1
|
Yu Y, Guo S, Lv S, Tian R, Cheng S, Chen Y. Eradicating the Photogenerated Holes in a Photocatalyst-Microbe Hybrid System: A Review. ACS APPLIED MATERIALS & INTERFACES 2024; 16:56545-56554. [PMID: 39404055 DOI: 10.1021/acsami.4c12355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2024]
Abstract
Finding advanced technologies to store solar energy in chemical bonds efficiently is of great significance for the sustainable development of our society. The recently reported photocatalyst-microbe hybrid (PMH) system couples photocatalysts intimately with microbes and endows heterotrophic microbes with light-harvesting capacity. Generally, when PMH systems are exposed to light, photocatalytic reactions occur on the surface of photocatalysts and the photogenerated electrons enter microbial cells to promote the generation of energy carriers (such as nicotinamide adenine dinucleotide phosphate hydrogen and adenosine triphosphate) and the following chemical synthesis. PMH system applications have expanded from synthesizing value-added products (chemicals, fuels, and polymers) to treating pollutants. However, the successful operation of the PMH system relies on the timely eradication of the photogenerated holes as they recombine with the photogenerated electrons and cause the photocorrosion of the photocatalyst. This review summarizes the strategies for scavenging the photogenerated holes in PMH systems and provides insight into the current gaps and outlooks for future opportunities in this field.
Collapse
Affiliation(s)
- Yadong Yu
- Jiangsu Provincial Key Laboratory of Multi-energy Integration and Flexible Power Generation Technology, School of Energy and Power Engineering, Nanjing Institute of Technology, Nanjing 211167, China
- Jiangsu Key Laboratory of Marine Bioresources and Environment, Jiangsu Ocean University, Lianyungang 222005, China
| | - Shuxian Guo
- Henan Key Laboratory of Industrial Microbial Resources and Fermentation Technology, Nanyang Institute of Technology, Nanyang 473004, China
| | - Shaopeng Lv
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211800, China
| | - Ruirui Tian
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211800, China
| | - Shuang Cheng
- Henan Key Laboratory of Industrial Microbial Resources and Fermentation Technology, Nanyang Institute of Technology, Nanyang 473004, China
| | - Yaozhong Chen
- Department of Operative Dentistry and Endodontics, Zhongda Hospital, Medical College, Southeast University, Nanjing 210009, China
| |
Collapse
|
2
|
Garbini M, Brunetti A, Pedrazzani R, Monari M, Marcaccio M, Bertuzzi G, Bandini M. Reductive cyclodimerization of chalcones: exploring the "self-adaptability" of galvanostatic electrosynthesis. Chem Commun (Camb) 2024; 60:404-407. [PMID: 38084060 DOI: 10.1039/d3cc04920e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2024]
Abstract
The "self-adaptability" of galvanostatic electrolysis was shown to assist a multistage unprecedented chemo- and diastereoselective electrochemically promoted cyclodimerization of chalcones. The process, all involving the reductive events, delivered densely functionalized cyclopentanes featuring five contiguous stereocenters (25 examples, yields of up to 95%, dr values up to >20 : 1). Dedicated and combined experimental as well as electrochemical investigation revealed the key role of a dynamic kinetic resolution of the aldol intermediate for the reaction mechanism.
Collapse
Affiliation(s)
- Mauro Garbini
- Dipartimento di Chimica "Giacomo Ciamician", Alma Mater Studiorum - Università di Bologna, Via P. Gobetti 85, 40129, Bologna, Italy.
| | - Andrea Brunetti
- Dipartimento di Chimica "Giacomo Ciamician", Alma Mater Studiorum - Università di Bologna, Via P. Gobetti 85, 40129, Bologna, Italy.
- Center for Chemical Catalysis - C3, Dipartimento di Chimica "Giacomo Ciamician", Alma Mater Studiorum - Università di Bologna, Via P. Gobetti 85, 40129, Bologna, Italy
| | - Riccardo Pedrazzani
- Dipartimento di Chimica "Giacomo Ciamician", Alma Mater Studiorum - Università di Bologna, Via P. Gobetti 85, 40129, Bologna, Italy.
- Center for Chemical Catalysis - C3, Dipartimento di Chimica "Giacomo Ciamician", Alma Mater Studiorum - Università di Bologna, Via P. Gobetti 85, 40129, Bologna, Italy
| | - Magda Monari
- Dipartimento di Chimica "Giacomo Ciamician", Alma Mater Studiorum - Università di Bologna, Via P. Gobetti 85, 40129, Bologna, Italy.
- Center for Chemical Catalysis - C3, Dipartimento di Chimica "Giacomo Ciamician", Alma Mater Studiorum - Università di Bologna, Via P. Gobetti 85, 40129, Bologna, Italy
| | - Massimo Marcaccio
- Dipartimento di Chimica "Giacomo Ciamician", Alma Mater Studiorum - Università di Bologna, Via P. Gobetti 85, 40129, Bologna, Italy.
- Center for Chemical Catalysis - C3, Dipartimento di Chimica "Giacomo Ciamician", Alma Mater Studiorum - Università di Bologna, Via P. Gobetti 85, 40129, Bologna, Italy
| | - Giulio Bertuzzi
- Dipartimento di Chimica "Giacomo Ciamician", Alma Mater Studiorum - Università di Bologna, Via P. Gobetti 85, 40129, Bologna, Italy.
- Center for Chemical Catalysis - C3, Dipartimento di Chimica "Giacomo Ciamician", Alma Mater Studiorum - Università di Bologna, Via P. Gobetti 85, 40129, Bologna, Italy
| | - Marco Bandini
- Dipartimento di Chimica "Giacomo Ciamician", Alma Mater Studiorum - Università di Bologna, Via P. Gobetti 85, 40129, Bologna, Italy.
- Center for Chemical Catalysis - C3, Dipartimento di Chimica "Giacomo Ciamician", Alma Mater Studiorum - Università di Bologna, Via P. Gobetti 85, 40129, Bologna, Italy
| |
Collapse
|
3
|
Savateev O, Nolkemper K, Kühne TD, Shvalagin V, Markushyna Y, Antonietti M. Extent of carbon nitride photocharging controls energetics of hydrogen transfer in photochemical cascade processes. Nat Commun 2023; 14:7684. [PMID: 38001091 PMCID: PMC10674013 DOI: 10.1038/s41467-023-43328-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Accepted: 11/07/2023] [Indexed: 11/26/2023] Open
Abstract
Graphitic carbon nitride is widely studied in organic photoredox catalysis. Reductive quenching of carbon nitride excited state is postulated in many photocatalytic transformations. However, the reactivity of this species in the turn over step is less explored. In this work, we investigate electron and proton transfer from carbon nitride that is photocharged to a various extent, while the negative charge is compensated either by protons or ammonium cations. Strong stabilization of electrons by ammonium cations makes proton-coupled electron transfer uphill, and affords air-stable persistent carbon nitride radicals. In carbon nitrides, which are photocharged to a smaller extent, protons do not stabilize electrons, which results in spontaneous charge transfer to oxidants. Facile proton-coupled electron transfer is a key step in the photocatalytic oxidative-reductive cascade - tetramerization of benzylic amines. The feasibility of proton-coupled electron transfer is modulated by adjusting the extent of carbon nitride photocharging, type of counterion and temperature.
Collapse
Affiliation(s)
- Oleksandr Savateev
- Department of Colloid Chemistry, Max Planck Institute of Colloids and Interfaces, Am Mühlenberg 1, 14476, Potsdam, Germany.
- Department of Chemistry, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China.
| | - Karlo Nolkemper
- Department of Colloid Chemistry, Max Planck Institute of Colloids and Interfaces, Am Mühlenberg 1, 14476, Potsdam, Germany
- Dynamics of Condensed Matter and Center for Sustainable System Design, Chair of Theoretical Chemistry, University of Paderborn, Warburger Str. 100, D-33098, Paderborn, Germany
| | - Thomas D Kühne
- Dynamics of Condensed Matter and Center for Sustainable System Design, Chair of Theoretical Chemistry, University of Paderborn, Warburger Str. 100, D-33098, Paderborn, Germany
- Center for Advanced Systems Understanding (CASUS) and Helmholtz-Zentrum Dresden-Rossendorf, Untermarkt 20, D-02826, Görlitz, Germany
- Institute of Artificial Intelligence, Chair of Computational System Sciences, Technische Universität Dresden, 01187, Dresden, Germany
| | - Vitaliy Shvalagin
- Department of Colloid Chemistry, Max Planck Institute of Colloids and Interfaces, Am Mühlenberg 1, 14476, Potsdam, Germany
| | - Yevheniia Markushyna
- Department of Colloid Chemistry, Max Planck Institute of Colloids and Interfaces, Am Mühlenberg 1, 14476, Potsdam, Germany
| | - Markus Antonietti
- Department of Colloid Chemistry, Max Planck Institute of Colloids and Interfaces, Am Mühlenberg 1, 14476, Potsdam, Germany
| |
Collapse
|