1
|
Kage M, Yamakoshi H, Tabata M, Ohashi E, Noguchi K, Watanabe T, Uchida M, Takada M, Ikeuchi K, Nakamura S. Oxidative generation of isobenzofurans from phthalans: application to the formal synthesis of (±)-morphine. Chem Sci 2024:d4sc05890a. [PMID: 39483252 PMCID: PMC11523798 DOI: 10.1039/d4sc05890a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Accepted: 10/01/2024] [Indexed: 11/03/2024] Open
Abstract
Treatment of phthalan derivatives with p-chloranil in dodecane in the presence of molecular sieves at 160-200 °C allowed the generation of unstabilized isobenzofurans, which underwent intramolecular Diels-Alder reaction to give endo cycloadducts exclusively. The cycloaddition turned out to be reversible, providing an equilibrium mixture of endo adducts when heating a substrate with a stereocenter on the tether. We also demonstrated the regioselective allylation of an oxygen-bridged cycloadduct upon exposure to EtAlCl2 in the presence of allyltrimethylsilane, and the conversion to Rice's intermediate completed a formal synthesis of (±)-morphine.
Collapse
Affiliation(s)
- Mirai Kage
- Graduate School of Pharmaceutical Sciences, Nagoya City University 3-1 Tanabe-dori, Mizuho-ku Nagoya 467-8603 Japan
| | - Hiroyuki Yamakoshi
- Graduate School of Pharmaceutical Sciences, Nagoya City University 3-1 Tanabe-dori, Mizuho-ku Nagoya 467-8603 Japan
| | - Manami Tabata
- Graduate School of Pharmaceutical Sciences, Nagoya City University 3-1 Tanabe-dori, Mizuho-ku Nagoya 467-8603 Japan
| | - Eisaku Ohashi
- Graduate School of Pharmaceutical Sciences, Nagoya City University 3-1 Tanabe-dori, Mizuho-ku Nagoya 467-8603 Japan
| | - Kimihiro Noguchi
- Graduate School of Pharmaceutical Sciences, Nagoya City University 3-1 Tanabe-dori, Mizuho-ku Nagoya 467-8603 Japan
| | - Takeshi Watanabe
- Graduate School of Pharmaceutical Sciences, Nagoya City University 3-1 Tanabe-dori, Mizuho-ku Nagoya 467-8603 Japan
| | - Manato Uchida
- Graduate School of Pharmaceutical Sciences, Nagoya City University 3-1 Tanabe-dori, Mizuho-ku Nagoya 467-8603 Japan
| | - Minetatsu Takada
- Graduate School of Pharmaceutical Sciences, Nagoya City University 3-1 Tanabe-dori, Mizuho-ku Nagoya 467-8603 Japan
| | - Kazutada Ikeuchi
- Graduate School of Pharmaceutical Sciences, Nagoya City University 3-1 Tanabe-dori, Mizuho-ku Nagoya 467-8603 Japan
| | - Seiichi Nakamura
- Graduate School of Pharmaceutical Sciences, Nagoya City University 3-1 Tanabe-dori, Mizuho-ku Nagoya 467-8603 Japan
| |
Collapse
|
2
|
Gan WE, Wu YS, Wu B, Fang CY, Cao J, Xu Z, Xu LW. Copper-Catalyzed Asymmetric Synthesis of Silicon-Stereogenic Benzoxasiloles. Angew Chem Int Ed Engl 2024; 63:e202317973. [PMID: 38179840 DOI: 10.1002/anie.202317973] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 01/01/2024] [Accepted: 01/03/2024] [Indexed: 01/06/2024]
Abstract
A Cu-catalyzed asymmetric synthesis of silicon-stereogenic benzoxasiloles has been realized via intramolecular Si-O coupling of [2-(hydroxymethyl)phenyl]silanes. Cu(I)/difluorphos is found to be an efficient catalytic system for enantioselective Si-C bond cleavage and Si-O bond formation. In addition, kinetic resolution of racemic substituted [2-(hydroxymethyl)phenyl]silanes using Cu(I)/ PyrOx (pyridine-oxazoline ligands) as the catalytic system is developed to afford carbon- and silicon-stereogenic benzoxasiloles. Ring-opening reactions of chiral benzoxasiloles with organolithiums and Grignard reagents yield various enantioenriched functionalized tetraorganosilanes.
Collapse
Affiliation(s)
- Wan-Er Gan
- College of Material, Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology of Ministry of Education, Key Laboratory of Organosilicon Material Technology of Zhejiang Province, Hangzhou Normal University, Hangzhou, 311121, Zhejiang, P. R. China
| | - Yong-Shun Wu
- College of Material, Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology of Ministry of Education, Key Laboratory of Organosilicon Material Technology of Zhejiang Province, Hangzhou Normal University, Hangzhou, 311121, Zhejiang, P. R. China
| | - Bin Wu
- College of Material, Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology of Ministry of Education, Key Laboratory of Organosilicon Material Technology of Zhejiang Province, Hangzhou Normal University, Hangzhou, 311121, Zhejiang, P. R. China
| | - Chun-Yuan Fang
- College of Material, Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology of Ministry of Education, Key Laboratory of Organosilicon Material Technology of Zhejiang Province, Hangzhou Normal University, Hangzhou, 311121, Zhejiang, P. R. China
| | - Jian Cao
- College of Material, Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology of Ministry of Education, Key Laboratory of Organosilicon Material Technology of Zhejiang Province, Hangzhou Normal University, Hangzhou, 311121, Zhejiang, P. R. China
| | - Zheng Xu
- College of Material, Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology of Ministry of Education, Key Laboratory of Organosilicon Material Technology of Zhejiang Province, Hangzhou Normal University, Hangzhou, 311121, Zhejiang, P. R. China
| | - Li-Wen Xu
- College of Material, Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology of Ministry of Education, Key Laboratory of Organosilicon Material Technology of Zhejiang Province, Hangzhou Normal University, Hangzhou, 311121, Zhejiang, P. R. China
- Key Laboratory of Precise Synthesis of Functional Molecules of Zhejiang Province, School of Science, Westlake University, P. R. China
| |
Collapse
|
3
|
Al-Nema M, Gaurav A, Lee VS. Designing of 2,3-dihydrobenzofuran derivatives as inhibitors of PDE1B using pharmacophore screening, ensemble docking and molecular dynamics approach. Comput Biol Med 2023; 159:106869. [PMID: 37071939 DOI: 10.1016/j.compbiomed.2023.106869] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 02/28/2023] [Accepted: 03/30/2023] [Indexed: 04/05/2023]
Abstract
In recent years, the PDE1B enzyme has become a desirable drug target for the treatment of psychological and neurological disorders, particularly schizophrenia disorder, due to the expression of PDE1B in brain regions involved in volitional behaviour, learning and memory. Although several inhibitors of PDE1 have been identified using different methods, none of these inhibitors has reached the market yet. Thus, searching for novel PDE1B inhibitors is considered a major scientific challenge. In this study, pharmacophore-based screening, ensemble docking and molecular dynamics simulations have been performed to identify a lead inhibitor of PDE1B with a new chemical scaffold. Five PDE1B crystal structures have been utilised in the docking study to improve the possibility of identifying an active compound compared to the use of a single crystal structure. Finally, the structure-activity- relationship was studied, and the structure of the lead molecule was modified to design novel inhibitors with a high affinity for PDE1B. As a result, two novel compounds have been designed that exhibited a higher affinity to PDE1B compared to the lead compound and the other designed compounds.
Collapse
Affiliation(s)
- Mayasah Al-Nema
- Faculty of Pharmaceutical Sciences, UCSI University, Jalan Menara Gading, Taman Connaught, Cheras, 56000, Kuala Lumpur, Malaysia
| | - Anand Gaurav
- Faculty of Pharmaceutical Sciences, UCSI University, Jalan Menara Gading, Taman Connaught, Cheras, 56000, Kuala Lumpur, Malaysia.
| | - Vannajan Sanghiran Lee
- Department of Chemistry, Faculty of Science, University of Malaya, 50603, Kuala Lumpur, Malaysia
| |
Collapse
|
4
|
Araujo JRDS, de Barros Arcoverde JV, de Farias Silva MG, Barros de Santana ER, da Silva PA, de Sousa S, Araujo, Santos N, de Almeida PM, de Andrade Lima CS, Benko-Iseppon AM, Aracati Padilha RJS, Alves M, Brasileiro-Vidal AC. Antioxidant and in vitro cytogenotoxic properties of Amburana cearensis (Allemão) A.C.Sm. leaf extract. Drug Chem Toxicol 2023; 46:104-112. [PMID: 34906022 DOI: 10.1080/01480545.2021.2011313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Amburana cearensis leaves have been used in folk medicine to treat respiratory diseases and inflammations. This study aimed to evaluate the biological potential of A. cearensis leaves by antioxidant and in vitro cytogenotoxic analyses of ethanolic crude extract (EE) and its fractions in healthy human cells. The EE was obtained by percolation, followed by fractionation using dichloromethane, cyclohexane, ethyl acetate (EtOAc), and methanol (MeOH) as organic solvents. Extract and all fractions were evaluated for their antioxidant potential by DPPH and reducing power tests. In vitro cytotoxic activity was determined in human peripheral blood mononuclear cells by MTT assay for the extract, EtOAc and MeOH fractions. In turn, the genotoxic activity was determined in human lymphocytes by the Cytokinesis Block Micronucleus assay only for the EtOAc fraction. Only EtOAc fraction was analyzed via gas chromatography coupled to mass spectrometry due to its higher biological activity. Considering the antioxidant potential, the EtOAc fraction was most effective in DPPH (EC50 43.37 µg/mL) and reducing power (EC50 89.80 µg/mL) assays. GC-MS analysis of the EtOAc fraction led to the identification of guaiacol, 2,3-dihydro-benzofuran, 2-methoxy-4-vinylphenol, isovanillic acid methyl ester, 4-hydroxybenzaldehyde, and 4-(ethoxymethyl)-phenol. The EE (400-1000 µg/mL), EtOAc (≤150 µg/mL) and MeOH (50 and 150-600 µg/mL) fractions were not cytotoxic by MTT test. Additionally, the EtOAc fraction (100-400 µg/mL) did not induce significant genotoxic damage. Concentrations of the EtOAc fraction with antioxidant activity showed no cytotoxicity, nor genotoxicity potential, indicating them as a nontoxic natural antioxidant source.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Araujo
- Departamento de Genética, Universidade Federal de Pernambuco, Recife, Brazil
| | - Neide Santos
- Departamento de Genética, Universidade Federal de Pernambuco, Recife, Brazil
| | | | | | | | | | - Marccus Alves
- Departamento de Botânica, Universidade Federal de Pernambuco, Recife, Brazil
| | | |
Collapse
|
5
|
Huang W, Wang H, Liu B, Shen R, Zhu S. Synthesis of 1,1,4,5-Tetrasubstituted Phthalans via Pd-Catalyzed Three-Component Reactions of Haloarenes, Alkynes, and Protic Nucleophiles. Org Lett 2022; 24:8651-8656. [DOI: 10.1021/acs.orglett.2c03460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- Wenliang Huang
- School of Chemistry and Chemical Engineering, Nanchang University, Nanchang, Jiangxi 330031, People’s Republic of China
| | - Hong Wang
- School of Chemistry and Chemical Engineering, Nanchang University, Nanchang, Jiangxi 330031, People’s Republic of China
| | - Bin Liu
- School of Chemistry and Chemical Engineering, Nanchang University, Nanchang, Jiangxi 330031, People’s Republic of China
| | - Ruwei Shen
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, Nanjing, Jiangsu 211800, People’s Republic of China
| | - Shugao Zhu
- School of Chemistry and Chemical Engineering, Nanchang University, Nanchang, Jiangxi 330031, People’s Republic of China
| |
Collapse
|
6
|
Wang Y, Xu N, Li W, Li J, Huo Y, Zhu W, Liu Q. Synthesis of 1,3-diselenyl-dihydroisobenzofurans via electrochemical radical selenylation with substituted o-divinylbenzenes and diselenides. Org Biomol Chem 2022; 20:2813-2817. [PMID: 35319056 DOI: 10.1039/d2ob00254j] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
An efficient electrochemical method for the direct synthesis of complicated 1,3-diselenyl-dihydroisobenzofurans was developed under external oxidant free conditions at room temperature from substituted o-divinylbenzenes and diselenides. A radical mechanism is proposed for this novel and practical transformation.
Collapse
Affiliation(s)
- Ying Wang
- Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, Jiangsu Ocean University; School of Pharmacy, Jiangsu Ocean University, Lianyungang, 222005, Jiangsu, China.
| | - Ning Xu
- School of Metallurgy and Environment, Central South University, Changsha, 410083, Hunan, China
| | - Weiwei Li
- Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, Jiangsu Ocean University; School of Pharmacy, Jiangsu Ocean University, Lianyungang, 222005, Jiangsu, China.
| | - Jiaojiao Li
- Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, Jiangsu Ocean University; School of Pharmacy, Jiangsu Ocean University, Lianyungang, 222005, Jiangsu, China.
| | - Yijun Huo
- Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, Jiangsu Ocean University; School of Pharmacy, Jiangsu Ocean University, Lianyungang, 222005, Jiangsu, China.
| | - Wenrong Zhu
- Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, Jiangsu Ocean University; School of Pharmacy, Jiangsu Ocean University, Lianyungang, 222005, Jiangsu, China.
| | - Qiang Liu
- Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, Jiangsu Ocean University; School of Pharmacy, Jiangsu Ocean University, Lianyungang, 222005, Jiangsu, China.
| |
Collapse
|
7
|
Hellwig PS, Barcellos AM, Furst CG, Alberto EE, Perin G. Oxyselenocyclization of 2‐Allylphenols for the Synthesis of 2,3‐Dihydrobenzofuran Selenides. ChemistrySelect 2021. [DOI: 10.1002/slct.202104072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Paola S. Hellwig
- Laboratório de Síntese Orgânica Limpa – LASOL CCQFA Universidade Federal de Pelotas – UFPel P.O. Box 354 96010-900 Pelotas RS Brazil
| | - Angelita M. Barcellos
- Laboratório de Síntese Orgânica Limpa – LASOL CCQFA Universidade Federal de Pelotas – UFPel P.O. Box 354 96010-900 Pelotas RS Brazil
| | - Carolina G. Furst
- Department of Chemistry Universidade Federal de Minas Gerais - UFMG Belo Horizonte MG Brazil
| | - Eduardo E. Alberto
- Department of Chemistry Universidade Federal de Minas Gerais - UFMG Belo Horizonte MG Brazil
| | - Gelson Perin
- Laboratório de Síntese Orgânica Limpa – LASOL CCQFA Universidade Federal de Pelotas – UFPel P.O. Box 354 96010-900 Pelotas RS Brazil
| |
Collapse
|
8
|
Son EC, No J, Kim S. Organocatalytic enantioselective synthesis of phthalans via Wittig/
oxa‐Michael
cascade reaction. B KOREAN CHEM SOC 2021. [DOI: 10.1002/bkcs.12402] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Affiliation(s)
- Eun Chae Son
- Department of Chemistry Kyonggi University Suwon Republic of Korea
| | - Jaeeun No
- Department of Chemistry Kyonggi University Suwon Republic of Korea
| | - Sung‐Gon Kim
- Department of Chemistry Kyonggi University Suwon Republic of Korea
| |
Collapse
|
9
|
Duan S, Xiang Q, Deng C, Jie Y, Luo H, Xu ZF. Synthesis of phthalan derivatives via a formal intramolecular 1,3-insertion of rhodium(II) azavinyl carbenes into O Si bond. Tetrahedron Lett 2021. [DOI: 10.1016/j.tetlet.2021.153329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
10
|
Palladium Nanoparticles Supported on Smopex-234® as Valuable Catalysts for the Synthesis of Heterocycles. Catalysts 2021. [DOI: 10.3390/catal11060706] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Supported catalysts are important tools for developing green-economy-based processes. Palladium nanoparticles (NPs) that are immobilized on two fibers developed as metal scavengers (i.e., Smopex®-234 and Smopex®-111, 1% w/w) have been prepared and tested in copper-free cyclocarbonylative Sonogashira reactions. Their catalytic activity has been compared with that of a homogeneous catalyst (i.e., PdCl2(PPh3)2). Pd/Smopex®-234 showed high activity and selectivity in the synthesis of functionalized heterocycles, such as phthalans and isochromans, even when working with a very low amount of palladium (0.2–0.5 mol%). The extension of Pd/Smopex®-234 promoted cyclocarbonylative reactions to propargyl and homopropargyl amides afforded the corresponding isoindoline and dihydrobenzazepine derivatives. A preliminary test on Pd NPs leaching into the solution (1.7 × 10−3 mg) seems to indicate that, at the end of the reaction, almost all of the active metal is present on the fiber surface.
Collapse
|
11
|
Son EC, Kim SY, Kim SG. Squaramide-Catalyzed Asymmetric Intramolecular Oxa-Michael Reaction of α,β-Unsaturated Carbonyls Containing Benzyl Alcohol: Construction of Chiral 1-Substituted Phthalans. J Org Chem 2021; 86:6826-6839. [PMID: 33904749 DOI: 10.1021/acs.joc.1c00715] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Organocatalytic enantioselective intramolecular oxa-Michael reactions of benzyl alcohol bearing α,β-unsaturated carbonyls as Michael acceptors are presented herein. Using cinchona squaramide-based organocatalyst, enones as well as α,β-unsaturated esters containing benzyl alcohol provided their corresponding 1,3-dihydroisobenzofuranyl-1-methylene ketones and 1,3-dihydroisobenzofuranyl-1-methylene esters in excellent yields with high enantioselectivities. In addition, enantioenriched 1,3-dihydroisobenzofuranyl-1-methylene ketone could be obtained from the Wittig/oxa-Michael reaction cascade of 1,3-dihydro-2-benzofuran-1-ol.
Collapse
Affiliation(s)
- Eun Chae Son
- Department of Chemistry, College of Natural Science, Kyonggi University, 154-42 Gwanggyosan-ro, Yeongtong-gu, Suwon 16227, Republic of Korea
| | - Seung Yeon Kim
- Department of Chemistry, College of Natural Science, Kyonggi University, 154-42 Gwanggyosan-ro, Yeongtong-gu, Suwon 16227, Republic of Korea
| | - Sung-Gon Kim
- Department of Chemistry, College of Natural Science, Kyonggi University, 154-42 Gwanggyosan-ro, Yeongtong-gu, Suwon 16227, Republic of Korea
| |
Collapse
|
12
|
Furst CG, Cota PHP, dos Santos Wanderley TA, Alberto EE. Synthesis of 2-bromomethyl-2,3-dihydrobenzofurans from 2-allylphenols enabled by organocatalytic activation of N-bromosuccinimide. NEW J CHEM 2020. [DOI: 10.1039/d0nj03432k] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Activation of NBS in acetic acid and a catalytic amount of DBU promotes an intramolecular oxybromination of 2-allylphenols to produce highly aggregated value and densely functionalized 2-bromomethyl-2,3-dihydrobenzofurans.
Collapse
Affiliation(s)
- Carolina G. Furst
- Department of Chemistry
- Universidade Federal de Minas Gerais. 31.270-901
- Belo Horizonte
- Brazil
| | - Paulo H. P. Cota
- Department of Chemistry
- Universidade Federal de Minas Gerais. 31.270-901
- Belo Horizonte
- Brazil
| | | | - Eduardo E. Alberto
- Department of Chemistry
- Universidade Federal de Minas Gerais. 31.270-901
- Belo Horizonte
- Brazil
| |
Collapse
|
13
|
Ju B, Chen S, Kong W. Enantioselective palladium-catalyzed diarylation of unactivated alkenes. Chem Commun (Camb) 2019; 55:14311-14314. [DOI: 10.1039/c9cc07036b] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Enantioselective Pd-catalyzed diarylation of unactivated alkenes between arenediazonium salts and arylboronic acids has been developed. This method provides an efficient route to dihydrobenzofurans with all-carbon quaternary centers in good yields with 88–99% ee.
Collapse
Affiliation(s)
- Baihang Ju
- The Center for Precision Synthesis (CPS)
- Institute for Advanced Studies (IAS)
- Wuhan University
- Wuhan
- P. R. China
| | - Shigui Chen
- The Center for Precision Synthesis (CPS)
- Institute for Advanced Studies (IAS)
- Wuhan University
- Wuhan
- P. R. China
| | - Wangqing Kong
- The Center for Precision Synthesis (CPS)
- Institute for Advanced Studies (IAS)
- Wuhan University
- Wuhan
- P. R. China
| |
Collapse
|
14
|
Ilya E, Kulikova L, Van der Eycken EV, Voskressensky L. Recent Advances in Phthalan and Coumaran Chemistry. ChemistryOpen 2018; 7:914-929. [PMID: 30498677 PMCID: PMC6250979 DOI: 10.1002/open.201800184] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2018] [Indexed: 12/12/2022] Open
Abstract
Oxygen-containing heterocycles are common in biologically active compounds. In particular, phthalan and coumaran cores are found in pharmaceuticals, organic electronics, and other useful medical and technological applications. Recent research has expanded the methods available for their synthesis. This Minireview presents recent advances in the chemistry of phthalans and coumarans, with the goal of overcoming synthetic challenges and facilitating the applications of phthalans and coumarans.
Collapse
Affiliation(s)
- Efimov Ilya
- Peoples' Friendship University of Russia (RUDN University)6 Miklukho-Maklaya StreetMoscow117198Russia
| | - Larisa Kulikova
- Peoples' Friendship University of Russia (RUDN University)6 Miklukho-Maklaya StreetMoscow117198Russia
| | - Erik V. Van der Eycken
- Peoples' Friendship University of Russia (RUDN University)6 Miklukho-Maklaya StreetMoscow117198Russia
- Laboratory for Organic & Microwave-Assisted Chemistry (LOMAC)Department of ChemistryKU Leuven Celestijnenlaan 200F3001LeuvenBelgium
| | - Leonid Voskressensky
- Peoples' Friendship University of Russia (RUDN University)6 Miklukho-Maklaya StreetMoscow117198Russia
| |
Collapse
|