1
|
Barman J, Deka N, Maji PK, Dutta GK. Nitrogen and Sulfur Enriched Porous Carbon Materials with Trace Fe Derived from Hyper‐crosslinked Polymer as an Efficient Oxygen Reduction Electrocatalyst. ChemElectroChem 2022. [DOI: 10.1002/celc.202200677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
| | - Namrata Deka
- National Institute of Technology Meghalaya Chemistry INDIA
| | - Pradip K. Maji
- Indian Institute of Technology Roorkee Polymer and Process Engineering INDIA
| | - Gitish Kishor Dutta
- National Institute of Technology Meghalaya Chemistry Bijni Complex 793003 Shillong INDIA
| |
Collapse
|
2
|
Xiong G, Gao S, Zhang Q, Ren B, You L, Ding F, He Y, Sun Y. High porosity cyclotriphosphazene-based hyper-crosslinked polymers as efficient cationic dye MB adsorbents. POLYMER 2022. [DOI: 10.1016/j.polymer.2022.124787] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
|
3
|
Xu Z, Wang T, Li J, Zhang F, Lou H, Zhang J, Zhang W, Zhang W, Zhou B. Nanosized porous artificial enzyme as a pH-sensitive doxorubicin delivery system for joint enzymatic and chemotherapy towards tumor treatment. NEW J CHEM 2022. [DOI: 10.1039/d2nj02031a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A porous spherical artificial nanozyme (HF-900) prepared via pyrolysis of a porous organic polymer was used as drug carrier for efficient loading and highly selective pH-responsive delivery of doxorubicin (DOX) for the tumor joint nanotherapy.
Collapse
Affiliation(s)
- Zhilu Xu
- Weifang Medical University, Weifang, 261053, Shandong, P. R. China
| | - Ting Wang
- Weifang Medical University, Weifang, 261053, Shandong, P. R. China
| | - Jing Li
- Weifang Medical University, Weifang, 261053, Shandong, P. R. China
| | - Fang Zhang
- Weifang Medical University, Weifang, 261053, Shandong, P. R. China
| | - Han Lou
- Weifang Medical University, Weifang, 261053, Shandong, P. R. China
| | - Jian Zhang
- Weifang Medical University, Weifang, 261053, Shandong, P. R. China
| | - Wenhua Zhang
- Weifang Medical University, Weifang, 261053, Shandong, P. R. China
| | - Weifen Zhang
- Weifang Medical University, Weifang, 261053, Shandong, P. R. China
| | - Baolong Zhou
- Weifang Medical University, Weifang, 261053, Shandong, P. R. China
| |
Collapse
|
4
|
Abid A, Razzaque S, Hussain I, Tan B. Eco-Friendly Phosphorus and Nitrogen-Rich Inorganic–Organic Hybrid Hypercross-linked Porous Polymers via a Low-Cost Strategy. Macromolecules 2021. [DOI: 10.1021/acs.macromol.1c00385] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Amin Abid
- Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, Huazhong University of Science and Technology (HUST), 1037, Luoyu Road, Wuhan, Hubei 430074, China
- Department of Chemistry, University of Sahiwal, Sahiwal 57000, Pakistan
| | - Shumaila Razzaque
- Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, Huazhong University of Science and Technology (HUST), 1037, Luoyu Road, Wuhan, Hubei 430074, China
| | - Irshad Hussain
- Department of Chemistry and Chemical Engineering, SBA School of Science & Engineering, Lahore University of Management Science (LUMS), D.H.A., Lahore 54792, Pakistan
| | - Bien Tan
- Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, Huazhong University of Science and Technology (HUST), 1037, Luoyu Road, Wuhan, Hubei 430074, China
| |
Collapse
|
5
|
Dou J, Luo H, Zhang C, Lu J, Luan X, Guo W, Zhang T, Bian W, Bai J, Zhang X, Zhou B. Bimetallic conjugated microporous polymer derived B,N-doped porous carbon wrapped Co 3Fe 7 alloy composite as a bifunctional oxygen electrocatalyst for a breathing Zn–air battery. NEW J CHEM 2021. [DOI: 10.1039/d1nj04063d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A B, N-codoped carbon-based bifunctional oxygen electrocatalyst was prepared. This presented outstanding catalytic activity for electrochemical oxygen reduction and evolution reactions and could be used as the catalyst for a breathing Zn–air battery.
Collapse
Affiliation(s)
- Jinli Dou
- School of Pharmacy, Weifang Medical University, Weifang, 261053, Shandong, P. R. China
| | - Haotian Luo
- School of Pharmacy, Weifang Medical University, Weifang, 261053, Shandong, P. R. China
| | - Chunli Zhang
- Western Pharmacy, Anqiu Hospital of Traditional Chinese Medicine, Weifang, Shandong, P. R. China
| | - Jingjing Lu
- School of Pharmacy, Weifang Medical University, Weifang, 261053, Shandong, P. R. China
| | - Xiujuan Luan
- School of Pharmacy, Weifang Medical University, Weifang, 261053, Shandong, P. R. China
| | - Wenxue Guo
- School of Pharmacy, Weifang Medical University, Weifang, 261053, Shandong, P. R. China
| | - Teng Zhang
- School of Pharmacy, Weifang Medical University, Weifang, 261053, Shandong, P. R. China
| | - Weiwei Bian
- School of Pharmacy, Weifang Medical University, Weifang, 261053, Shandong, P. R. China
| | - Jingkun Bai
- School of Bioscience and Technology, Weifang Medical University, Weifang, 261053, P. R. China
| | - Xueli Zhang
- Department of Histology and Embryology, Weifang Medical University, 261053, Shandong, China
| | - Baolong Zhou
- School of Pharmacy, Weifang Medical University, Weifang, 261053, Shandong, P. R. China
| |
Collapse
|
6
|
Fabrication of Conjugated Porous Polymer Catalysts for Oxygen Reduction Reactions: A Bottom-Up Approach. Catalysts 2020. [DOI: 10.3390/catal10111224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
The present study demonstrates the fabrication of a conjugated porous polymer (CPP-P2) through a Pd-catalyzed Suzuki–Miyaura poly-condensation reaction. 13C cross-polarization solid-state NMR and Fourier transform infrared (FTIR) spectroscopy were used to characterize CPP-P2. Pristine nitrogen-containing CPP was explored as a catalyst for the oxygen reduction reaction in 0.1 M KOH aqueous alkaline media. In the case of CPP-P2,the polymer oxygen reduction reaction occurs via a four-electron transfer mechanism. An understanding of the oxygen reduction at the molecular level and the role of molecular packing in the three-dimensional structure was proposed based on density functional theory (DFT) modeling.
Collapse
|