1
|
Bekmirzaev J, Simon M, D'Aniello S, Mazzeo M, Cohen-Janes SJ, Mathers RT, Gauvin RM, Thomas CM. A New Life For Nitrile-Butadiene Rubber: Co-Harnessing Metathesis And Condensation For Reincorporation Into Bio-Based Materials. Angew Chem Int Ed Engl 2024; 63:e202319414. [PMID: 38295149 DOI: 10.1002/anie.202319414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 01/15/2024] [Accepted: 01/31/2024] [Indexed: 02/02/2024]
Abstract
Efficient plastic recycling processes are crucial for the production of value-added products or intermediates. Here, we present a multicatalytic route that allows the degradation of nitrile-butadiene rubber, cross-metathesis of the formed oligomers, and polymerization of the resulting dicarboxylic acids with bio-based diols, providing direct access to unsaturated polyesters. This one-pot approach combines the use of commercially available catalysts that are active and selective under mild conditions to synthesize renewable copolymers without the need to isolate intermediates.
Collapse
Affiliation(s)
- Jakhongir Bekmirzaev
- Chimie ParisTech, PSL University, CNRS, Institut de Recherche de Chimie Paris, 11, rue Pierre et Marie Curie, 75005, Paris, France
| | - Malaury Simon
- Chimie ParisTech, PSL University, CNRS, Institut de Recherche de Chimie Paris, 11, rue Pierre et Marie Curie, 75005, Paris, France
| | - Sara D'Aniello
- Dipartimento di Chimica e Biologia "Adolfo Zambelli", Università di Salerno, via Giovanni Paolo II, 132, SA-84084, Fisciano, Italy
| | - Mina Mazzeo
- Dipartimento di Chimica e Biologia "Adolfo Zambelli", Università di Salerno, via Giovanni Paolo II, 132, SA-84084, Fisciano, Italy
| | - Sander J Cohen-Janes
- Department of Chemistry, Pennsylvania State University, New Kensington, Pennsylvania, 15068, USA
- Department of Chemistry, Yale University, New Haven, Connecticut, 06520, USA
| | - Robert T Mathers
- Department of Chemistry, Pennsylvania State University, New Kensington, Pennsylvania, 15068, USA
| | - Régis M Gauvin
- Chimie ParisTech, PSL University, CNRS, Institut de Recherche de Chimie Paris, 11, rue Pierre et Marie Curie, 75005, Paris, France
| | - Christophe M Thomas
- Chimie ParisTech, PSL University, CNRS, Institut de Recherche de Chimie Paris, 11, rue Pierre et Marie Curie, 75005, Paris, France
| |
Collapse
|
2
|
Ruhunage C, Dhawan V, Nawarathne CP, Hoque A, Cui XT, Alvarez NT. Evaluation of Polymer-Coated Carbon Nanotube Flexible Microelectrodes for Biomedical Applications. Bioengineering (Basel) 2023; 10:647. [PMID: 37370578 PMCID: PMC10295676 DOI: 10.3390/bioengineering10060647] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 05/19/2023] [Accepted: 05/24/2023] [Indexed: 06/29/2023] Open
Abstract
The demand for electrically insulated microwires and microfibers in biomedical applications is rapidly increasing. Polymer protective coatings with high electrical resistivity, good chemical resistance, and a long shelf-life are critical to ensure continuous device operation during chronic applications. As soft and flexible electrodes can minimize mechanical mismatch between tissues and electronics, designs based on flexible conductive microfibers, such as carbon nanotube (CNT) fibers, and soft polymer insulation have been proposed. In this study, a continuous dip-coating approach was adopted to insulate meters-long CNT fibers with hydrogenated nitrile butadiene rubber (HNBR), a soft and rubbery insulating polymer. Using this method, 4.8 m long CNT fibers with diameters of 25-66 µm were continuously coated with HNBR without defects or interruptions. The coated CNT fibers were found to be uniform, pinhole free, and biocompatible. Furthermore, the HNBR coating had better high-temperature tolerance than conventional insulating materials. Microelectrodes prepared using the HNBR-coated CNT fibers exhibited stable electrochemical properties, with a specific impedance of 27.0 ± 9.4 MΩ µm2 at 1.0 kHz and a cathodal charge storage capacity of 487.6 ± 49.8 mC cm-2. Thus, the developed electrodes express characteristics that made them suitable for use in implantable medical devices for chronic in vivo applications.
Collapse
Affiliation(s)
- Chethani Ruhunage
- Department of Chemistry, University of Cincinnati, Cincinnati, OH 45221, USA; (C.R.); (C.P.N.); (A.H.)
| | - Vaishnavi Dhawan
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA 15261, USA;
| | - Chaminda P. Nawarathne
- Department of Chemistry, University of Cincinnati, Cincinnati, OH 45221, USA; (C.R.); (C.P.N.); (A.H.)
| | - Abdul Hoque
- Department of Chemistry, University of Cincinnati, Cincinnati, OH 45221, USA; (C.R.); (C.P.N.); (A.H.)
| | - Xinyan Tracy Cui
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA 15261, USA;
| | - Noe T. Alvarez
- Department of Chemistry, University of Cincinnati, Cincinnati, OH 45221, USA; (C.R.); (C.P.N.); (A.H.)
| |
Collapse
|
3
|
Morphology, mechanical and thermal properties of HNBR/AEM blends. J RUBBER RES 2023. [DOI: 10.1007/s42464-023-00190-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
|
4
|
Herman RA, Zhu X, Ayepa E, You S, Wang J. Advances in the One-Step Approach of Polymeric Materials Using Enzymatic Techniques. Polymers (Basel) 2023; 15:703. [PMID: 36772002 PMCID: PMC9922006 DOI: 10.3390/polym15030703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 01/23/2023] [Accepted: 01/27/2023] [Indexed: 01/31/2023] Open
Abstract
The formulation in which biochemical enzymes are administered in polymer science plays a key role in retaining their catalytic activity. The one-step synthesis of polymers with highly sequence-controlled enzymes is a strategy employed to provide enzymes with higher catalytic activity and thermostability in material sustainability. Enzyme-catalyzed chain growth polymerization reactions using activated monomers, protein-polymer complexation techniques, covalent and non-covalent interaction, and electrostatic interactions can provide means to develop formulations that maintain the stability of the enzyme during complex material processes. Multifarious applications of catalytic enzymes are usually attributed to their efficiency, pH, and temperature, thus, progressing with a critical structure-controlled synthesis of polymer materials. Due to the obvious economics of manufacturing and environmental sustainability, the green synthesis of enzyme-catalyzed materials has attracted significant interest. Several enzymes from microorganisms and plants via enzyme-mediated material synthesis have provided a viable alternative for the appropriate synthesis of polymers, effectively utilizing the one-step approach. This review analyzes more and deeper strategies and material technologies widely used in multi-enzyme cascade platforms for engineering polymer materials, as well as their potential industrial applications, to provide an update on current trends and gaps in the one-step synthesis of materials using catalytic enzymes.
Collapse
Affiliation(s)
- Richard Ansah Herman
- School of Materials Science and Engineering, Jiangsu University of Science and Technology, Zhenjiang 212100, China
- Jiangsu Key Laboratory of Sericultural Biology and Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang 212100, China
| | - Xuan Zhu
- Jiangsu Key Laboratory of Sericultural Biology and Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang 212100, China
| | - Ellen Ayepa
- Oil Palm Research Institute, Council for Scientific and Industrial Research, Kade P.O. Box 74, Ghana
| | - Shuai You
- Jiangsu Key Laboratory of Sericultural Biology and Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang 212100, China
- Key Laboratory of Silkworm and Mulberry Genetic Improvement, Ministry of Agricultural and Rural Affairs, Sericulture Research Institute, Chinese Academy of Agricultural Sciences, Zhenjiang 212100, China
| | - Jun Wang
- Jiangsu Key Laboratory of Sericultural Biology and Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang 212100, China
- Key Laboratory of Silkworm and Mulberry Genetic Improvement, Ministry of Agricultural and Rural Affairs, Sericulture Research Institute, Chinese Academy of Agricultural Sciences, Zhenjiang 212100, China
| |
Collapse
|
5
|
Wang L, Ni Y, Qi X, Zhang L, Yue D. Synthesis of Low Temperature Resistant Hydrogenated Nitrile Rubber Based on Esterification Reaction. Polymers (Basel) 2021; 13:4096. [PMID: 34883600 PMCID: PMC8659218 DOI: 10.3390/polym13234096] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Revised: 11/12/2021] [Accepted: 11/14/2021] [Indexed: 11/17/2022] Open
Abstract
Hydrogenated Nitrile Rubber (HNBR) is widely used in aerospace, petroleum exploration and other fields because of its excellent performances. However, there remains a challenge of balancing the oil resistance and the low temperature resistance for HNBR. In this work, a series of grafted carboxyl nitrile rubber (XNBR) was prepared by the esterification reaction between active functional groups (-COOH) of XNBR and alkanols of different molecular chain lengths (C8H17OH, C12H25OH, C16H33OH, C18H37OH) or Methoxypolyethylene glycols (MPEG) of different molecular weights (Mn = 350, 750, 1000). The structure and low temperature resistance of as-obtained grafted polymers were characterized by Fourier Transform Infrared (FTIR), 1H-NMR and Differential scanning calorimetry (DSC). It was found that the glass transition temperatures (Tg) of grafted XNBR were significantly decreased. MPEG grafted polymers with better low temperature resistance were then selected for hydrogenation. As-prepared hydrogenated XNBR grafted with MPEG-1000 (HXNBR-g-1000) showed the lowest Tg of -29.8 °C and the best low temperature resistance. This work provides a novel and simple preparation method for low temperature resistant HNBR, which might be used potentially in extremely cold environments.
Collapse
Affiliation(s)
- Lin Wang
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029, China; (L.W.); (Y.N.); (X.Q.); (L.Z.)
| | - Yanqiang Ni
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029, China; (L.W.); (Y.N.); (X.Q.); (L.Z.)
| | - Xin Qi
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029, China; (L.W.); (Y.N.); (X.Q.); (L.Z.)
| | - Liqun Zhang
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029, China; (L.W.); (Y.N.); (X.Q.); (L.Z.)
- Key Laboratory of Beijing City on Preparation and Processing of Novel Polymer Materials, Beijing University of Chemical Technology, Beijing 100029, China
| | - Dongmei Yue
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029, China; (L.W.); (Y.N.); (X.Q.); (L.Z.)
- Key Laboratory of Beijing City on Preparation and Processing of Novel Polymer Materials, Beijing University of Chemical Technology, Beijing 100029, China
| |
Collapse
|
6
|
Ahn J, Park B, Kim J, Um MK, Yi JW, Yoo JK. Multifunctional Additives for High-Energy-Density Lithium-Ion Batteries: Improved Conductive Additive/Binder Networks and Enhanced Electrochemical Properties. ACS APPLIED MATERIALS & INTERFACES 2021; 13:19970-19982. [PMID: 33880915 DOI: 10.1021/acsami.1c00848] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Cylindrical-type cells have been widely adopted by major battery and electric vehicle manufacturers owing to their price competitiveness, safety, and easy expandability. However, placement of electrodes at the core of cylindrical cells is currently restricted because of high electrode curvature and the lack of specialized electrodes and electrode materials. Here, we report the realization of highly flexible high-energy-density electrodes (active material loading of >98.4%) that can be used at the cores of cylindrical cells. The improved properties result from the introduction of a multifunctional poly(melamine-co-formaldehyde) (MF copolymer) additive, which yields a relatively more fluidic and well-dispersed slurry using only 0.08 wt %. MF copolymer-mediated formation of completely wrapped CNT/PVDF networks on LiCoO2 (LCO) and accompanying contact enhancement between LCO and carbon nanotubes (CNTs) resulted in an increase of electrical and mechanical properties of the two types (composites with or without collectors) of electrodes compared with those of additive-free electrodes. Flexibility tests were carried out by rolling electrodes onto cylinder substrates (diameters of ca. 1 and 10 mm); this process resulted in relatively lower resistance changes of the MF copolymer-containing electrodes than for the reference electrodes. In addition, capacity retention after 100 cycles for cells with and without MF copolymers was approximately 10-20% better for the samples with the MF copolymer than for those without. CNT/PVDF networks with MF copolymers were proven to induce a relatively thin and stable cathode electrolyte interface layer accompanying the chemical bond formation during cycling.
Collapse
Affiliation(s)
- Junho Ahn
- Carbon Composites Department, Korea Institute of Materials Science (KIMS), 797 Changwondaero, Changwon 51508, Republic of Korea
| | - Byeongho Park
- Carbon Composites Department, Korea Institute of Materials Science (KIMS), 797 Changwondaero, Changwon 51508, Republic of Korea
| | - Jongsoon Kim
- Department of Energy Science, Sungkyunkwan University, Suwon 440-746, Republic of Korea
| | - Moon-Kwang Um
- Carbon Composites Department, Korea Institute of Materials Science (KIMS), 797 Changwondaero, Changwon 51508, Republic of Korea
| | - Jin Woo Yi
- Carbon Composites Department, Korea Institute of Materials Science (KIMS), 797 Changwondaero, Changwon 51508, Republic of Korea
| | - Jung-Keun Yoo
- Carbon Composites Department, Korea Institute of Materials Science (KIMS), 797 Changwondaero, Changwon 51508, Republic of Korea
| |
Collapse
|