Haq MA, Su Y, Wang D. Mechanical properties of PNIPAM based hydrogels: A review.
MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2016;
70:842-855. [PMID:
27770962 DOI:
10.1016/j.msec.2016.09.081]
[Citation(s) in RCA: 296] [Impact Index Per Article: 32.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2016] [Revised: 09/13/2016] [Accepted: 09/29/2016] [Indexed: 11/26/2022]
Abstract
Materials which adjust their properties in response to environmental factors such as temperature, pH and ionic strength are rapidly evolving and known as smart materials. Hydrogels formed by smart polymers have various applications. Among the smart polymers, thermoresponsive polymer poly(N-isopropylacrylamide)(PNIPAM) is very important because of its well defined structure and property specially its temperature response is closed to human body and can be finetuned as well. Mechanical properties are critical for the performance of stimuli responsive hydrogels in diverse applications. However, native PNIPAM hydrogels are very fragile and hardly useful for any practical purpose. Intense researches have been done in recent decade to enhance the mechanical features of PNIPAM hydrogel. In this review, several strategies including interpenetrating polymer network (IPN), double network (DN), nanocomposite (NC) and slide ring (SR) hydrogels are discussed in the context of PNIPAM hydrogel.
Collapse