461 (W.G.)
| |
Collapse
|
9
|
Kamizela A, Gawdzik B, Urbaniak M, Lechowicz Ł, Białońska A, Kutniewska SE, Gonciarz W, Chmiela M. New γ-Halo- δ-lactones and δ-Hydroxy- γ-lactones with Strong Cytotoxic Activity. Molecules 2019; 24:molecules24101875. [PMID: 31096674 PMCID: PMC6572184 DOI: 10.3390/molecules24101875] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2019] [Revised: 05/07/2019] [Accepted: 05/09/2019] [Indexed: 11/16/2022] Open
Abstract
This paper presents the synthesis of γ -halo- δ -lactones, δ -iodo- γ -lactones and δ -hydroxy- γ -lactones from readily available organic substrates such as trans-crotonaldehyde and aryl bromides. Crystal structure analysis was carried out for lactones that were obtained in crystalline form. All halo- δ -lactones and δ -hydroxy- γ -lactones were highly cytotoxic against gastric cancer AGS cells with I C 50 values in the range of 0.0006-0.0044 mM. Some lactones showed high bactericidal activity against E. coli ATCC 8739 and S. aureus ATCC 65389, which reduced the number of CFU/mL by 70-83% and 87% respectively.
Collapse
Affiliation(s)
- Angelika Kamizela
- Institute of Chemistry, Jan Kochanowski University, Świętokrzyska 15 G, 25-406 Kielce, Poland.
| | - Barbara Gawdzik
- Institute of Chemistry, Jan Kochanowski University, Świętokrzyska 15 G, 25-406 Kielce, Poland.
| | - Mariusz Urbaniak
- Institute of Chemistry, Jan Kochanowski University, Świętokrzyska 15 G, 25-406 Kielce, Poland.
| | - Łukasz Lechowicz
- Institute of Biology, Jan Kochanowski University, Świętokrzyska 15 G, 25-406 Kielce, Poland.
| | - Agata Białońska
- Department of Chemistry, University of Wroclaw, F. Joliot-Curie 14, 50-383 Wrocław, Poland.
| | - Sylwia Ewa Kutniewska
- Department of Chemistry, University of Warsaw, Żwirki i Wigury 101, 02-089 Warszawa, Poland.
| | - Weronika Gonciarz
- Department of Immunology and Infectious Biology, University of Lodz, Banacha 12/16, 90-237 Łódź, Poland.
| | - Magdalena Chmiela
- Department of Immunology and Infectious Biology, University of Lodz, Banacha 12/16, 90-237 Łódź, Poland.
| |
Collapse
|