1
|
Villegas MM, Silva JN, Tito FR, Tonón CV, Muñoz FF, Pepe A, Guevara MG. From Beer to Cheese: Characterization of Caseinolytic and Milk-Clotting Activities of Proteases Derived from Brewer's Spent Grain (BSG). Foods 2024; 13:3658. [PMID: 39594073 PMCID: PMC11593970 DOI: 10.3390/foods13223658] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Revised: 11/05/2024] [Accepted: 11/15/2024] [Indexed: 11/28/2024] Open
Abstract
This study explores the extraction and characterization of proteolytic enzymes from brewer's spent grain (BSG) and their potential as sustainable coagulants in the dairy industry. BSG samples from various beer types (Blonde Ale, IPA, Kölsch, Honey, and Porter) were obtained from two artisanal breweries in Mar del Plata, Argentina. Optimization of caseinolytic activity (CA) and protein extraction was conducted using a Plackett-Burman design, followed by a Box-Behnken design. Optimal protein concentration was achieved at intermediate pH and high temperature, while CA peaked at pH 8.0. The specific caseinolytic activity (SCA) varied among the extracts, with BSG3 showing the highest activity (99.6 U mg-1) and BSG1 the lowest (60.4 U mg-1). Protease inhibitor assays suggested the presence of aspartic, serine, metallo, and cysteine proteases. BSG3 and BSG4 showed the highest hydrolysis rates for α-casein (70% and 78%). For κ-casein, BSG1, BSG2, and BSG3 demonstrated moderate activity (56.5%, 49%, and 55.8), while BSG4 and BSG5 exhibited the lowest activity. Additionally, the milk-clotting activity (MCA) of BSG extracts was comparable to plant-based coagulants like Cynara cardunculus and Ficus carica. These findings highlight the potential of BSG-derived proteases as alternative coagulants for cheese production, offering a sustainable link between the brewing and dairy industries.
Collapse
Affiliation(s)
- Maximiliano M. Villegas
- Biological Research Institute, National Scientific and Technical Research Council (CONICET), University of Mar del Plata (UNMDP), Mar del Plata 7600, Argentina; (M.M.V.); (J.N.S.); (F.R.T.); (C.V.T.); (F.F.M.)
| | - Johana N. Silva
- Biological Research Institute, National Scientific and Technical Research Council (CONICET), University of Mar del Plata (UNMDP), Mar del Plata 7600, Argentina; (M.M.V.); (J.N.S.); (F.R.T.); (C.V.T.); (F.F.M.)
| | - Florencia R. Tito
- Biological Research Institute, National Scientific and Technical Research Council (CONICET), University of Mar del Plata (UNMDP), Mar del Plata 7600, Argentina; (M.M.V.); (J.N.S.); (F.R.T.); (C.V.T.); (F.F.M.)
| | - Claudia V. Tonón
- Biological Research Institute, National Scientific and Technical Research Council (CONICET), University of Mar del Plata (UNMDP), Mar del Plata 7600, Argentina; (M.M.V.); (J.N.S.); (F.R.T.); (C.V.T.); (F.F.M.)
| | - Fernando F. Muñoz
- Biological Research Institute, National Scientific and Technical Research Council (CONICET), University of Mar del Plata (UNMDP), Mar del Plata 7600, Argentina; (M.M.V.); (J.N.S.); (F.R.T.); (C.V.T.); (F.F.M.)
- Plant Physiology Group, Faculty of Agricultural Sciences, National University of Litoral, Esperanza 3080, Argentina
| | - Alfonso Pepe
- H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL 33612, USA
| | - María G. Guevara
- Biological Research Institute, National Scientific and Technical Research Council (CONICET), University of Mar del Plata (UNMDP), Mar del Plata 7600, Argentina; (M.M.V.); (J.N.S.); (F.R.T.); (C.V.T.); (F.F.M.)
| |
Collapse
|
2
|
Yin X, Dai F, Ran D, Zhang Y, Qu Z, Zheng S. Cysteine protease cathepsin B promotes lysosome integrity to extend the lifespan of alternative day fasting worms. Aging Cell 2024; 23:e14286. [PMID: 39046045 PMCID: PMC11561666 DOI: 10.1111/acel.14286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 06/30/2024] [Accepted: 07/10/2024] [Indexed: 07/25/2024] Open
Abstract
Alternative day fasting (ADF) has been shown to enhance the lifespan of animals. However, human trials evaluating the efficacy of ADF have only recently emerged, presenting challenges due to the extreme nature of this dietary regimen. To better understand the effects of ADF, we investigated its impact using Caenorhabditis elegans as a model organism. Our findings reveal that ADF extends the lifespan of worms nourished on animal-based protein source, while those fed with plant-based protein as the primary protein source do not experience such benefits. Remarkably, initiating ADF during midlife is sufficient to prolong lifespan, whereas implementation during youth results in developmental damage, and in older age, fails to provide additional extension effects. Furthermore, we discovered that midlife ADF up-regulates the expression of two cysteine protease cathepsin B genes, cpr-2 and cpr-5, which preserve lysosomal integrity and enhance its function in digesting aggregated proteins, as well as enhancing lipid metabolism and ameliorating neurodegenerative disease markers and phenomena during aging. This suggests that midlife ADF has long lasting anti-aging effects and may delay the onset of related diseases, specifically in animals consuming animal-based protein source. These findings offer valuable insights into the effects of ADF and provide guidance for future research and potential applications in individuals.
Collapse
Affiliation(s)
- Xue Yin
- School of Basic Medical SciencesHenan UniversityKaifengChina
| | - Fangzhou Dai
- School of Basic Medical SciencesHenan UniversityKaifengChina
| | - Dongyang Ran
- School of Basic Medical SciencesHenan UniversityKaifengChina
| | - Yutong Zhang
- School of Basic Medical SciencesHenan UniversityKaifengChina
| | - Zhi Qu
- School of Nursing and HealthHenan UniversityKaifengChina
| | - Shanqing Zheng
- School of Basic Medical SciencesHenan UniversityKaifengChina
- Laboratory of Cell Signal Transduction, Henan Provincial Engineering Centre for Tumor Molecular MedicineMedical School of Henan UniversityKaifengChina
- The Zhongzhou Laboratory for Integrative BiologyZhengzhouHenanChina
| |
Collapse
|
3
|
Guo X, Shang Z, Li Q, Wang L, Zhang Y, Liu S, Cao Y, Dong B. Whole-genome sequencing and assessment of a novel protein- and gossypol-degrading Bacillus subtilis strain isolated from intestinal digesta of Tibetan Pigs. BMC Microbiol 2024; 24:424. [PMID: 39438803 PMCID: PMC11495092 DOI: 10.1186/s12866-024-03588-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Accepted: 10/16/2024] [Indexed: 10/25/2024] Open
Abstract
BACKGROUND With the rapid development of animal husbandry, the demand for protein feed resources is increasing. Cottonseed meal (CSM) and soybean meal (SBM) are rich sources of protein. However, their application is limited due to the existence of anti-nutrients, which can be harmful to the digestion and absorption. A strain of Bacillus subtilis (Mafic-Y7) was isolated from digesta of intestines of Tibetan pigs. The strain showed high protease activity, which helps in degrading proteinic anti-nutritional factors in grain meal and in vitro degradation of free gossypol. In order to better understand this isolated strain, whole genome of Mafic-Y7 strain was sequenced and analyzed. Different effects on various grain meals were identified. RESULT The GC-depth Poisson distributions showed no bias suggesting high-quality genome assembly of Mafic-Y7. The whole genome sequencing showed that one chromosome with 4,248,845 base pairs(bp)and the genes total length with 3,736,524 bp was predicted in Mafic-Y7. Additionally, Mafic-Y7 possessed 4,254 protein-coding genes, and several protease genes were annotated by aligning them with databases. There are 55 protease genes, one phytase gene and one laccase gene were annotated in the gene sequence of Mafic-Y7. The average nucleotide identity between Mafic-Y7 and the GCA-000009045.1 homologous genome was 0.9938, suggesting a close genetic relationship between them at the species level. Compared with the closest four whole genomes, Mafic-Y7 was annotated the most abundant of protease genes (55 genes). The fermentation supernatant of Mafic-Y7 could increase the content of small peptides, water-soluble proteins, and acid-soluble proteins in vitro by 411%, 281% and 317% in SBM and 420%, 257% and 338% in CSM. After fermentation in grain meal by Mafic-Y7, the degradation rate of anti-nutritional factors in SBM, such as trypsin inhibitor, glycinin, and β-conglycinin was greater than 70%, and lectin was greater than 30%. The degradation rates of anti-nutritional factors in CSM, such as gossypol and phytic acid, were 82% and 26%, respectively.
Collapse
Affiliation(s)
- Xiangyue Guo
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, People's Republic of China
| | - Zhenda Shang
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, People's Republic of China
- College of Animal Science, Tibet Agricultural and Animal Husbandry University, Nyingchi, 960000, People's Republic of China
| | - Qianxi Li
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, People's Republic of China
| | - Lixue Wang
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, People's Republic of China
| | - Ying Zhang
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, People's Republic of China
| | - Suozhu Liu
- College of Animal Science, Tibet Agricultural and Animal Husbandry University, Nyingchi, 960000, People's Republic of China
| | - Yunhe Cao
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, People's Republic of China
- Sanya Institute of China Agricultural University, Sanya, 572025, People's Republic of China
| | - Bing Dong
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, People's Republic of China.
| |
Collapse
|
4
|
Benito-Vázquez I, Muñoz-Labrador A, Garrido-Romero M, Hontoria-Caballo G, García-García C, Diez-Municio M, Moreno FJ. New Pipeline for Analysing Fruit Proteolytic Products Used as Digestive Health Nutraceuticals. Int J Mol Sci 2024; 25:10315. [PMID: 39408644 PMCID: PMC11476805 DOI: 10.3390/ijms251910315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Revised: 09/18/2024] [Accepted: 09/21/2024] [Indexed: 10/20/2024] Open
Abstract
Proteolytic products are extensively used in the nutraceutical sector to improve protein digestion and muscle quality in target populations (e.g., athletes or elderly). These products are processed using techniques that often lead to low purity but competitive pricing. Despite their widespread use and well-established production methods, the industry lacks standardized analytical methods for assessing these products and detecting potential fraud. This study proposes a comprehensive and harmonized pipeline for their analysis, which includes quantifying total soluble protein and proteolytic activity, as well as the determination of product stability and protein profile using SDS-PAGE and proteomic techniques. Despite the fact that protease extracts from pineapple had the highest protein content, most of the bromelain remained inactive, unlike in kiwi and papaya. SDS-PAGE revealed partial protein degradation of pineapple extracts, whereas kiwi extracts reflected a lower purification level but a higher protein integrity. The application of proteomic approaches strengthened the identification and origin tracing of the proteases. This study contributes to the development of a robust framework for analyzing proteolytic extracts, spanning from soluble protein quantification to protein profiling and activity determination. It may also ensure reliable supplier selection, high-quality manufacturing practices, and the implementation of optimal storage and formulation strategies in the nutraceutical industry.
Collapse
Affiliation(s)
- Iván Benito-Vázquez
- Instituto de Investigación en Ciencias de la Alimentación, CIAL (CSIC-UAM), Nicolás Cabrera 9, 28049 Madrid, Spain; (I.B.-V.); (A.M.-L.); (M.G.-R.)
- Pharmactive Biotech Products SLU, Faraday 7, 28049 Madrid, Spain;
| | - Ana Muñoz-Labrador
- Instituto de Investigación en Ciencias de la Alimentación, CIAL (CSIC-UAM), Nicolás Cabrera 9, 28049 Madrid, Spain; (I.B.-V.); (A.M.-L.); (M.G.-R.)
| | - Manuel Garrido-Romero
- Instituto de Investigación en Ciencias de la Alimentación, CIAL (CSIC-UAM), Nicolás Cabrera 9, 28049 Madrid, Spain; (I.B.-V.); (A.M.-L.); (M.G.-R.)
- Pharmactive Biotech Products SLU, Faraday 7, 28049 Madrid, Spain;
| | | | - Carlos García-García
- Centro de Biología Molecular Severo Ochoa, CBM (CSIC-UAM), Nicolás Cabrera, 1, 28049 Madrid, Spain;
| | | | - F. Javier Moreno
- Instituto de Investigación en Ciencias de la Alimentación, CIAL (CSIC-UAM), Nicolás Cabrera 9, 28049 Madrid, Spain; (I.B.-V.); (A.M.-L.); (M.G.-R.)
| |
Collapse
|
5
|
Bautista C, Arredondo-Nuñez A, Intiquilla A, Flores-Fernández CN, Brandelli A, Jiménez-Aliaga K, Zavaleta AI. One-step purification and characterization of a haloprotease from Micrococcus sp. PC7 for the production of protein hydrolysates from Andean legumes. Arch Microbiol 2024; 206:377. [PMID: 39141120 DOI: 10.1007/s00203-024-04109-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 08/04/2024] [Accepted: 08/09/2024] [Indexed: 08/15/2024]
Abstract
The high content and quality of protein in Andean legumes make them valuable for producing protein hydrolysates using proteases from bacteria isolated from extreme environments. This study aimed to carry out a single-step purification of a haloprotease from Micrococcus sp. PC7 isolated from Peru salterns. In addition, characterize and apply the enzyme for the production of bioactive protein hydrolysates from underutilized Andean legumes. The PC7 protease was fully purified using only tangential flow filtration (TFF) and exhibited maximum activity at pH 7.5 and 40 °C. It was characterized as a serine protease with an estimated molecular weight of 130 kDa. PC7 activity was enhanced by Cu2+ (1.7-fold) and remained active in the presence of most surfactants and acetonitrile. Furthermore, it stayed completely active up to 6% NaCl and kept ̴ 60% of its activity up to 8%. The protease maintained over 50% of its activity at 25 °C and 40 °C and over 70% at pH from 6 to 10 for up to 24 h. The determined Km and Vmax were 0.1098 mg mL-1 and 273.7 U mL-1, respectively. PC7 protease hydrolyzed 43%, 22% and 11% of the Lupinus mutabilis, Phaseolus lunatus and Erythrina edulis protein concentrates, respectively. Likewise, the hydrolysates from Lupinus mutabilis and Erythrina edulis presented the maximum antioxidant and antihypertensive activities, respectively. Our results demonstrated the feasibility of a simple purification step for the PC7 protease and its potential to be applied in industrial and biotechnological processes. Bioactive protein hydrolysates produced from Andean legumes may lead to the development of nutraceuticals and functional foods contributing to address some United Nations Sustainable Development Goals (SDGs).
Collapse
Affiliation(s)
- Cesar Bautista
- Laboratorio de Biología Molecular, Facultad de Farmacia y Bioquímica, Universidad Nacional Mayor de San Marcos, Lima 01, Peru
| | - Annsy Arredondo-Nuñez
- Laboratorio de Biología Molecular, Facultad de Farmacia y Bioquímica, Universidad Nacional Mayor de San Marcos, Lima 01, Peru
| | - Arturo Intiquilla
- Laboratorio de Biología Molecular, Facultad de Farmacia y Bioquímica, Universidad Nacional Mayor de San Marcos, Lima 01, Peru
| | - Carol N Flores-Fernández
- Laboratorio de Biología Molecular, Facultad de Farmacia y Bioquímica, Universidad Nacional Mayor de San Marcos, Lima 01, Peru.
| | - Adriano Brandelli
- Laboratory of Nanobiotechnology and Applied Microbiology, Department of Food Science, Federal University of Rio Grande do Sul, Porto Alegre, 91501-970, Brazil
| | - Karim Jiménez-Aliaga
- Laboratorio de Biología Molecular, Facultad de Farmacia y Bioquímica, Universidad Nacional Mayor de San Marcos, Lima 01, Peru
| | - Amparo Iris Zavaleta
- Laboratorio de Biología Molecular, Facultad de Farmacia y Bioquímica, Universidad Nacional Mayor de San Marcos, Lima 01, Peru
| |
Collapse
|
6
|
Choudhary R, Kaushik R, Chawla P, Manna S. Exploring the extraction, functional properties, and industrial applications of papain from Carica papaya. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2024. [PMID: 39077990 DOI: 10.1002/jsfa.13776] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Revised: 06/17/2024] [Accepted: 06/25/2024] [Indexed: 07/31/2024]
Abstract
Papain a protease enzyme naturally present in the Carica papaya has gained significant interest across several industries due to its unique properties and versatility. The unique structure of papain imparts the functionality that assists in elucidating how papain enzyme works and making it beneficial for a variety of purposes. This review highlights recent advancements in papain extraction techniques to enhance production efficiency to meet market demand. The extraction of papain from the Carica papaya plant offers various advantages such as cost-effectiveness, biodegradability, safety, and the ability to withstand a wide range of pH and temperature conditions. Key findings reveal that non-conventional papain extraction techniques offer significant advantages in terms of efficiency, product quality, and environmental sustainability. Furthermore, papain treatment enhances the value of final products due to its anti-bacterial, anti-oxidant, and anti-obesity properties. The ability of papain to hydrolyze a wide range of proteins across various conditions makes it a suitable protease enzyme. While the study emphasizes the advantages of papain, the study also acknowledges limitations such as the continuous research and development to optimize extraction processes which will help unlock papain's potential and meet the growing demand. © 2024 Society of Chemical Industry.
Collapse
Affiliation(s)
- Rajni Choudhary
- School of Health Sciences and Technology, UPES, Dehradun, India
| | | | - Prince Chawla
- Department of Food Technology and Nutrition, School of Agriculture, Lovely Professional University, Phagwara, India
| | - Suvendu Manna
- Sustainibility Cluster, School of Advance Engineering, UPES, Dehradun, India
| |
Collapse
|
7
|
Wu LP, Wu YX, Ke XT, Wang P, Zhang S, Zhu YT, Lu Y, Shu YJ, Jiang SY, Li CJ, Hu XQ. Isolation and antioxidant activity of peptides from Chinese hairy tofu. J Pept Sci 2024; 30:e3572. [PMID: 38396336 DOI: 10.1002/psc.3572] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 01/31/2024] [Accepted: 02/02/2024] [Indexed: 02/25/2024]
Abstract
Hairy tofu is a famous Chinese snack that is made from soybeans and rich in various nutrients. In order to further explore the antioxidant peptides of hairy tofu hydrolysates, seven proteases were used to hydrolyze hairy tofu. The results of in vitro radical scavenging activity showed that hairy tofu hydrolysates obtained by pancreatin exhibited the highest antioxidant activity. After Sephadex G-25 gel filtration and reversed-phase high-performance liquid chromatography (RP-HPLC), 97 peptides were identified in the most antioxidant fraction using liquid chromatography-mass spectrometry/mass spectrometry (LC-MS/MS). Among them, nine peptides were synthesized and their antioxidant activities were assessed using a H2O2-induced oxidative 293T cell model. Finally, four peptides (QCESHK, LAWNEGR, NLQGENEWDQK, and FTEMWR) at concentrations of < 50 μg/ml significantly decreased the malondialdehyde content compared with the model group, displaying in vivo antioxidant activity and low cytotoxicity. Overall, this research provided the choice of using hairy tofu peptides as antioxidant products in the pharmaceutical and food industries.
Collapse
Affiliation(s)
- Li-Ping Wu
- College of Life and Environment Science, Huangshan University, Huangshan, China
| | - Yong-Xiang Wu
- College of Life and Environment Science, Huangshan University, Huangshan, China
| | - Xiang-Tao Ke
- College of Life and Environment Science, Huangshan University, Huangshan, China
| | - Pan Wang
- College of Life and Environment Science, Huangshan University, Huangshan, China
| | - Shuo Zhang
- College of Life and Environment Science, Huangshan University, Huangshan, China
| | - Yu-Ting Zhu
- College of Life and Environment Science, Huangshan University, Huangshan, China
| | - Ying Lu
- College of Life and Environment Science, Huangshan University, Huangshan, China
| | - Yu-Jie Shu
- College of Life and Environment Science, Huangshan University, Huangshan, China
| | - Shang-Yue Jiang
- College of Life and Environment Science, Huangshan University, Huangshan, China
| | - Chang-Jiang Li
- School of Chemistry and Chemical Engineering, Huangshan University, Huangshan, China
| | - Xiao-Qian Hu
- College of Life and Environment Science, Huangshan University, Huangshan, China
| |
Collapse
|
8
|
Jamal GA, Jahangirian E, Hamblin MR, Mirzaei H, Tarrahimofrad H, Alikowsarzadeh N. Proteases, a powerful biochemical tool in the service of medicine, clinical and pharmaceutical. Prep Biochem Biotechnol 2024:1-25. [PMID: 38909284 DOI: 10.1080/10826068.2024.2364234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/24/2024]
Abstract
Proteases, enzymes that hydrolyze peptide bonds, have various applications in medicine, clinical applications, and pharmaceutical development. They are used in cancer treatment, wound debridement, contact lens cleaning, prion degradation, biofilm removal, and fibrinolytic agents. Proteases are also crucial in cardiovascular disease treatment, emphasizing the need for safe, affordable, and effective fibrinolytic drugs. Proteolytic enzymes and protease biosensors are increasingly used in diagnostic and therapeutic applications. Advanced technologies, such as nanomaterials-based sensors, are being developed to enhance the sensitivity, specificity, and versatility of protease biosensors. These biosensors are becoming effective tools for disease detection due to their precision and rapidity. They can detect extracellular and intracellular proteases, as well as fluorescence-based methods for real-time and label-free detection of virus-related proteases. The active utilization of proteolytic enzymatic biosensors is expected to expand significantly in biomedical research, in-vitro model systems, and drug development. We focused on journal articles and books published in English between 1982 and 2024 for this study.
Collapse
Affiliation(s)
- Ghadir A Jamal
- Faculty of Allied Health Sciences, Kuwait University, Kuwait City, Kuwait
| | - Ehsan Jahangirian
- Department of Molecular, Zist Tashkhis Farda Company (tBioDx), Tehran, Iran
| | - Michael R Hamblin
- Wellman Center for Photomedicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
- Faculty of Health Science, Laser Research Center, University of Johannesburg, Doornfontein, South Africa
| | - Hamed Mirzaei
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran
| | | | - Neda Alikowsarzadeh
- Molecular and Life Science Department, Han University of Applied Science, Arnhem, Nederland
| |
Collapse
|
9
|
Priyanka G, Singiri JR, Adler-Agmon Z, Sannidhi S, Daida S, Novoplansky N, Grafi G. Detailed analysis of agro-industrial byproducts/wastes to enable efficient sorting for various agro-industrial applications. BIORESOUR BIOPROCESS 2024; 11:45. [PMID: 38703254 PMCID: PMC11069496 DOI: 10.1186/s40643-024-00763-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2024] [Accepted: 04/23/2024] [Indexed: 05/06/2024] Open
Abstract
Agriculture-based industries generate huge amounts of byproducts/wastes every year, which are not exploited or disposed efficiently posing an environmental problem with implications to human and animal health. Finding strategies to increase the recycling of agro-industrial byproducts/wastes (AIBWs) is a primary objective of the current study. A thorough examination of AIBWs in conjunction with experimental research is proposed to facilitate sorting for various agro-industrial applications and consequently increasing byproduct/waste utilization. Accordingly, two sustainable, locally available sources of AIBWs, namely, wheat bran (WB) and garlic straw and peels (GSP) were studied in detail including content and composition of proteins, phytohormones and nutritional elements, as well as the effect of AIBW extracts on plant and microbial growth. Hundreds of proteins were recovered from AIBW mainly from WBs, including chaperons, metabolite and protein modifying enzymes, and antimicrobial proteins. In-gel assays showed that WB and GSP possess high protease and nuclease activities. Conspicuously, phytohormone analysis of AIBWs revealed the presence of high levels of strigolactones, stimulants of seed germination of root parasitic weeds, as well as indole acetic acid (IAA) and abscisic acid (ABA). Garlic straw extract strongly inhibited germination of the weed Amaranthus palmeri but not of Abutilon theophrasti and all examined AIBWs significantly affected post-germination growth. Bacterial growth was strongly inhibited by garlic straw, but enhanced by WBs, which can be used at least partly as a bacterial growth medium. Thus, an in-depth examination of AIBW characteristics will enable appropriate sorting for diverse agro-industrial applications, which will increase their utilization and consequently their economic value.
Collapse
Affiliation(s)
- Govindegowda Priyanka
- French Associates Institute for Agriculture and Biotechnology of Drylands, Jacob Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Midreshet Ben Gurion, 84990, Israel
| | - Jeevan R Singiri
- French Associates Institute for Agriculture and Biotechnology of Drylands, Jacob Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Midreshet Ben Gurion, 84990, Israel
| | - Zachor Adler-Agmon
- French Associates Institute for Agriculture and Biotechnology of Drylands, Jacob Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Midreshet Ben Gurion, 84990, Israel
| | - Sasank Sannidhi
- French Associates Institute for Agriculture and Biotechnology of Drylands, Jacob Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Midreshet Ben Gurion, 84990, Israel
| | - Spurthi Daida
- French Associates Institute for Agriculture and Biotechnology of Drylands, Jacob Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Midreshet Ben Gurion, 84990, Israel
| | - Nurit Novoplansky
- French Associates Institute for Agriculture and Biotechnology of Drylands, Jacob Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Midreshet Ben Gurion, 84990, Israel
| | - Gideon Grafi
- French Associates Institute for Agriculture and Biotechnology of Drylands, Jacob Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Midreshet Ben Gurion, 84990, Israel.
| |
Collapse
|
10
|
Yang NE, Lee DH, Hwang J, Son WY, Kim KS, Kim GY, Kim HW. Proteolytic Activity of Silkworm Thorn ( Cudrania tricuspidata) Fruit for Enzymatic Hydrolysis of Food Proteins. Molecules 2024; 29:693. [PMID: 38338437 PMCID: PMC10856028 DOI: 10.3390/molecules29030693] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 01/27/2024] [Accepted: 01/28/2024] [Indexed: 02/12/2024] Open
Abstract
This study aimed to isolate the proteolytic fraction from the silkworm thorn fruit (Cudrania tricuspidata) through ethanol precipitation at different ratios, and to determine its proteolytic activity and optimal activity conditions. Furthermore, the hydrolysis characteristics and antioxidant activity of soy protein isolate (SPI) and whey protein concentrate (WPC) hydrolyzates obtained through the enzymatic hydrolysis of freeze-dried silkworm thorn fruit powder (SF) were evaluated. For isolation and partial purification of proteolytic fraction, the water-solubilized fraction of the silkworm thorn fruit was purified through ethanol precipitation at four different ratios of 1:1, 1:2, 1:4, and 1:6 (v/v). The protein recovery rate, caseinolytic activity, protein pattern, and optimal activity (pH, temperature, and inhibitors) of fractional ethanol precipitate obtained from the silkworm thorn fruit (ESF) were evaluated. The proteolytic fraction obtained from silkworm thorn fruit exhibited a major protein band around 65-70 kDa and showed the highest proteolytic activity at a 1:4 ratio of ethanol precipitation (p < 0.05). The optimal activity of the measured enzyme fraction was determined to be at pH 9.0 and 50 °C, and the proteolytic activity of ESF was almost inhibited by phenyl methyl sulphonyl fluoride (PMSF, 2 mM), a serine protease inhibitor. Compared to Alcalase and papain, extensively used as commercial enzymes, the silkworm thorn fruit powder was less effective in hydrolyzing SPI and WPC. Nevertheless, SPI and WPC hydrolyzates mediated with silkworm thorn fruit powder showed even better antioxidant activities than those mediated with Alcalase and papain. Thus, our results show the potential application of silkworm thorn fruit as a novel source of plant protease for producing human-grade protein hydrolyzates.
Collapse
Affiliation(s)
- Na-Eun Yang
- Department of GreenBio Science, Gyeongsang National University, Jinju 52725, Republic of Korea;
| | - Da-Hoon Lee
- Division of Animal Bioscience & Integrated Biotechnology, Gyeongsang National University, Jinju 52828, Republic of Korea; (D.-H.L.); (J.H.); (W.-Y.S.)
| | - Jun Hwang
- Division of Animal Bioscience & Integrated Biotechnology, Gyeongsang National University, Jinju 52828, Republic of Korea; (D.-H.L.); (J.H.); (W.-Y.S.)
| | - Woo-Young Son
- Division of Animal Bioscience & Integrated Biotechnology, Gyeongsang National University, Jinju 52828, Republic of Korea; (D.-H.L.); (J.H.); (W.-Y.S.)
| | - Kyeong-Soo Kim
- Department of Pharmaceutical Engineering, Gyeongsang National University, Jinju 52725, Republic of Korea;
| | - Gwang-Yeon Kim
- Sancheong Hanbang Kkujippong Farming Association Corporation, Sancheong 52255, Republic of Korea;
| | - Hyun-Wook Kim
- Department of GreenBio Science, Gyeongsang National University, Jinju 52725, Republic of Korea;
- Division of Animal Bioscience & Integrated Biotechnology, Gyeongsang National University, Jinju 52828, Republic of Korea; (D.-H.L.); (J.H.); (W.-Y.S.)
| |
Collapse
|
11
|
Mousavi Ghahfarrokhi SS, Mahdigholi FS, Amin M. Collateral beauty in the damages: an overview of cosmetics and therapeutic applications of microbial proteases. Arch Microbiol 2023; 205:375. [PMID: 37935975 DOI: 10.1007/s00203-023-03713-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 10/14/2023] [Accepted: 10/16/2023] [Indexed: 11/09/2023]
Abstract
Microbial proteases are enzymes secreted by a variety of microorganisms, including bacteria and fungi, and have attracted significant attention due to their versatile applications in the food and pharmaceutical industries. In addition, certain proteases have been used in the development of skin health products and cosmetics. This article provides a review of microbial proteases in terms of their classification, sources, properties, and applications. Moreover, different pharmacological and molecular investigations have been reviewed. Various biological activities of microbial proteases, such as Arazyme, collagenase, elastin, and Nattokinase, which are involved in the digestion of dietary proteins, as well as their potential anti-inflammatory, anti-cancer, antithrombotic, and immunomodulatory effects have been included. Furthermore, their ability to control infections and treat various disorders has been discussed. Finally, this review highlights the potential applications and future perspectives of microbial proteases in biotechnology and biomedicine, and proposes further studies to develop new perspectives for disease control and health-promoting strategies using microbial resources.
Collapse
Affiliation(s)
- Seyed Sadeq Mousavi Ghahfarrokhi
- Department of Drug and Food Control, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
- Pharmaceutical Microbiology Group, Pharmaceutical Quality Assurance Research Center, The Institute of Pharmaceutical Sciences (TIPS), Tehran University of Medical Sciences, Tehran, Iran
- Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Fateme Sadat Mahdigholi
- Department of Biomaterials, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohsen Amin
- Department of Drug and Food Control, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran.
- Pharmaceutical Microbiology Group, Pharmaceutical Quality Assurance Research Center, The Institute of Pharmaceutical Sciences (TIPS), Tehran University of Medical Sciences, Tehran, Iran.
- Room No. 1-221, Faculty of Pharmacy, 16th Azar Street, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
12
|
Tito FR, Pepe A, Tonón CV, Daleo GR, Guevara MG. Optimization of caseinolytic and coagulating activities of Solanum tuberosum rennets for cheese making. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2023; 103:6947-6957. [PMID: 37314022 DOI: 10.1002/jsfa.12780] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 06/09/2023] [Accepted: 06/14/2023] [Indexed: 06/15/2023]
Abstract
BACKGROUND In recent years, the rising global demand for cheese, the high cost and limited supply of calf rennet, and consumer choices have increased research into new alternatives to animal or recombinant chymosins for cheese making. Plant proteases with caseinolytic activity (CA) and milk-clotting activity (MCA) have been proposed as alternatives for milk clotting to obtain artisanal cheeses with new organoleptic properties. They have been named vegetable rennets (vrennets). The aim of this study was to evaluate the performance of two Solanum tuberosum aspartic proteases (StAP1 and StAP3) as vrennets for cheese making and to obtain a statistical model that could predict and optimize their enzymatic activity. RESULTS To optimize the CA and MCA activities, a response surface methodology was used. Maximum values of CA and MCA for both enzymes were found at pH 5.0 and 30-35 °C. Analysis of the degradation of casein subunits showed that it is possible to tune the specificity of both enzymes by changing the pH. At pH 6.5, the αS - and β- subunit degradation is reduced while conserving a significant MCA. CONCLUSION The statistical models obtained in this work showed that StAP1 and StAP3 exert CA and MCA under pH and temperature conditions compatible with those used for cheese making. The casein subunit degradation percentages obtained also allowed us to select the best conditions for the degradation of the κ-casein subunit by StAPs. These results suggest that StAP1 and StAP3 are good candidates as vrennets for artisan cheese making. © 2023 Society of Chemical Industry.
Collapse
Affiliation(s)
- Florencia R Tito
- Biological Research Institute, National Scientific and Technical Research Council (CONICET), University of Mar del Plata (UNMDP), Mar del Plata, Argentina
| | - Alfonso Pepe
- Bioengineering Department, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida, USA
| | - Claudia V Tonón
- Biological Research Institute, National Scientific and Technical Research Council (CONICET), University of Mar del Plata (UNMDP), Mar del Plata, Argentina
| | - Gustavo R Daleo
- Biological Research Institute, National Scientific and Technical Research Council (CONICET), University of Mar del Plata (UNMDP), Mar del Plata, Argentina
| | - María G Guevara
- Biological Research Institute, National Scientific and Technical Research Council (CONICET), University of Mar del Plata (UNMDP), Mar del Plata, Argentina
| |
Collapse
|
13
|
Kumar V, Mangla B, Javed S, Ahsan W, Kumar P, Garg V, Dureja H. Bromelain: a review of its mechanisms, pharmacological effects and potential applications. Food Funct 2023; 14:8101-8128. [PMID: 37650738 DOI: 10.1039/d3fo01060k] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/01/2023]
Abstract
The utilization of plant-derived supplements for disease prevention and treatment has long been recognized because of their remarkable potential. Ananas comosus, commonly known as pineapple, produces a group of enzymes called bromelain, which contains sulfhydryl moieties. Recent studies have shown that bromelain exhibits a wide range of activities, including anti-inflammatory, anti-diabetic, anti-cancer, and anti-rheumatic properties. These properties make bromelain a promising drug candidate for the treatment of various diseases. The anti-inflammatory activity of bromelain has been shown to be useful in treating inflammatory conditions such as osteoarthritis, rheumatoid arthritis, and asthma, whereas the anti-cancer activity of bromelain is via induction of apoptosis, inhibition of angiogenesis, and enhancement of the body's immune response. The anti-diabetic property of bromelain is owing to the improvement in glucose metabolism and reduction in insulin resistance. The therapeutic potential of bromelain has been investigated in numerous preclinical and clinical studies and a number of patents have been granted to date. Various formulations and delivery systems are being developed in order to improve the efficacy and safety of this molecule, including the microencapsulated form to treat oral inflammatory conditions and liposomal formulations to treat cancer. The development of novel drug delivery systems and formulations has further ameliorated the therapeutic potential of bromelain by improving its bioavailability and stability, while reducing the side effects. This review intends to discuss various properties and therapeutic applications of bromelain, along with its possible mechanism of action in treating various diseases. Recent patents and clinical trials concerning bromelain have also been covered.
Collapse
Affiliation(s)
- Virender Kumar
- Department of Pharmaceutical Sciences, M.D. University, Rohtak, Haryana-124001, India.
- College of Pharmacy, Pandit Bhagwat Dayal Sharma University of Health Sciences, Rohtak, Haryana-124001, India
| | - Bharti Mangla
- Centre for Advanced Formulation and Technology, Delhi Pharmaceutical Sciences and Research University, New Delhi-110017, India.
| | - Shamama Javed
- Department of Pharmaceutics, College of Pharmacy, Jazan University, P. Box No. 114, Jazan, Saudi Arabia
| | - Waquar Ahsan
- Department of Pharmaceutical Chemistry, College of Pharmacy, Jazan University, P. Box No. 114, Jazan, Saudi Arabia
| | - Pankaj Kumar
- Centre for Advanced Formulation and Technology, Delhi Pharmaceutical Sciences and Research University, New Delhi-110017, India.
| | - Vandana Garg
- Department of Pharmaceutical Sciences, M.D. University, Rohtak, Haryana-124001, India.
| | - Harish Dureja
- Department of Pharmaceutical Sciences, M.D. University, Rohtak, Haryana-124001, India.
| |
Collapse
|
14
|
Next-generation nutraceuticals: bioactive peptides from plant proteases. BIOTECHNOLOGIA 2022; 103:397-408. [PMID: 36685698 PMCID: PMC9837552 DOI: 10.5114/bta.2022.120708] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Revised: 06/07/2022] [Accepted: 08/04/2022] [Indexed: 12/29/2022] Open
Abstract
Bioactive peptides are short and specific fragments of proteins with a wide range of biological activities that provide health benefits to the host. These natural peptides are safe and nontoxic and do not show any side effects. Nowadays, the production and characterization of bioactive peptides have been a key area of research as they show great potential as nutraceuticals and functional foods. Thus, bioactive peptides are considered next-generation therapeutic agents that can replace pharmaceutical products with profound adverse effects in the near future. So far, proteolytic hydrolysis has been used as the method of choice for the large-scale production of bioactive peptides. Studies have reported that peptides with specific characteristics can be generated using a particular type of protease. Microbial proteases are the predominantly used ones because of the ease in their production and purification. However, recently, plant proteases have gained a renewed interest as they offer diversity and better specificity compared with other proteases. This review highlights the potential of plant proteases for the production of bioactive peptides and also describes the benefits of bioactive peptides as nutraceuticals.
Collapse
|
15
|
Mangena P. Pleiotropic effects of recombinant protease inhibitors in plants. FRONTIERS IN PLANT SCIENCE 2022; 13:994710. [PMID: 36119571 PMCID: PMC9478479 DOI: 10.3389/fpls.2022.994710] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Accepted: 08/10/2022] [Indexed: 06/15/2023]
Abstract
Recombinant gene encoded protease inhibitors have been identified as some of the most effective antidigestive molecules to guard against proteolysis of essential proteins and plant attacking proteases from herbivorous pests and pathogenic microorganisms. Protease inhibitors (PIs) can be over expressed in transgenic plants to complement internal host defense systems, Bt toxins in genetically modified pest resistance and abiotic stress tolerance achieved through cystatins expression. Although the understanding of the role of proteolytic enzymes and their inhibitors encoded by both endogenous and transgenes expressed in crop plants has significantly advanced, their implication in biological systems still requires further elucidations. This paper, therefore, succinctly reviewed most recently published literature on recombinant proteases inhibitors (RPIs), focusing mainly on their unintended consequences in plants, other living organisms, and the environment. The review discusses major negative and unintended effects of RPIs involving the inhibitors' non-specificity on protease enzymes, non-target organisms and ubiquitous versatility in their mechanism of inhibition. The paper also discusses some direct and indirect effects of RPIs such as degradation by distinct classes of proteases, reduced functionality due to plant exposure to severe environmental stress and any other potential negative influences exerted on both the host plant as well as the environment. These pleiotropic effects must be decisively monitored to eliminate and prevent any potential adverse effects that transgenic plants carrying recombinant inhibitor genes may have on non-target organisms and biodiversity.
Collapse
Affiliation(s)
- Phetole Mangena
- Department of Biodiversity, Faculty of Science and Agriculture, School of Molecular and Life Sciences, University of Limpopo, Polokwane, Limpopo, South Africa
| |
Collapse
|
16
|
David Troncoso F, Alberto Sánchez D, Luján Ferreira M. Production of Plant Proteases and New Biotechnological Applications: An Updated Review. ChemistryOpen 2022; 11:e202200017. [PMID: 35286022 PMCID: PMC8919702 DOI: 10.1002/open.202200017] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Revised: 02/21/2022] [Indexed: 12/14/2022] Open
Abstract
An updated review of emerging plant proteases with potential biotechnological application is presented. Plant proteases show comparable or even greater performance than animal or microbial proteases for by-product valorization through hydrolysis for, for example, cheese whey, bird feathers, collagen, keratinous materials, gelatin, fish protein, and soy protein. Active biopeptides can be obtained as high added value products, which have shown numerous beneficial effects on human health. Plant proteases can also be used for wastewater treatment. The production of new plant proteases is encouraged for the following advantages: low cost of isolation using simple procedures, remarkable stability over a wide range of operating conditions (temperature, pH, salinity, and organic solvents), substantial affinity to a broad variety of substrates, and possibility of immobilization. Vegetable proteases have enormous application potential for the valorization of industrial waste and its conversion into products with high added value through low-cost processes.
Collapse
Affiliation(s)
- Franco David Troncoso
- Departamento de Ingeniería QuímicaUniversidad Nacional del Sur (UNS)Bahía Blanca8000Argentina
- Planta Piloto de Ingeniería QuímicaPLAPIQUI (UNS-CONICET)Bahía Blanca8000Argentina
| | - Daniel Alberto Sánchez
- Departamento de Ingeniería QuímicaUniversidad Nacional del Sur (UNS)Bahía Blanca8000Argentina
- Planta Piloto de Ingeniería QuímicaPLAPIQUI (UNS-CONICET)Bahía Blanca8000Argentina
| | - María Luján Ferreira
- Departamento de QuímicaUniversidad Nacional del Sur (UNS)Bahía Blanca8000Argentina
- Planta Piloto de Ingeniería QuímicaPLAPIQUI (UNS-CONICET)Bahía Blanca8000Argentina
| |
Collapse
|