1
|
Lyu M, Yazdi M, Lin Y, Höhn M, Lächelt U, Wagner E. Receptor-Targeted Dual pH-Triggered Intracellular Protein Transfer. ACS Biomater Sci Eng 2024; 10:99-114. [PMID: 35802884 DOI: 10.1021/acsbiomaterials.2c00476] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Protein therapeutics are of widespread interest due to their successful performance in the current pharmaceutical and medical fields, even though their broad applications have been hindered by the lack of an efficient intracellular delivery approach. Herein, we fabricated an active-targeted dual pH-responsive delivery system with favorable tumor cell entry augmented by extracellular pH-triggered charge reversal and tumor receptor targeting and pH-controlled endosomal release in a traceless fashion. As a traceable model protein, the enhanced green fluorescent protein (eGFP) bearing a nuclear localization signal was covalently coupled with a pH-labile traceless azidomethyl-methylmaleic anhydride (AzMMMan) linker followed by functionalization with different molar equivalents of two dibenzocyclooctyne-octa-arginine-cysteine (DBCO-R8C)-modified moieties: polyethylene glycol (PEG)-GE11 peptide for epidermal growth factor receptor-mediated targeting and melittin for endosomal escape. The cationic melittin domain was masked with tetrahydrophthalic anhydride revertible at mild acidic pH 6.5. At the optimally balanced ratio of functional units, the on-demand charge conversion at tumoral extracellular pH 6.5 in combination with GE11-mediated targeting triggered enhanced electrostatic cellular attraction by the R8C cell-penetrating peptides and melittin, as demonstrated by strongly enhanced cellular uptake. Successful endosomal release followed by nuclear localization of the eGFP cargo was obtained by taking advantage of melittin-mediated endosomal escape and rapid traceless release from the AzMMMan linker. The effectiveness of this multifunctional bioresponsive system suggests a promising strategy for delivery of protein drugs toward intracellular targets. A possible therapeutic relevance was indicated by an example of cytosolic delivery of cytochrome c initiating the apoptosis pathway to kill cancer cells.
Collapse
Affiliation(s)
- Meng Lyu
- Pharmaceutical Biotechnology, Department of Pharmacy and Center for NanoScience (CeNS), Ludwig-Maximilians-Universität München, 81377 Munich, Germany
| | - Mina Yazdi
- Pharmaceutical Biotechnology, Department of Pharmacy and Center for NanoScience (CeNS), Ludwig-Maximilians-Universität München, 81377 Munich, Germany
| | - Yi Lin
- Pharmaceutical Biotechnology, Department of Pharmacy and Center for NanoScience (CeNS), Ludwig-Maximilians-Universität München, 81377 Munich, Germany
| | - Miriam Höhn
- Pharmaceutical Biotechnology, Department of Pharmacy and Center for NanoScience (CeNS), Ludwig-Maximilians-Universität München, 81377 Munich, Germany
| | - Ulrich Lächelt
- Pharmaceutical Biotechnology, Department of Pharmacy and Center for NanoScience (CeNS), Ludwig-Maximilians-Universität München, 81377 Munich, Germany
- Department of Pharmaceutical Sciences, University of Vienna, 1090 Vienna, Austria
| | - Ernst Wagner
- Pharmaceutical Biotechnology, Department of Pharmacy and Center for NanoScience (CeNS), Ludwig-Maximilians-Universität München, 81377 Munich, Germany
| |
Collapse
|
2
|
Dou X, Xu Q, Dong B, Xu G, Qian N, Yang C, Li H, Chen L, Gao X, Song H. Anti-c-MET Fab-Grb2-Gab1 Fusion Protein-Mediated Interference of c-MET Signaling Pathway Induces Methuosis in Tumor Cells. Int J Mol Sci 2022; 23:ijms231912018. [PMID: 36233320 PMCID: PMC9569552 DOI: 10.3390/ijms231912018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 09/17/2022] [Accepted: 09/20/2022] [Indexed: 11/16/2022] Open
Abstract
Bio-macromolecules have potential applications in cancer treatment due to their high selectivity and efficiency in hitting therapeutic targets. However, poor cell membrane permeability has limited their broad-spectrum application in cancer treatment. The current study developed highly internalizable anti-c-MET antibody Fab fusion proteins with intracellular epitope peptide chimera to achieve the dual intervention from the extracellular to intracellular targets in tumor therapy. In vitro experiments demonstrated that the fusion proteins could interfere with the disease-associated intracellular signaling pathways and inhibit the uncontrolled proliferation of tumor cells. Importantly, investigation of the underlying mechanism revealed that these protein chimeras could induce vacuolation in treated cells, thus interfering with the normal extension and arrangement of microtubules as well as the mitosis, leading to the induction of methuosis-mediated cell death. Furthermore, in vivo tumor models indicated that certain doses of fusion proteins could inhibit the A549 xenograft tumors in NOD SCID mice. This study thus provides new ideas for the intracellular delivery of bio-macromolecules and the dual intervention against tumor cell signaling pathways.
Collapse
Affiliation(s)
- Xiaoqian Dou
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing 102206, China
| | - Qinzhi Xu
- Beijng Immunoah Pharma Tech Co., Ltd., Beijing 100071, China
| | - Bo Dong
- Beijng Immunoah Pharma Tech Co., Ltd., Beijing 100071, China
| | - Guili Xu
- Beijng Immunoah Pharma Tech Co., Ltd., Beijing 100071, China
| | - Niliang Qian
- Beijng Immunoah Pharma Tech Co., Ltd., Beijing 100071, China
| | - Cuima Yang
- Beijng Immunoah Pharma Tech Co., Ltd., Beijing 100071, China
| | - Hongjie Li
- Beijng Immunoah Pharma Tech Co., Ltd., Beijing 100071, China
| | - Liting Chen
- Beijng Immunoah Pharma Tech Co., Ltd., Beijing 100071, China
| | - Xin Gao
- Beijng Immunoah Pharma Tech Co., Ltd., Beijing 100071, China
- Correspondence: (X.G.); (H.S.)
| | - Haifeng Song
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing 102206, China
- Correspondence: (X.G.); (H.S.)
| |
Collapse
|
3
|
Liang L, Ahamed A, Ge L, Fu X, Lisak G. Advances in Antiviral Material Development. Chempluschem 2020; 85:2105-2128. [PMID: 32881384 PMCID: PMC7461489 DOI: 10.1002/cplu.202000460] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Revised: 08/20/2020] [Accepted: 08/21/2020] [Indexed: 02/06/2023]
Abstract
The rise in human pandemics demands prudent approaches in antiviral material development for disease prevention and treatment via effective protective equipment and therapeutic strategy. However, the current state of the antiviral materials research is predominantly aligned towards drug development and its related areas, catering to the field of pharmaceutical technology. This review distinguishes the research advances in terms of innovative materials exhibiting antiviral activities that take advantage of fast-developing nanotechnology and biopolymer technology. Essential concepts of antiviral principles and underlying mechanisms are illustrated, followed with detailed descriptions of novel antiviral materials including inorganic nanomaterials, organic nanomaterials and biopolymers. The biomedical applications of the antiviral materials are also elaborated based on the specific categorization. Challenges and future prospects are discussed to facilitate the research and development of protective solutions and curative treatments.
Collapse
Affiliation(s)
- Lili Liang
- School of Civil and Environmental EngineeringNanyang Technological University50 Nanyang Ave, N1 01a–29Singapore639798Singapore
- Interdisciplinary Graduate ProgramNanyang Technological University1 Cleantech Loop, CleanTech OneSingapore637141Singapore
- Residues and Resource Reclamation CentreNanyang Environment and Water Research Institute Nanyang Technological University1 Cleantech Loop, CleanTech OneSingapore637141Singapore
| | - Ashiq Ahamed
- Residues and Resource Reclamation CentreNanyang Environment and Water Research Institute Nanyang Technological University1 Cleantech Loop, CleanTech OneSingapore637141Singapore
- Laboratory of Molecular Science and EngineeringJohan Gadolin Process Chemistry Centre Åbo Akademi UniversityFI-20500Turku/ÅboFinland
| | - Liya Ge
- Residues and Resource Reclamation CentreNanyang Environment and Water Research Institute Nanyang Technological University1 Cleantech Loop, CleanTech OneSingapore637141Singapore
| | - Xiaoxu Fu
- School of Civil and Environmental EngineeringNanyang Technological University50 Nanyang Ave, N1 01a–29Singapore639798Singapore
- Residues and Resource Reclamation CentreNanyang Environment and Water Research Institute Nanyang Technological University1 Cleantech Loop, CleanTech OneSingapore637141Singapore
| | - Grzegorz Lisak
- School of Civil and Environmental EngineeringNanyang Technological University50 Nanyang Ave, N1 01a–29Singapore639798Singapore
- Residues and Resource Reclamation CentreNanyang Environment and Water Research Institute Nanyang Technological University1 Cleantech Loop, CleanTech OneSingapore637141Singapore
| |
Collapse
|
4
|
Yang W, Veroniaina H, Qi X, Chen P, Li F, Ke PC. Soft and Condensed Nanoparticles and Nanoformulations for Cancer Drug Delivery and Repurpose. ADVANCED THERAPEUTICS 2020; 3:1900102. [PMID: 34291146 PMCID: PMC8291088 DOI: 10.1002/adtp.201900102] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2019] [Indexed: 12/24/2022]
Abstract
Drug repurpose or reposition is recently recognized as a high-performance strategy for developing therapeutic agents for cancer treatment. This approach can significantly reduce the risk of failure, shorten R&D time, and minimize cost and regulatory obstacles. On the other hand, nanotechnology-based delivery systems are extensively investigated in cancer therapy due to their remarkable ability to overcome drug delivery challenges, enhance tumor specific targeting, and reduce toxic side effects. With increasing knowledge accumulated over the past decades, nanoparticle formulation and delivery have opened up a new avenue for repurposing drugs and demonstrated promising results in advanced cancer therapy. In this review, recent developments in nano-delivery and formulation systems based on soft (i.e., DNA nanocages, nanogels, and dendrimers) and condensed (i.e., noble metal nanoparticles and metal-organic frameworks) nanomaterials, as well as their theranostic applications in drug repurpose against cancer are summarized.
Collapse
Affiliation(s)
- Wen Yang
- Materials Research and Education Center, Auburn University, Auburn, AL 36849, USA
| | | | - Xiaole Qi
- Key Laboratory of Modern Chinese Medicines, China Pharmaceutical University, Nanjing 210009, China; ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade Parkville, VIC 3052, Australia
| | - Pengyu Chen
- Materials Research and Education Center, Auburn University, Auburn, AL 36849, USA
| | - Feng Li
- Department of Drug Discovery and Development, Harrison School of Pharmacy, Auburn University, Auburn AL 36849, USA
| | - Pu Chun Ke
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade Parkville, VIC 3052, Australia
| |
Collapse
|
5
|
Karatza A, Klonos P, Pispas S, Kyritsis A. Glass transition and molecular dynamics in PHPMA-b-POEGMA block copolymers. POLYMER 2019. [DOI: 10.1016/j.polymer.2019.121794] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
|
6
|
Ophthalmic gels: Past, present and future. Adv Drug Deliv Rev 2018; 126:113-126. [PMID: 29288733 DOI: 10.1016/j.addr.2017.12.017] [Citation(s) in RCA: 102] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2017] [Revised: 11/06/2017] [Accepted: 12/22/2017] [Indexed: 11/21/2022]
Abstract
Aqueous gels formulated using hydrophilic polymers (hydrogels) along with those based on stimuli responsive polymers (in situ gelling or gel forming systems) continue to attract increasing interest for various eye health-related applications. They allow the incorporation of a variety of ophthalmic pharmaceuticals to achieve therapeutic levels of drugs and bioactives at target ocular sites. The integration of sophisticated drug delivery technologies such as nanotechnology-based ones with intelligent and environment responsive systems can extend current treatment duration to provide more clinically relevant time courses (weeks and months instead of hours and days) which will inevitably reduce dose frequency, increase patient compliance and improve clinical outcomes. Novel applications and design of contact lenses and intracanalicular delivery devices along with the move towards integrating gels into various drug delivery devices like intraocular pumps, injections and implants has the potential to reduce comorbidities caused by glaucoma, corneal keratopathy, cataract, diabetic retinopathies and age-related macular degeneration. This review describes ophthalmic gelling systems with emphasis on mechanism of gel formation and application in ophthalmology. It provides a critical appraisal of the techniques and methods used in the characterization of ophthalmic preformed gels and in situ gelling systems along with a thorough insight into the safety and biocompatibility of these systems. Newly developed ophthalmic gels, hydrogels, preformed gels and in situ gelling systems including the latest in the area of stimuli responsive gels, molecularly imprinted gels, nanogels, 3D printed hydrogels; 3D printed devices comprising ophthalmic gels are covered. Finally, new applications of gels in the production of artificial corneas, corneal wound healing and hydrogel contact lenses are described.
Collapse
|
7
|
Raghupathi K, Skinner M, Chang G, Crawley C, Yoshida-Moriguchi T, Pipenhagen P, Zhu Y, Avila LZ, Miller RJ, Dhal PK. Hyaluronic Acid Microgels as Intracellular Endosomolysis Reagents. ACS Biomater Sci Eng 2018; 4:558-565. [DOI: 10.1021/acsbiomaterials.7b00966] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Affiliation(s)
- Kishore Raghupathi
- Sanofi Global R&D, 153 Second Avenue, Waltham, Massachusetts 02451, United States
| | - Matthew Skinner
- Sanofi Global R&D, 153 Second Avenue, Waltham, Massachusetts 02451, United States
| | - Grace Chang
- Sanofi Global R&D, 153 Second Avenue, Waltham, Massachusetts 02451, United States
| | - Cristin Crawley
- Sanofi Global R&D, 153 Second Avenue, Waltham, Massachusetts 02451, United States
| | | | - Peter Pipenhagen
- Sanofi Global R&D, 153 Second Avenue, Waltham, Massachusetts 02451, United States
| | - Yunxiang Zhu
- Sanofi Global R&D, 153 Second Avenue, Waltham, Massachusetts 02451, United States
| | - Luis Z. Avila
- Sanofi Global R&D, 153 Second Avenue, Waltham, Massachusetts 02451, United States
| | - Robert J. Miller
- Sanofi Global R&D, 153 Second Avenue, Waltham, Massachusetts 02451, United States
| | - Pradeep K. Dhal
- Sanofi Global R&D, 153 Second Avenue, Waltham, Massachusetts 02451, United States
| |
Collapse
|
8
|
Sánchez ML, Giménez CY, Delgado JF, Martínez LJ, Grasselli M. Chromatographic matrix based on hydrogel-coated reticulated polyurethane foams, prepared by gamma irradiation. Radiat Phys Chem Oxf Engl 1993 2017. [DOI: 10.1016/j.radphyschem.2017.08.006] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
9
|
Neamtu I, Rusu AG, Diaconu A, Nita LE, Chiriac AP. Basic concepts and recent advances in nanogels as carriers for medical applications. Drug Deliv 2017; 24:539-557. [PMID: 28181831 PMCID: PMC8240973 DOI: 10.1080/10717544.2016.1276232] [Citation(s) in RCA: 236] [Impact Index Per Article: 33.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2016] [Revised: 12/13/2016] [Accepted: 12/20/2016] [Indexed: 01/18/2023] Open
Abstract
Nanogels in biomedical field are promising and innovative materials as dispersions of hydrogel nanoparticles based on crosslinked polymeric networks that have been called as next generation drug delivery systems due to their relatively high drug encapsulation capacity, uniformity, tunable size, ease of preparation, minimal toxicity, stability in the presence of serum, and stimuli responsiveness. Nanogels show a great potential in chemotherapy, diagnosis, organ targeting and delivery of bioactive substances. The main subjects reviewed in this article concentrates on: (i) Nanogel assimilation in the nanomedicine domain; (ii) Features and advantages of nanogels, the main characteristics, such as: swelling capacity, stimuli sensitivity, the great surface area, functionalization, bioconjugation and encapsulation of bioactive substances, which are taken into account in designing the structures according to the application; some data on the advantages and limitations of the preparation techniques; (iii) Recent progress in nanogels as a carrier of genetic material, protein and vaccine. The majority of the scientific literature presents the multivalency potential of bioconjugated nanogels in various conditions. Today's research focuses over the overcoming of the restrictions imposed by cost, some medical requirements and technological issues, for nanogels' commercial scale production and their integration as a new platform in biomedicine.
Collapse
Affiliation(s)
- Iordana Neamtu
- “Petru Poni” Institute of Macromolecular Chemistry, Iasi, Romania
| | | | - Alina Diaconu
- “Petru Poni” Institute of Macromolecular Chemistry, Iasi, Romania
| | | | | |
Collapse
|
10
|
Zinn T, Willner L, Knudsen KD, Lund R. Self-Assembly of Mixtures of Telechelic and Monofunctional Amphiphilic Polymers in Water: From Clusters to Flowerlike Micelles. Macromolecules 2017. [DOI: 10.1021/acs.macromol.7b01501] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Affiliation(s)
- Thomas Zinn
- Department
of Chemistry, University of Oslo, Postboks 1033 Blindern, 0315 Oslo, Norway
| | - Lutz Willner
- Jülich
Centre for Neutron Science JCNS and Institute for Complex Systems
ICS, Forschungszentrum Jülich GmbH, 52425 Jülich, Germany
| | - Kenneth D. Knudsen
- Department
of Physics, Institute for Energy Technology, Postboks 40, 2027 Kjeller, Norway
| | - Reidar Lund
- Department
of Chemistry, University of Oslo, Postboks 1033 Blindern, 0315 Oslo, Norway
| |
Collapse
|
11
|
Engineered polymeric nanoparticles to guide the cellular internalization and trafficking of small interfering ribonucleic acids. J Control Release 2017; 259:3-15. [DOI: 10.1016/j.jconrel.2017.02.019] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2016] [Revised: 02/15/2017] [Accepted: 02/18/2017] [Indexed: 12/29/2022]
|
12
|
|
13
|
Sedlák M. A novel approach to controlled self-assembly of pH-responsive thermosensitive homopolymer polyelectrolytes into stable nanoparticles. Adv Colloid Interface Sci 2016; 232:57-69. [PMID: 26792020 DOI: 10.1016/j.cis.2015.12.005] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2015] [Revised: 12/07/2015] [Accepted: 12/08/2015] [Indexed: 12/14/2022]
Abstract
This review addresses the recent research progress in introducing and elaborating a novel approach to controlled polymer self-assembly into stable nanoparticles using pH-responsive thermosensitive homopolymer polyelectrolytes. Interesting aspect of this approach is that stable polymeric nanoparticles are formed from homopolymers of one type only and without any assembly-triggering additives. The process of their formation can be monitored online e.g. by light scattering and particle size can be finely custom tuned. Obtained nanoparticles have interesting properties and are very stable over long periods of time and over a broad range of salt concentrations including physiological conditions. Much effort was devoted not only to finding optimum experimental protocols and to characterizing resulting nanoparticles in detail, but also to understanding physical processes behind these successful protocols.
Collapse
|
14
|
Song N, Zhou L, Li J, Pan Z, He X, Tan H, Wan X, Li J, Ran R, Fu Q. Inspired by nonenveloped viruses escaping from endo-lysosomes: a pH-sensitive polyurethane micelle for effective intracellular trafficking. NANOSCALE 2016; 8:7711-7722. [PMID: 27001752 DOI: 10.1039/c6nr00859c] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
A multifunctional drug delivery system (DDS) for cancer therapy still faces great challenges due to multiple physiological barriers encountered in vivo. To increase the efficacy of current cancer treatment a new anticancer DDS mimicking the response of nonenveloped viruses, triggered by acidic pH to escape endo-lysosomes, is developed. Such a smart DDS is self-assembled from biodegradable pH-sensitive polyurethane containing hydrazone bonds in the backbone, named pHPM. The pHPM exhibits excellent micellization characteristics and high loading capacity for hydrophobic chemotherapeutic drugs. The responses of the pHPM in acidic media, undergoing charge conversion and hydrophobic core exposure, resulting from the detachment of the hydrophilic polyethylene glycol (PEG) shell, are similar to the behavior of a nonenveloped virus when trapped in acidic endo-lysosomes. Moreover, the degradation mechanism was verified by gel permeation chromatography (GPC). The endo-lysosomal membrane rupture induced by these transformed micelles is clearly observed by transmission electron microscopy. Consequently, excellent antitumor activity is confirmed both in vitro and in vivo. The results verify that the pHPM could be a promising new drug delivery tool for the treatment of cancer and other diseases.
Collapse
Affiliation(s)
- Nijia Song
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, China.
| | - Lijuan Zhou
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, China.
| | - Jiehua Li
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, China.
| | - Zhicheng Pan
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, China.
| | - Xueling He
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, China. and Laboratory Animal Center of Sichuan University, Huaxi Clinical College, Sichuan University, Chengdu, 610040, China
| | - Hong Tan
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, China.
| | - Xinyuan Wan
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, China.
| | - Jianshu Li
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, China.
| | - Rong Ran
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, China.
| | - Qiang Fu
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, China.
| |
Collapse
|
15
|
Jia D, Wang D, Wu H, Lian Q. Preparation and adsorption properties of magnetic Co0.5Ni0.5Fe2O4–chitosan nanoparticles. RUSS J GEN CHEM+ 2016. [DOI: 10.1134/s1070363216030294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
16
|
Lian Q, Cui Y, Zheng X, Wu H. Preparation and adsorption of magnetic Co0.5Ni0.5Fe2O4-chitosan nanoparticles. RUSS J APPL CHEM+ 2016. [DOI: 10.1134/s10704272150110208] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
17
|
Antonioli D, Sparnacci K, Laus M, Ferrarese Lupi F, Giammaria TJ, Seguini G, Ceresoli M, Perego M, Gianotti V. Composition of ultrathin binary polymer brushes by thermogravimetry-gas chromatography-mass spectrometry. Anal Bioanal Chem 2016; 408:3155-63. [PMID: 26873220 DOI: 10.1007/s00216-016-9380-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2015] [Revised: 01/19/2016] [Accepted: 01/29/2016] [Indexed: 10/22/2022]
Abstract
In the present paper, a reliable and rugged thermogravimetry-gas chromatography-mass spectrometry (TGA-GC-MS) method was developed to determine the composition of ultrathin films consisting of binary blends of functional polystyrene (PS) and polymethylmethacrylate (PMMA) grafted to a silicon wafer. A general methodology will be given to address the composition determination problem for binary or even multicomponent polymer brush systems using the PS/PMMA-based samples as a paradigmatic example. In this respect, several distinct tailor-made materials were developed to ensure reliable calibration and validation stages. The analytical method was tested on unknown samples to follow the composition evolution in PS/PMMA brushes during the grafting reaction. A preferential grafting of the PMMA was revealed in full agreement with its preferential interaction with the SiO2 polar surface.
Collapse
Affiliation(s)
- Diego Antonioli
- Dipartimento di Scienze e Innovazione Tecnologica (DISIT), Università del Piemonte Orientale "A. Avogadro", INSTM, UdR Alessandria, Viale T. Michel 11, 15121, Alessandria, Italy
| | - Katia Sparnacci
- Dipartimento di Scienze e Innovazione Tecnologica (DISIT), Università del Piemonte Orientale "A. Avogadro", INSTM, UdR Alessandria, Viale T. Michel 11, 15121, Alessandria, Italy
| | - Michele Laus
- Dipartimento di Scienze e Innovazione Tecnologica (DISIT), Università del Piemonte Orientale "A. Avogadro", INSTM, UdR Alessandria, Viale T. Michel 11, 15121, Alessandria, Italy
| | | | - Tommaso Jacopo Giammaria
- Dipartimento di Scienze e Innovazione Tecnologica (DISIT), Università del Piemonte Orientale "A. Avogadro", INSTM, UdR Alessandria, Viale T. Michel 11, 15121, Alessandria, Italy.,Laboratorio MDM, IMM-CNR, Via C. Olivetti 2, 20864, Agrate Brianza, MB, Italy
| | - Gabriele Seguini
- Laboratorio MDM, IMM-CNR, Via C. Olivetti 2, 20864, Agrate Brianza, MB, Italy
| | - Monica Ceresoli
- Laboratorio MDM, IMM-CNR, Via C. Olivetti 2, 20864, Agrate Brianza, MB, Italy.,Dipartimento di Fisica, Università degli Studi di Milano, Via Celoria 16, Milan, 20133, Italy
| | - Michele Perego
- Laboratorio MDM, IMM-CNR, Via C. Olivetti 2, 20864, Agrate Brianza, MB, Italy
| | - Valentina Gianotti
- Dipartimento di Scienze e Innovazione Tecnologica (DISIT), Università del Piemonte Orientale "A. Avogadro", INSTM, UdR Alessandria, Viale T. Michel 11, 15121, Alessandria, Italy.
| |
Collapse
|
18
|
Zheng XF, Lian Q, Yang H, Wu HX, Cheng C, Yin G, Zhang W. Preparation and characterization of temperature-memory nanoparticles of MIP-CS-g-PMMA. RSC Adv 2016. [DOI: 10.1039/c6ra22730a] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
A molecular imprinted graft copolymer of chitosan with methyl methacrylate (MIP-CS-g-PMMA) was prepared by free radical polymerization with aspirin as the template molecule and ammonium persulfate as the initiator.
Collapse
Affiliation(s)
- Xue-Fang Zheng
- College of Chemical Engineering
- Hebei Normal University of Science and Technology
- Qinhuangdao 066600
- China
| | - Qi Lian
- College of Chemical Engineering
- Hebei Normal University of Science and Technology
- Qinhuangdao 066600
- China
| | - Hua Yang
- School of Chemistry and Chemical Engineering of Guangxi University
- Nanning
- China
| | - Hai-Xia Wu
- Chemical and Pharmaceutical Engineering
- Hebei University of Science and Technology
- Shijiazhuang
- China
| | - Caihong Cheng
- Center of Analysis and Testing
- Hebei Normal University of Science and Technology
- Qinhuangdao 066600
- China
| | - Gengwen Yin
- Department of Research
- Hebei Normal University of Science and Technology
- Qinhuangdao 066600
- China
| | - Weiguo Zhang
- College of Urban Construction
- Hebei Normal University of Science and Technology
- Qinhuangdao 066600
- China
| |
Collapse
|
19
|
Lian Q, Zheng XF, Yang H. Potential applications of Ni0.5Mn0.5Fe2O4-chitosan nanoparticles as a drug delivery system. RUSSIAN JOURNAL OF PHYSICAL CHEMISTRY A 2015. [DOI: 10.1134/s0036024415100258] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
20
|
Wen Y, Oh JK. Intracellular delivery cellulose-based bionanogels with dual temperature/pH-response for cancer therapy. Colloids Surf B Biointerfaces 2015; 133:246-53. [PMID: 26119370 DOI: 10.1016/j.colsurfb.2015.06.017] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2015] [Revised: 06/02/2015] [Accepted: 06/08/2015] [Indexed: 01/05/2023]
Abstract
Polysaccharide-based crosslinked nanogles (bionanogels) exhibiting multiple stimuli-responsive release of encapsulated therapeutics hold a great potential as tumor-targeting intracelluar durg delivery nanocarriers. Herein, we report the synthesis of monodisperse dual temperature/acidic pH-responsive bionanogels (DuR-BNGs) by aqueous crosslinking polymerization through temperature-induced self-association method. The DuR-BNGs have prolonged colloidal stability and negligible non-specific interactions with proteins. In response to acidic pH at higher temperature (above lower critical solution temperature), they exhibit synergistic release of anticancer drugs as a consequence of both acidic pH-sensitivity of carboxymethyl cellulose and temperature-induced volume change of grafted thermoresponsive copolymers. In vitro cell culture results suggest that new colloidally-stable DuR-BNG is a promising candidate promoting dual stimuli-responsive drug release for cancer therapy.
Collapse
Affiliation(s)
- Yifen Wen
- Department of Chemistry and Biochemistry, Centre for NanoScience Research, Concordia University, Montreal, Quebec H4B 1R6, Canada
| | - Jung Kwon Oh
- Department of Chemistry and Biochemistry, Centre for NanoScience Research, Concordia University, Montreal, Quebec H4B 1R6, Canada.
| |
Collapse
|
21
|
Lächelt U, Wagner E. Nucleic Acid Therapeutics Using Polyplexes: A Journey of 50 Years (and Beyond). Chem Rev 2015; 115:11043-78. [DOI: 10.1021/cr5006793] [Citation(s) in RCA: 418] [Impact Index Per Article: 46.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Ulrich Lächelt
- Pharmaceutical
Biotechnology, Department of Pharmacy, Ludwig Maximilians Universität, 81377 Munich, Germany
- Nanosystems
Initiative
Munich (NIM), 80799 Munich, Germany
| | - Ernst Wagner
- Pharmaceutical
Biotechnology, Department of Pharmacy, Ludwig Maximilians Universität, 81377 Munich, Germany
- Nanosystems
Initiative
Munich (NIM), 80799 Munich, Germany
| |
Collapse
|
22
|
Balamurugan A, Lee HI. Water-Soluble Polymeric Probes for the Selective Sensing of Mercury Ion: pH-Driven Controllable Detection Sensitivity and Time. Macromolecules 2015. [DOI: 10.1021/ma502350p] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Affiliation(s)
- A. Balamurugan
- Department of Chemistry, University of Ulsan, Ulsan 680-749, Republic of Korea
| | - Hyung-il Lee
- Department of Chemistry, University of Ulsan, Ulsan 680-749, Republic of Korea
| |
Collapse
|
23
|
Bogomolova A, Keller S, Klingler J, Sedlak M, Rak D, Sturcova A, Hruby M, Stepanek P, Filippov SK. Self-assembly thermodynamics of pH-responsive amino-acid-based polymers with a nonionic surfactant. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2014; 30:11307-11318. [PMID: 25192406 DOI: 10.1021/la5031262] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
The behavior of pH-responsive polymers poly(N-methacryloyl-l-valine) (P1), poly(N-methacryloyl-l-phenylalanine) (P2), and poly(N-methacryloylglycyne-l-leucine) (P3) has been studied in the presence of the nonionic surfactant Brij98. The pure polymers phase-separate in an acidic medium with critical pHtr values of 3.7, 5.5, and 3.4, respectively. The addition of the surfactant prevents phase separation and promotes reorganization of polymer molecules. The nature of the interaction between polymer and surfactant depends on the amino acid structure in the side chain of the polymer. This effect was investigated by dynamic light scattering, isothermal titration calorimetry, electrophoretic measurements, small-angle neutron scattering, and infrared spectroscopy. Thermodynamic analysis revealed an endothermic association reaction in P1/Brij98 mixture, whereas a strong exothermic effect was observed for P2/Brij98 and P3/Brij98. Application of regular solution theory for the analysis of experimental enthalpograms indicated dominant hydrophobic interactions between P1 and Brij98 and specific interactions for the P2/Brij98 system. Electrophoretic and dynamic light scattering measurements support the applicability of the theory to these cases. The specific interactions can be ascribed to hydrogen bonds formed between the carboxylic groups of the polymer and the oligo(ethylene oxide) head groups of the surfactant. Thus, differences in polymer-surfactant interactions between P1 and P2 polymers result in different structures of polymer-surfactant complexes. Specifically, small-angle neutron scattering revealed pearl-necklace complexes and "core-shell" structures for P1/Brij98 and P2/Brij98 systems, respectively. These results may help in the design of new pH-responsive site-specific micellar drug delivery systems or pH-responsive membrane-disrupting agents.
Collapse
Affiliation(s)
- Anna Bogomolova
- Institute of Macromolecular Chemistry AS CR, v.v.i, 162 06 Prague, Czech Republic
| | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Amphiphilic macromolecules on cell membranes: from protective layers to controlled permeabilization. J Membr Biol 2014; 247:861-81. [PMID: 24903487 DOI: 10.1007/s00232-014-9679-3] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2014] [Accepted: 05/09/2014] [Indexed: 12/13/2022]
Abstract
Antimicrobial and cell-penetrating peptides have inspired developments of abiotic membrane-active polymers that can coat, penetrate, or break lipid bilayers in model systems. Application to cell cultures is more recent, but remarkable bioactivities are already reported. Synthetic polymer chains were tailored to achieve (i) high biocide efficiencies, and selectivity for bacteria (Gram-positive/Gram-negative or bacterial/mammalian membranes), (ii) stable and mild encapsulation of viable isolated cells to escape immune systems, (iii) pH-, temperature-, or light-triggered interaction with cells. This review illustrates these recent achievements highlighting the use of abiotic polymers, and compares the major structural determinants that control efficiency of polymers and peptides. Charge density, sp. of cationic and guanidinium side groups, and hydrophobicity (including polarity of stimuli-responsive moieties) guide the design of new copolymers for the handling of cell membranes. While polycationic chains are generally used as biocidal or hemolytic agents, anionic amphiphilic polymers, including Amphipols, are particularly prone to mild permeabilization and/or intracell delivery.
Collapse
|
25
|
Cornelissen B. Imaging the inside of a tumour: a review of radionuclide imaging and theranostics targeting intracellular epitopes. J Labelled Comp Radiopharm 2014; 57:310-6. [PMID: 24395330 DOI: 10.1002/jlcr.3152] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2013] [Accepted: 10/29/2013] [Indexed: 12/31/2022]
Abstract
Molecular imaging of tumour tissue focusses mainly on extracellular epitopes such as tumour angiogenesis or signal transduction receptors expressed on the cell membrane. However, most biological processes that define tumour phenotype occur within the cell. In this mini-review, an overview is given of the various techniques to interrogate intracellular events using molecular imaging with radiolabelled compounds. Additionally, similar targeting techniques can be employed for radionuclide therapy using Auger electron emitters, and recent advances in Auger electron therapy are discussed.
Collapse
Affiliation(s)
- Bart Cornelissen
- MRC/CRUK Gray Institute for Radiation Oncology and Biology, Department of Oncology, University of Oxford, UK
| |
Collapse
|
26
|
Wen Y, Oh JK. Dual-stimuli reduction and acidic pH-responsive bionanogels: intracellular delivery nanocarriers with enhanced release. RSC Adv 2014. [DOI: 10.1039/c3ra46072j] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
|
27
|
de Gracia Lux C, Olejniczak J, Fomina N, Viger ML, Almutairi A. Intramolecular cyclization assistance for fast degradation of ornithine-based poly(ester amide)s. ACTA ACUST UNITED AC 2013. [DOI: 10.1002/pola.26788] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Caroline de Gracia Lux
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California at San Diego; La Jolla California 92093
| | - Jason Olejniczak
- Department of Chemistry and Biochemistry, University of California at San Diego; La Jolla California 92093
| | - Nadezda Fomina
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California at San Diego; La Jolla California 92093
| | - Mathieu L. Viger
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California at San Diego; La Jolla California 92093
| | - Adah Almutairi
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California at San Diego; La Jolla California 92093
- Department of NanoEngineering, University of California at San Diego; La Jolla California 92093
- Department of Materials Science and Engineering, University of California at San Diego; La Jolla California 92093
| |
Collapse
|
28
|
Cell line dependent uptake and transfection efficiencies of PEI–anionic glycopolymer systems. Biomaterials 2013; 34:4368-76. [DOI: 10.1016/j.biomaterials.2013.02.043] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2013] [Accepted: 02/14/2013] [Indexed: 11/15/2022]
|
29
|
Khorsand B, Lapointe G, Brett C, Oh JK. Intracellular Drug Delivery Nanocarriers of Glutathione-Responsive Degradable Block Copolymers Having Pendant Disulfide Linkages. Biomacromolecules 2013; 14:2103-11. [DOI: 10.1021/bm4004805] [Citation(s) in RCA: 110] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Behnoush Khorsand
- Department
of Chemistry and
Biochemistry and Center for Nanoscience Research, Concordia University, Montreal, Quebec, Canada H4B 1R6
| | - Gabriel Lapointe
- Department of Biology, Concordia University, Montreal, Quebec, Canada H4B
1R6
| | - Christopher Brett
- Department of Biology, Concordia University, Montreal, Quebec, Canada H4B
1R6
| | - Jung Kwon Oh
- Department
of Chemistry and
Biochemistry and Center for Nanoscience Research, Concordia University, Montreal, Quebec, Canada H4B 1R6
| |
Collapse
|
30
|
|
31
|
Jung YD, Park SY. Protein detection using aqueous/LC interfaces decorated with a novel poly(N-isopropyl acrylamide) block liquid crystalline polymer. RSC Adv 2013. [DOI: 10.1039/c3ra42472c] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
|
32
|
Wu ZW, Chien CT, Liu CY, Yan JY, Lin SY. Recent progress in copolymer-mediated siRNA delivery. J Drug Target 2012; 20:551-60. [DOI: 10.3109/1061186x.2012.699057] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
33
|
Troiber C, Wagner E. Nucleic Acid Carriers Based on Precise Polymer Conjugates. Bioconjug Chem 2011; 22:1737-52. [DOI: 10.1021/bc200251r] [Citation(s) in RCA: 66] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Christina Troiber
- Pharmaceutical Biotechnology, Center for System-based Drug Research and Center for NanoScience (CeNS), Ludwig-Maximilians-Universität, Butenandtstrasse 5-13, 81377 Munich, Germany
| | - Ernst Wagner
- Pharmaceutical Biotechnology, Center for System-based Drug Research and Center for NanoScience (CeNS), Ludwig-Maximilians-Universität, Butenandtstrasse 5-13, 81377 Munich, Germany
| |
Collapse
|
34
|
Varkouhi AK, Scholte M, Storm G, Haisma HJ. Endosomal escape pathways for delivery of biologicals. J Control Release 2011; 151:220-8. [DOI: 10.1016/j.jconrel.2010.11.004] [Citation(s) in RCA: 1102] [Impact Index Per Article: 84.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2010] [Accepted: 10/19/2010] [Indexed: 11/29/2022]
|
35
|
Biswas A, Joo KI, Liu J, Zhao M, Fan G, Wang P, Gu Z, Tang Y. Endoprotease-mediated intracellular protein delivery using nanocapsules. ACS NANO 2011; 5:1385-1394. [PMID: 21268592 DOI: 10.1021/nn1031005] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
Proteins possess distinct intracellular roles allowing them to have vast therapeutic applications. However, due to poor cellular permeability and fragility of most proteins, intracellular delivery of native, active proteins is challenging. We describe a biomimetic protein delivery vehicle which is degradable upon the digestion by furin, a ubiquitous intracellular protease, to release encapsulated cargos. Proteins were encapsulated in a nanosized matrix prepared with monomers and a bisacrylated peptide cross-linker which can be specifically recognized and cleaved by furin. Release of encapsulated protein was confirmed in a cell-free system upon proteolytic degradation of nanocapsules. In vitro cell culture studies demonstrated successful intracellular delivery of both nuclear and cytosolic proteins and confirmed the importance of furin-degradable construction for native protein release. This endoprotease-mediated intracellular delivery system may be extended to effectively deliver various biological therapeutics.
Collapse
Affiliation(s)
- Anuradha Biswas
- Department of Chemical and Biomolecular Engineering, University of California at Los Angeles, Los Angeles, California 90095, USA
| | | | | | | | | | | | | | | |
Collapse
|
36
|
Fomina N, McFearin CL, Sermsakdi M, Morachis JM, Almutairi A. Low power, biologically benign NIR light triggers polymer disassembly. Macromolecules 2011; 44:8590-8597. [PMID: 22096258 PMCID: PMC3215095 DOI: 10.1021/ma201850q] [Citation(s) in RCA: 103] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Near infrared (NIR) irradiation can penetrate up to 10 cm deep into tissues and be remotely applied with high spatial and temporal precision. Despite its potential for various medical and biological applications, there is a dearth of biomaterials that are responsive at this wavelength region. Herein we report a polymeric material that is able to disassemble in response to biologically benign levels of NIR irradiation upon two-photon absorption. The design relies on the photolysis of the multiple pendant 4-bromo7-hydroxycoumarin protecting groups to trigger a cascade of cyclization and rearrangement reactions leading to the degradation of the polymer backbone. The new material undergoes a 50% Mw loss after 25 sec of ultraviolet (UV) irradiation by single photon absorption and 21 min of NIR irradiation via two-photon absorption. Most importantly, even NIR irradiation at biologically benign laser power is sufficient to cause significant polymer disassembly. Furthermore, this material is well tolerated by cells both before and after degradation. These results demonstrate for the first time a NIR sensitive material with potential to be used for in vivo applications.
Collapse
Affiliation(s)
- Nadezda Fomina
- Skaggs School Pharmacy and Pharmaceutical Sciences, Department of NanoEngineering, Materials Science and Engineering and Biomedical Sciences Programs, University of California at San Diego, La Jolla, California 92093
| | - Cathryn L. McFearin
- Skaggs School Pharmacy and Pharmaceutical Sciences, Department of NanoEngineering, Materials Science and Engineering and Biomedical Sciences Programs, University of California at San Diego, La Jolla, California 92093
| | - Marleen Sermsakdi
- Skaggs School Pharmacy and Pharmaceutical Sciences, Department of NanoEngineering, Materials Science and Engineering and Biomedical Sciences Programs, University of California at San Diego, La Jolla, California 92093
| | - José M. Morachis
- Skaggs School Pharmacy and Pharmaceutical Sciences, Department of NanoEngineering, Materials Science and Engineering and Biomedical Sciences Programs, University of California at San Diego, La Jolla, California 92093
| | - Adah Almutairi
- Skaggs School Pharmacy and Pharmaceutical Sciences, Department of NanoEngineering, Materials Science and Engineering and Biomedical Sciences Programs, University of California at San Diego, La Jolla, California 92093
| |
Collapse
|
37
|
|
38
|
Ferri JK, Kotsmar C, Miller R. From surfactant adsorption kinetics to asymmetric nanomembrane mechanics: pendant drop experiments with subphase exchange. Adv Colloid Interface Sci 2010; 161:29-47. [PMID: 20810096 DOI: 10.1016/j.cis.2010.08.002] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2009] [Revised: 07/21/2010] [Accepted: 08/03/2010] [Indexed: 10/19/2022]
Abstract
Adsorption equilibrium is the state in which the chemical potential of each species in the interface and bulk is the same. Dynamic phenomena at fluid-fluid interfaces in the presence of surface active species are often probed by perturbing an interface or adjoining bulk phase from the equilibrium state. Many methods designed for studying kinetics at fluid-fluid interfaces focus on removing the system from equilibrium through dilation or compression of the interface. This modifies the surface excess concentration Γ(i) and allows the species distribution in the bulk C(i) to respond. There are only a few methods available for studying fluid-fluid interfaces which seek to control C(i) and allow the interface to respond with changes to Γ(i). Subphase exchange in pendant drops can be achieved by the injection and withdrawal of liquid into a drop at constant volumetric flow rate R(E) during which the interfacial area and drop volume V(D) are controlled to be approximately constant. This can be accomplished by forming a pendant drop at the tip of two coaxial capillary tubes. Although evolution of the subphase concentration C(i)(t) is dictated by extrinsic factors such as R(E) and V(D), complete subphase exchange can always be attained when a sufficient amount of liquid is used. This provides a means to tailor driving forces for adsorption and desorption in fluid-fluid systems and in some cases, fabricate interfacial materials of well-defined composition templated at these interfaces. The coaxial capillary pendant drop (CCPD) method opens a wide variety of experimental possibilities. Experiments and theoretical frameworks are reviewed for the study of surfactant exchange kinetics, macromolecular adsorption equilibrium and dynamics, as well as the fabrication of a wide range of soft surface materials and the characterization of their mechanics. Future directions for new experiments are also discussed.
Collapse
|
39
|
Becker AL, Johnston APR, Caruso F. Layer-by-layer-assembled capsules and films for therapeutic delivery. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2010; 6:1836-1852. [PMID: 20715072 DOI: 10.1002/smll.201000379] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
Polymeric materials formed via layer-by-layer (LbL) assembly have promise for use as drug delivery vehicles. These multilayered materials, both as capsules and thin fi lms, can encapsulate a high payload of toxic or sensitive drugs, and can be readily engineered and functionalized with specific properties. This review highlights important and recent studies that advance the use of LbL-assembled materials as therapeutic devices. It also seeks to identify areas that require additional investigation for future development of the field. A variety of drug-loading methods and delivery routes are discussed. The biological barriers to successful delivery are identified, and possible solutions to these problems are discussed. Finally, state-of-the-art degradation and cargo release mechanisms are also presented.
Collapse
Affiliation(s)
- Alisa L Becker
- Department of Chemical and Biomolecular Engineering, The University of Melbourne, Centre for Nanoscience and Nanotechnology, Parkville, Victoria 3010, Australia
| | | | | |
Collapse
|
40
|
Pasparakis G, Krasnogor N, Cronin L, Davis BG, Alexander C. Controlled polymer synthesis--from biomimicry towards synthetic biology. Chem Soc Rev 2009; 39:286-300. [PMID: 20023853 DOI: 10.1039/b809333b] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
The controlled assembly of synthetic polymer structures is now possible with an unprecedented range of functional groups and molecular architectures. In this critical review we consider how the ability to create artificial materials over lengthscales ranging from a few nm to several microns is generating systems that not only begin to mimic those in nature but also may lead to exciting applications in synthetic biology (139 references).
Collapse
Affiliation(s)
- George Pasparakis
- Institute of Electronic Structure and Laser, Foundation for Research and Technology Hellas, P.O. Box 1527, 711 10, Heraklion, Crete, Greece.
| | | | | | | | | |
Collapse
|
41
|
Sedlák M, Koňák Č. A New Approach to Polymer Self-assembly into Stable Nanoparticles: Poly(ethylacrylic acid) Homopolymers. Macromolecules 2009. [DOI: 10.1021/ma9015032] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Marián Sedlák
- Institute of Experimental Physics, Slovak Academy of Sciences, Watsonova 47, 040 01 Košice, Slovakia
| | - Čestmír Koňák
- Institute of Macromolecular Chemistry, Academy of Sciences of the Czech Republic, Heyrovsky Sq. 2, 162 06 Prague 6, Czech Republic
| |
Collapse
|
42
|
Lim YT, Cho MY, Lee JM, Chung SJ, Chung BH. Simultaneous intracellular delivery of targeting antibodies and functional nanoparticles with engineered protein G system. Biomaterials 2009; 30:1197-204. [DOI: 10.1016/j.biomaterials.2008.11.007] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2008] [Accepted: 11/07/2008] [Indexed: 01/21/2023]
|
43
|
|
44
|
ŠponarovÁ D, Horák D. Poly(N,N-diethylacrylamide) microspheres by dispersion polymerization. ACTA ACUST UNITED AC 2008. [DOI: 10.1002/pola.22936] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
45
|
Roohi F, Magdalena Titirici M. Thin thermo-responsive polymer films onto the pore system of chromatographic beads via reversible addition–fragmentation chain transfer polymerization. NEW J CHEM 2008. [DOI: 10.1039/b800851e] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
46
|
Little SR, Kohane DS. Polymers for intracellular delivery of nucleic acids. ACTA ACUST UNITED AC 2008. [DOI: 10.1039/b712930k] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
47
|
Tribet C, Vial F. Flexible macromolecules attached to lipid bilayers: impact on fluidity, curvature, permeability and stability of the membranes. SOFT MATTER 2007; 4:68-81. [PMID: 32907085 DOI: 10.1039/b708431p] [Citation(s) in RCA: 84] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
This review summarizes recent investigations on the association of macromolecules on lipid bilayers. Hydrophilic and flexible polymers can form soft coronae tenuously adsorbed or anchored on the lipid membrane. Other synthetic macromolecules are embedded in the apolar region of the membrane. Recent experimental and theoretical works focus on the perturbation of lipid properties achieved depending on the nature and strength of binding. Of importance to biomimicry, to tethered model membranes, and drug carriers, the effects achievable include modulation of the lateral diffusivity of lipids, shape distortions, lateral segregations, formation of well-defined nanopores and ultimately the stimuli responsive disruption of the membrane.
Collapse
Affiliation(s)
- Christophe Tribet
- Physico-chimie des Polymères et Milieux Dispersés, CNRS UMR 7615 and Université Paris 6, ESPCI, 10 rue Vauquelin, F-75005 Paris, France
| | - Florent Vial
- Physico-chimie des Polymères et Milieux Dispersés, CNRS UMR 7615 and Université Paris 6, ESPCI, 10 rue Vauquelin, F-75005 Paris, France
| |
Collapse
|
48
|
Mikhaylova Y, Ionov L, Rappich J, Gensch M, Esser N, Minko S, Eichhorn KJ, Stamm M, Hinrichs K. In situ infrared ellipsometric study of stimuli-responsive mixed polyelectrolyte brushes. Anal Chem 2007; 79:7676-82. [PMID: 17877422 DOI: 10.1021/ac070853a] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The switching behavior of stimuli-responsive mixed polymer brushes (d = 11 nm) was monitored for the first time in liquid phase in situ by infrared spectroscopic ellipsometry (IRSE). IRSE is presented as a new, sensitive in situ tool for online analysis of chemical changes in a thin complex film at the solid/liquid interface. Responsive behavior (protonation and deprotonation reaction) of the poly(acrylic acid)/poly(2-vinylpyridine) (PAA-mix-P2VP) brush was probed in aqueous solutions with pH ranging from pH 2 to pH 10. Structural and chemical changes in a thin polymer brush layer were identified from the analysis of infrared ellipsometric tanPsi spectra during the variation of pH. Systematic change in pH confirmed the reversible switching behavior of the PAA-mix-P2VP brush between three different states: swollen P2VP and compact PAA chains at pH 2, a compact "P2VP...PAA" complex at pH 6.5, and swollen PAA and compact P2VP chains at pH 10.
Collapse
Affiliation(s)
- Yulia Mikhaylova
- ISAS-Institute for Analytical Sciences, Department Berlin, Albert-Einstein-Strasse 9, 12489 Berlin, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Lai PS, Lou PJ, Peng CL, Pai CL, Yen WN, Huang MY, Young TH, Shieh MJ. Doxorubicin delivery by polyamidoamine dendrimer conjugation and photochemical internalization for cancer therapy. J Control Release 2007; 122:39-46. [PMID: 17628166 DOI: 10.1016/j.jconrel.2007.06.012] [Citation(s) in RCA: 164] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2007] [Revised: 05/11/2007] [Accepted: 06/14/2007] [Indexed: 11/18/2022]
Abstract
Coupling anticancer drugs to synthetic polymers is a promising approach to improve the efficacy and reduce the side effects of these drugs. The pH-activated polymer has been demonstrated to be a successful drug delivery vehicle system, whereas the photochemical internalization (PCI) was invented for site-specific delivery of membrane impermeable macromolecules from endocytic vesicles into the cytosol. In this study, doxorubicin (DOX) was conjugated to polyamidoamine (PAMAM) dendrimers via pH-sensitive and -insensitive linkers and was combined with different PCI strategies to evaluate the cytotoxic effects. Our results showed that both PCI strategies significantly improved the cytotoxicity of free DOX on Ca9-22 cells at higher concentrations. The 'light after' PCI treatment was efficient in releasing DOX from the PAMAM-hyd-DOX conjugates, resulted in more nuclear accumulation of DOX and more cell death through synergistic effects. On the other hand, antagonism was observed when 'light before' PCI combined with PAMAM-hyd-DOX conjugate. The distribution of PAMAM-amide-DOX was mainly cytosolic with or without PCI treatments. Both PCI strategies failed to improve the cytotoxicity of PAMAM-amide-DOX conjugates. Our results provide invaluable information in the future design of drug-polymer complexes for multi-modality cancer treatments.
Collapse
Affiliation(s)
- Ping-Shan Lai
- Department of Chemistry and Center of Nanoscience and Nanotechnology, National Chung-Hsing University, Taichung, Taiwan
| | | | | | | | | | | | | | | |
Collapse
|
50
|
Zhu X, Yan C, Winnik FM, Leckband D. End-grafted low-molecular-weight PNIPAM does not collapse above the LCST. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2007; 23:162-9. [PMID: 17190499 DOI: 10.1021/la061577i] [Citation(s) in RCA: 76] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
The interfacial properties of end-grafted temperature-responsive poly(N-isopropylacryamide) (PNIPAM) were quantified by direct force measurements both above and below the lower critical solution temperature (LCST) of 32 degrees C. The forces were measured between identical, opposing PNIPAM films and between a PNIPAM film and a lipid membrane. At the grafting densities and molecular weights investigated, the polymer extension did not change significantly above the LCST, and the polymers did not adhere. Below the LCST, the force-distance profiles suggest a vertical phase separation, which results in a diluter outer layer and a dense surface proximal layer. At large separations, the force profiles agree qualitatively with simple polymer theory but deviate at small separations. Importantly, at these low grafting densities and molecular weights, the end-grafted PNIPAM does not collapse above the LCST. This finding has direct implications for triggering liposomal drug release with end-grafted PNIPAM, but it increases the temperature range where these short PNIPAM chains function as steric stabilizers.
Collapse
Affiliation(s)
- X Zhu
- Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, 600 South Mathews Avenue, Urbana, Illinois 61801, USA
| | | | | | | |
Collapse
|