1
|
Hanumesh, Amshumali MK, Prachi P, Yogendra K, Madhusudhana N, Vinay Kumar B. Investigation of bisindole-linked pyrimidine moieties: synthesis using strantium-aluminum supported strontium aluminate nanophosphors catalyst, DNA reactivity, and in silico molecular docking studies. NUCLEOSIDES, NUCLEOTIDES & NUCLEIC ACIDS 2024:1-18. [PMID: 38817089 DOI: 10.1080/15257770.2024.2358901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Accepted: 05/19/2024] [Indexed: 06/01/2024]
Abstract
In this communication, an innovative and straightforward protocol for the one-pot catalytic synthesis of bis(indolyl)pyrimidine derivatives and their DNA binding abilities is presented. The synthesis involves the condensation of indole with diverse substituted pyrimidine-5-carbaldehydes, employing cost-effective and reusable Sr-Al supported nanophosphors, specifically strontium aluminate (SrAl2O4), as a catalyst. In particular, this method does not require the use of toxic solvents. The Sr-Al supported nanophosphorus catalyst exhibited sustained activity over multiple cycles and showed no significant decline while maintaining its strictly heterogeneous properties. The bis(indolyl)pyrimidine derivatives were extensively characterized using spectroscopic and analytical techniques. Furthermore, the interaction between these derivatives and CT-DNA was investigated by absorption spectroscopy, viscosity measurement, and in silico molecular docking studies. Photoinduced cleavage studies demonstrated the photonuclease activity of the compound against pUC19 DNA upon exposure to UV-visible radiation.
Collapse
Affiliation(s)
- Hanumesh
- Department of PG Studies and Research in Industrial Chemistry, Vijayanagara Sri Krishnadevaraya University, Bellary, 583105, India
| | - M K Amshumali
- Department of PG Studies and Research in Industrial Chemistry, Vijayanagara Sri Krishnadevaraya University, Bellary, 583105, India
| | - P Prachi
- Department of Biotechnology, Allied Health Science BLDE (Deemed to be University), Vijayapura, India
| | - K Yogendra
- Department of PG Studies and Research in Environmental Science, Kuvempu University, Shimoga, India
| | - N Madhusudhana
- Department of PG Studies and Research in Environmental Science, Kuvempu University, Shimoga, India
| | - B Vinay Kumar
- Department of Chemistry, BGS College of Engineering & Technology, Bengaluru, India
| |
Collapse
|
2
|
Nandi R, Ajarul S, Mandal PK, Manna AS, Kayet A, Maiti DK. Hybrid Heterocycles: Ag(I)-Catalyzed C-C/C-N/C-O Coupled Cascade Dual Cyclization to Valuable Indolo-4 H-indolones and Indolo-4 H-chromenes. J Org Chem 2024; 89:2556-2570. [PMID: 38276896 DOI: 10.1021/acs.joc.3c02568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2024]
Abstract
Herein, we report a highly efficient Ag(I)-catalyzed indolyzation with Friedel-Crafts alkylation through a cascade cyclization strategy for accessing valuable hybrid heterocycles for the first time. This general strategy consists of forming four C-C/C-N/C-O bonds toward dual annulation reactions of 2-alkynylanilines with methyl benzoate-2-carboxaldehydes and aromatic amines, as well as with salicylaldehydes and malononitrile. Variably substituted new indolo-4H-phthalimidines and indolo-4H-chromenes were synthesized with excellent yields (85-93%) under mild reaction conditions.
Collapse
Affiliation(s)
- Rajesh Nandi
- Department of Chemistry, University of Calcutta, 92 A. P. C. Road, Kolkata 700009, India
| | - Sk Ajarul
- Government General Degree College at Salboni, Bhimpur, Paschim, Medinipur 721516, West Bengal, India
| | - Prakash K Mandal
- Department of Chemistry, University of Calcutta, 92 A. P. C. Road, Kolkata 700009, India
| | - Anindya S Manna
- Department of Chemistry, University of Calcutta, 92 A. P. C. Road, Kolkata 700009, India
| | - Anirban Kayet
- Department of Chemistry, University of Calcutta, 92 A. P. C. Road, Kolkata 700009, India
| | - Dilip K Maiti
- Department of Chemistry, University of Calcutta, 92 A. P. C. Road, Kolkata 700009, India
| |
Collapse
|
3
|
Pereira de Sa N, Jayanetti K, Rendina D, Clement T, Soares Brauer V, Mota Fernandes C, Ojima I, Airola MV, Del Poeta M. Targeting Sterylglucosidase A to Treat Aspergillus fumigatus Infections. mBio 2023; 14:e0033923. [PMID: 36877042 PMCID: PMC10128061 DOI: 10.1128/mbio.00339-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Accepted: 02/10/2023] [Indexed: 03/07/2023] Open
Abstract
Invasive fungal infections are a leading cause of death in immunocompromised patients. Current therapies have several limitations, and innovative antifungal agents are critically needed. Previously, we identified the fungus-specific enzyme sterylglucosidase as essential for pathogenesis and virulence of Cryptococcus neoformans and Aspergillus fumigatus (Af) in murine models of mycoses. Here, we developed Af sterylglucosidase A (SglA) as a therapeutic target. We identified two selective inhibitors of SglA with distinct chemical scaffolds that bind in the active site of SglA. Both inhibitors induce sterylglucoside accumulation and delay filamentation in Af and increase survival in a murine model of pulmonary aspergillosis. Structure-activity relationship (SAR) studies identified a more potent derivative that enhances both in vitro phenotypes and in vivo survival. These findings support sterylglucosidase inhibition as a promising antifungal approach with broad-spectrum potential. IMPORTANCE Invasive fungal infections are a leading cause of death in immunocompromised patients. Aspergillus fumigatus is a fungus ubiquitously found in the environment that, upon inhalation, causes both acute and chronic illnesses in at-risk individuals. A. fumigatus is recognized as one of the critical fungal pathogens for which a substantive treatment breakthrough is urgently needed. Here, we studied a fungus-specific enzyme, sterylglucosidase A (SglA), as a therapeutic target. We identified selective inhibitors of SglA that induce accumulation of sterylglucosides and delay filamentation in A. fumigatus and increase survival in a murine model of pulmonary aspergillosis. We determined the structure of SglA, predicted the binding poses of these inhibitors through docking analysis, and identified a more efficacious derivative with a limited SAR study. These results open several exciting avenues for the research and development of a new class of antifungal agents targeting sterylglucosidases.
Collapse
Affiliation(s)
- Nivea Pereira de Sa
- Department of Microbiology and Immunology, Stony Brook University, Stony Brook, New York, USA
| | - Kalani Jayanetti
- Department of Chemistry, Stony Brook University, Stony Brook, New York, USA
| | - Dominick Rendina
- Department of Chemistry, Stony Brook University, Stony Brook, New York, USA
| | - Timothy Clement
- Department of Chemistry, Stony Brook University, Stony Brook, New York, USA
| | - Veronica Soares Brauer
- Department of Microbiology and Immunology, Stony Brook University, Stony Brook, New York, USA
| | - Caroline Mota Fernandes
- Department of Microbiology and Immunology, Stony Brook University, Stony Brook, New York, USA
| | - Iwao Ojima
- Department of Chemistry, Stony Brook University, Stony Brook, New York, USA
- Institute of Chemical Biology and Drug Discovery, Stony Brook, New York, USA
| | - Michael V. Airola
- Institute of Chemical Biology and Drug Discovery, Stony Brook, New York, USA
- Department of Biochemistry and Cell Biology, Stony Brook University, Stony Brook, New York, USA
| | - Maurizio Del Poeta
- Department of Microbiology and Immunology, Stony Brook University, Stony Brook, New York, USA
- Institute of Chemical Biology and Drug Discovery, Stony Brook, New York, USA
- Division of Infectious Diseases, School of Medicine, Stony Brook University, Stony Brook, New York, USA
- Veterans Administration Medical Center, Northport, New York, USA
| |
Collapse
|
4
|
Mushtaq A, Azam U, Mehreen S, Naseer MM. Synthetic α-glucosidase inhibitors as promising anti-diabetic agents: Recent developments and future challenges. Eur J Med Chem 2023; 249:115119. [PMID: 36680985 DOI: 10.1016/j.ejmech.2023.115119] [Citation(s) in RCA: 48] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 01/06/2023] [Accepted: 01/11/2023] [Indexed: 01/19/2023]
Abstract
Diabetes mellitus is one of the biggest challenges for the scientific community in the 21st century. It is a well-recognized multifactorial health problem contributes significantly to high mortality rates by causing serious health complications mainly related to cardiovascular diseases, kidney damage and neuropathy. The inhibition of α-glucosidase (enzyme that catalyses starch hydrolysis in the intestine) is an effective therapeutic approach for controlling hyperglycemia associated with type-2 diabetes. However, the presently approved drugs/inhibitors such as acarbose, miglitol and voglibose have several undesirable gastrointestinal side effects impeding their applications. Therefore, search for novel and more effective inhibitors with reduced side effects and less cost remains a fascinating area of research. In this context, a large variety of α-glucosidase inhibitors have been identified in recent years that demands attention from drug development community. This review is therefore an effort to summarize and highlight the promising α-glucosidase inhibitors especially those which are primarily based on aromatic heterocyclic scaffolds such as coumarin, imidazole, isatin, pyrimidine, quinazoline, triazine, thiazole etc, having improved safety and pharmacological profiles.
Collapse
Affiliation(s)
- Alia Mushtaq
- Department of Chemistry, Quaid-i-Azam University, Islamabad, 45320, Pakistan
| | - Uzma Azam
- Department of Chemistry, Quaid-i-Azam University, Islamabad, 45320, Pakistan
| | - Saba Mehreen
- Department of Chemistry, Quaid-i-Azam University, Islamabad, 45320, Pakistan
| | | |
Collapse
|
5
|
Recent developments in synthetic α-glucosidase inhibitors: A comprehensive review with structural and molecular insight. J Mol Struct 2023. [DOI: 10.1016/j.molstruc.2023.135115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/11/2023]
|
6
|
Madhvi, Utreja D, Kalia A. Efficient p-Toluenesulfonic Acid-Catalyzed Synthesis of 5-Aryl-5,10-dihydropyrimido[4,5-b]quinoline-2,4(1H,3H)-diones and Their Antimicrobial Activity. RUSSIAN JOURNAL OF ORGANIC CHEMISTRY 2022. [DOI: 10.1134/s1070428022090196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
7
|
Garg P, Rawat RS, Bhatt H, Kumar S, Reddy SR. Recent Developments in the Synthesis of N‐Heterocyclic Compounds as α‐Amylase Inhibitors via In‐Vitro and In‐Silico Analysis: Future Drugs for Treating Diabetes. ChemistrySelect 2022. [DOI: 10.1002/slct.202201706] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Pooja Garg
- Department of Chemistry SAS Vellore Institute of Technology Vellore-632014 Tamil Nadu India
| | - Ravindra Singh Rawat
- Centre for Bio Separation and Technology Vellore Institute of Technology Vellore- 632014 Tamil Nadu India
| | - Harshil Bhatt
- Centre for Bio Separation and Technology Vellore Institute of Technology Vellore- 632014 Tamil Nadu India
| | - Sanjit Kumar
- Centre for Bio Separation and Technology Vellore Institute of Technology Vellore- 632014 Tamil Nadu India
| | | |
Collapse
|
8
|
Madhvi, Utreja D, Sharma S. Barbiturates: A Review of Synthesis and Antimicrobial Research Progress. Curr Org Synth 2021; 19:31-55. [PMID: 33855946 DOI: 10.2174/1570179418666210414104857] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Revised: 03/15/2021] [Accepted: 03/22/2021] [Indexed: 11/22/2022]
Abstract
BACKGROUND Barbituric acid and its derivatives have turned heads for several years as an indispensable class of compounds in the pharmaceutical industry because of their vast assortment of biological activities such as anticonvulsants, hypnotics, anti-diabetic, antiviral, anti-AIDS, anti-cancer, anti-microbial and anti-oxidant etc. Plethoras of studies have shed light on the properties, synthesis, and reactivity of these compounds. The depiction of multiple biological activities by barbiturates compelled us and by virtue of which herein we have mediated over the progress of synthesis of numerous kinds of compounds derived from barbituric acid with well-known and typical examples from 2016 to the present. OBJECTIVE The review focuses on the advancements in methods of synthesis of barbituric acid derivatives and their applications as antimicrobial agents. CONCLUSION This review will help future researchers to analyze the previous studies and to explore new compounds for the development of efficient antimicrobial drugs.
Collapse
Affiliation(s)
- Madhvi
- Department of Chemistry, Punjab Agricultural University, Ludhiana 141004. India
| | - Divya Utreja
- Department of Chemistry, Punjab Agricultural University, Ludhiana 141004. India
| | - Shivali Sharma
- Department of Chemistry, Punjab Agricultural University, Ludhiana 141004. India
| |
Collapse
|
9
|
Bimetallic Iron-Palladium Catalyst System as a Lewis-Acid for the Synthesis of Novel Pharmacophores Based Indole Scaffold as Anticancer Agents. Molecules 2021; 26:molecules26082212. [PMID: 33921334 PMCID: PMC8070033 DOI: 10.3390/molecules26082212] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Revised: 04/01/2021] [Accepted: 04/01/2021] [Indexed: 11/26/2022] Open
Abstract
The Friedel–Crafts reaction between substituted indoles as nucleophiles with chalcones-based benzofuran and benzothiophene scaffolds was carried out by employing a highly efficient bimetallic iron–palladium catalyst system. This catalytic approach produced the desired bis-heteroaryl products with low catalyst loading, a simple procedure, and with acceptable yield. All synthesized indole scaffolds 3a–3s were initially evaluated for their cytotoxic effect against human fibroblast BJ cell lines and appeared to be non-cytotoxic. All non-cytotoxic compounds 3a–3s were then evaluated for their anticancer activities against cervical cancer HeLa, prostate cancer PC3, and breast cancer MCF-7 cell lines, in comparison to standard drug doxorubicin, with IC50 values 1.9 ± 0.4 µM, 0.9 ± 0.14 µM and 0.79 ± 0.05 µM, respectively, and appeared to be moderate to weak anticancer agents. Fluoro-substituted chalcone moiety-containing compounds, 3b appeared to be the most active member of the series against cervical HeLa (IC50 = 8.2 ± 0.2 µM) and breast MCF-7 cancer cell line (IC50 = 12.3 ± 0.04 µM), whereas 6-fluroindol-4-bromophenyl chalcone-containing compound 3e (IC50 = 7.8 ± 0.4 µM) appeared to be more active against PC3 prostate cancer cell line.
Collapse
|
10
|
Chortani S, Horchani M, Znati M, Issaoui N, Jannet HB, Romdhane A. Design and synthesis of new benzopyrimidinone derivatives: α-amylase inhibitory activity, molecular docking and DFT studies. J Mol Struct 2021. [DOI: 10.1016/j.molstruc.2021.129920] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
11
|
Kar A, Chakraborty B, Kundal S, Rana G, Jana U. DDQ/FeCl 3-mediated tandem oxidative carbon-carbon bond formation for the Synthesis of indole-fluorene hybrid molecules. Org Biomol Chem 2021; 19:906-910. [PMID: 33411869 DOI: 10.1039/d0ob00413h] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
A series of diverse and complex hybrid structures of indole bearing fluorene were obtained in the presence of DDQ with high regioselectivity under mild conditions from biaryl tethered 3-(methylene)indoline in good to excellent yields. The strategy involves tandem allylic Csp3-H oxidation and subsequent intramolecular carbon-carbon bond formation. The yield of the product was dramatically improved in the presence of additives such as FeCl3 and molecular sieves (4 Å). A possible mechanism is proposed for this tandem process.
Collapse
Affiliation(s)
- Abhishek Kar
- Department of Chemistry, Jadavpur University, Kolkata 700032, West Bengal, India.
| | - Baitan Chakraborty
- Department of Chemistry, Jadavpur University, Kolkata 700032, West Bengal, India.
| | - Sandip Kundal
- Department of Chemistry, Jadavpur University, Kolkata 700032, West Bengal, India.
| | - Gopal Rana
- Department of Chemistry, Jadavpur University, Kolkata 700032, West Bengal, India.
| | - Umasish Jana
- Department of Chemistry, Jadavpur University, Kolkata 700032, West Bengal, India.
| |
Collapse
|
12
|
Anticancer Indole-Based Chalcones: A Structural and Theoretical Analysis. Molecules 2019; 24:molecules24203728. [PMID: 31623155 PMCID: PMC6832658 DOI: 10.3390/molecules24203728] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2019] [Revised: 10/10/2019] [Accepted: 10/11/2019] [Indexed: 11/21/2022] Open
Abstract
The crystal structures of five new chalcones derived from N-ethyl-3-acetylindole with different substituents were investigated: (E)-3-(4-bromophenyl)-1-(1-ethyl-1H-indol-3-yl)prop-2-en-1-one (3a); (E)-3-(3-bromophenyl)-1-(1-ethyl-1H-indol-3-yl)prop-2-en-1-one (3b); (E)-1-(1-ethyl-1H-indol-3-yl)-3-(4-methoxyphenyl)prop-2-en-1-one (3c); (E)-1-(1-ethyl-1H-indol-3-yl)-3-mesitylprop-2-en-1-one (3d); and (E)-1-(1-ethyl-1H-indol-3-yl)-3-(furan-2-yl)prop-2-en-1-one (3e). The molecular packing of the studied compounds is controlled mainly by C–H⋅⋅⋅O hydrogen bonds, C–H⋅⋅⋅π interactions, and π···π stacking interactions, which were quantitatively analyzed using Hirshfeld topology analysis. Using density functional theory (DFT) calculations, the order of polarity (3b ˂ 3d ˂ 3e ˂ 3a ˂ 3c) was determined. Several chemical reactivity indices such as the ionization potential (I), electron affinity (A), chemical potential (μ), hardness (η), electrophilicity (ω) and nucleophilicity (N) indices were calculated, and these properties are discussed and compared. In addition, the antiproliferative activity of the five new chalcones was studied.
Collapse
|