1
|
Oschatz S, Schultz S, Fiedler N, Senz V, Schmitz KP, Grabow N, Koper D. Melt blending of poly(lactic acid) with biomedically relevant polyurethanes to improve mechanical performance. Heliyon 2024; 10:e26268. [PMID: 38444474 PMCID: PMC10912236 DOI: 10.1016/j.heliyon.2024.e26268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 02/08/2024] [Accepted: 02/09/2024] [Indexed: 03/07/2024] Open
Abstract
Minimally invasive surgery procedures are of utmost relevance in clinical practice. However, the associated mechanical stress on the material poses a challenge for new implant developments. In particular PLLA, one of the most widely used polymeric biomaterials, is limited in its application due to its high brittleness and low elasticity. In this context, blending is a conventional method of improving the performance of polymer materials. However, in implant applications and development, material selection is usually limited to the use of medical grade polymers. The focus of this work was to investigate the extent to which blending poly-l-lactide (PLLA) with low contents of a selection of five commercially available medical grade polyurethanes leads to enhanced material properties. The materials obtained by melt blending were characterized in terms of their morphology and thermal properties, and the mechanical performance of the blends was evaluated taking into account physiological conditions. From these data, we found that mixing PLLA with Pellethane 80A is a promising approach to improve the material's performance, particularly for stent applications. It was found that PLLA/Pellethane blend with 10% polyurethane exhibits considerable plastic deformation before fracture, while pure PLLA fractures with almost no deformation. Furthermore, the addition of Pellethane only leads to a moderate reduction in elongation at yield and yield stress. In addition, dynamic mechanical analysis for three different PLLA/Pellethane ratios was performed to investigate thermally induced shape retention and shape recovery of the blends.
Collapse
Affiliation(s)
- Stefan Oschatz
- Institute for Biomedical Engineering, Rostock University Medical Center, Friedrich-Barnewitz-Straße 4, 18119, Rostock, Germany
| | - Selina Schultz
- Institute for Biomedical Engineering, Rostock University Medical Center, Friedrich-Barnewitz-Straße 4, 18119, Rostock, Germany
| | - Nicklas Fiedler
- Institute for Biomedical Engineering, Rostock University Medical Center, Friedrich-Barnewitz-Straße 4, 18119, Rostock, Germany
| | - Volkmar Senz
- Institute for Biomedical Engineering, Rostock University Medical Center, Friedrich-Barnewitz-Straße 4, 18119, Rostock, Germany
| | - Klaus-Peter Schmitz
- Institute for Biomedical Engineering, Rostock University Medical Center, Friedrich-Barnewitz-Straße 4, 18119, Rostock, Germany
- Institute for ImplantTechnology and Biomaterials e.V., Friedrich-Barnewitz-Straße 4, 18119, Rostock, Warnemünde, Germany
| | - Niels Grabow
- Institute for Biomedical Engineering, Rostock University Medical Center, Friedrich-Barnewitz-Straße 4, 18119, Rostock, Germany
- Department Life, Light & Matter (LLM), University of Rostock, 18051, Rostock, Germany
| | - Daniela Koper
- Institute for Biomedical Engineering, Rostock University Medical Center, Friedrich-Barnewitz-Straße 4, 18119, Rostock, Germany
- Institute for ImplantTechnology and Biomaterials e.V., Friedrich-Barnewitz-Straße 4, 18119, Rostock, Warnemünde, Germany
| |
Collapse
|
4
|
Duan R, Wang Y, Zhang Y, Wang Z, Du F, Du B, Su D, Liu L, Li X, Zhang Q. Blending with Poly(l-lactic acid) Improves the Printability of Poly(l-lactide- co-caprolactone) and Enhances the Potential Application in Cartilage Tissue Engineering. ACS OMEGA 2021; 6:18300-18313. [PMID: 34308061 PMCID: PMC8296602 DOI: 10.1021/acsomega.1c02190] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Accepted: 06/25/2021] [Indexed: 06/13/2023]
Abstract
Poly(l-lactide-co-caprolactone) (PLCL, 50:50) has been used in cartilage tissue engineering because of its high elasticity. However, its mechanical properties, including its rigidity and viscoelasticity, must be improved for compatibility with native cartilage. In this study, a set of PLCL/poly(l-lactic acid) (PLLA) blends was prepared by blending with different mass ratios of PLLA that range from 10 to 50%, using thermoplastic techniques. After testing the properties of these PLCL/PLLA blends, they were used to fabricate scaffolds by the 3D printing technology. The structures and viscoelastic behavior of the PLCL/PLLA scaffolds were determined, and then, the potential application of the scaffolds in cartilage tissue engineering was evaluated by chondrocytes culture. All blends demonstrate good thermal stability for the 3D printing technology. All blends show good toughness, while the rigidity of PLCL is increased through PLLA blending, and Young's modulus of blends with 10-20% PLLA is similar to that of native cartilage. Furthermore, blending with PLLA improves the processability of PLCL for 3D printing, and the compression modulus and viscoelasticity of 3D-printed PLCL/PLLA scaffolds are different from that of PLCL. Additionally, the stress relaxation time (t 1/2) of the PLCL/PLLA scaffolds, which is important for chondrogenesis, is dramatically shortened compared with the pure PLCL scaffold at the same 3D-printing filling rate. Consistently, the PLCL90PLLA10 scaffold at a 70% filling rate with much shorter t 1/2 is more conducive to the proliferation and chondrogenesis of in vitro seeded chondrocytes accompanied by upregulated expression of SOX9 than the PLCL scaffold. Taken together, these results demonstrate that blending with PLLA improves the printability of PLCL and enhances its potential application, particularly PLCL/PLLA scaffolds with a low ratio of PLLA, in cartilage tissue engineering.
Collapse
Affiliation(s)
- Ruiping Duan
- The
Key Laboratory of Biomedical Material of Tianjin, Biomedical Barriers
Research Center, Chinese Academy of Medical
Sciences & Peking Union Medical College Institute of Biomedical
Engineering, 236 Baidi Road, NanKai District, Tianjin 300192, P.R. China
| | - Yimeng Wang
- The
Key Laboratory of Biomedical Material of Tianjin, Biomedical Barriers
Research Center, Chinese Academy of Medical
Sciences & Peking Union Medical College Institute of Biomedical
Engineering, 236 Baidi Road, NanKai District, Tianjin 300192, P.R. China
| | - Yiyun Zhang
- The
Key Laboratory of Biomedical Material of Tianjin, Biomedical Barriers
Research Center, Chinese Academy of Medical
Sciences & Peking Union Medical College Institute of Biomedical
Engineering, 236 Baidi Road, NanKai District, Tianjin 300192, P.R. China
| | - Ziqiang Wang
- The
Key Laboratory of Biomedical Material of Tianjin, Biomedical Barriers
Research Center, Chinese Academy of Medical
Sciences & Peking Union Medical College Institute of Biomedical
Engineering, 236 Baidi Road, NanKai District, Tianjin 300192, P.R. China
| | - Fuchong Du
- The
Key Laboratory of Biomedical Material of Tianjin, Biomedical Barriers
Research Center, Chinese Academy of Medical
Sciences & Peking Union Medical College Institute of Biomedical
Engineering, 236 Baidi Road, NanKai District, Tianjin 300192, P.R. China
| | - Bo Du
- The
Key Laboratory of Biomedical Material of Tianjin, Biomedical Barriers
Research Center, Chinese Academy of Medical
Sciences & Peking Union Medical College Institute of Biomedical
Engineering, 236 Baidi Road, NanKai District, Tianjin 300192, P.R. China
| | - Danning Su
- The
Key Laboratory of Biomedical Material of Tianjin, Biomedical Barriers
Research Center, Chinese Academy of Medical
Sciences & Peking Union Medical College Institute of Biomedical
Engineering, 236 Baidi Road, NanKai District, Tianjin 300192, P.R. China
| | - Lingrong Liu
- The
Key Laboratory of Biomedical Material of Tianjin, Biomedical Barriers
Research Center, Chinese Academy of Medical
Sciences & Peking Union Medical College Institute of Biomedical
Engineering, 236 Baidi Road, NanKai District, Tianjin 300192, P.R. China
| | - Xuemin Li
- The
Key Laboratory of Biomedical Material of Tianjin, Biomedical Barriers
Research Center, Chinese Academy of Medical
Sciences & Peking Union Medical College Institute of Biomedical
Engineering, 236 Baidi Road, NanKai District, Tianjin 300192, P.R. China
| | - Qiqing Zhang
- The
Key Laboratory of Biomedical Material of Tianjin, Biomedical Barriers
Research Center, Chinese Academy of Medical
Sciences & Peking Union Medical College Institute of Biomedical
Engineering, 236 Baidi Road, NanKai District, Tianjin 300192, P.R. China
- Institute
of Biomedical Engineering, the Second Clinical Medical College, Jinan University (Shenzhen People’s Hospital), Shenzhen 518020, Guangdong, P.R. China
| |
Collapse
|
5
|
Su X, Jia S, Cao L, Yu D. High performance polylactic acid/thermoplastic polyurethane blends with in‐situ fibrillated morphology. J Appl Polym Sci 2021. [DOI: 10.1002/app.51014] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Xiaolong Su
- School of Chemistry, State Key Laboratory of Electrical Insulation and Power Equipments Xi'an Jiaotong University Xi'an Shaanxi China
| | - Shikui Jia
- School of Materials Science and Engineering Shaanxi University of Technology Hanzhong Shaanxi China
| | - Le Cao
- School of Materials Science and Engineering Shaanxi University of Technology Hanzhong Shaanxi China
| | - Demei Yu
- School of Chemistry, State Key Laboratory of Electrical Insulation and Power Equipments Xi'an Jiaotong University Xi'an Shaanxi China
| |
Collapse
|
6
|
Shi X, Shi H, Wu H, Shen H, Cao P. Synthesis and properties of novel fluorinated polyurethane based on fluorinated gemini diol. POLYM ADVAN TECHNOL 2018. [DOI: 10.1002/pat.4303] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Xiang Shi
- School of Chemical Engineering; Zhejiang University of Technology; No. 18 Chaowang Road Hangzhou 310032 China
| | - HongXin Shi
- School of Chemical Engineering; Zhejiang University of Technology; No. 18 Chaowang Road Hangzhou 310032 China
| | - HongKe Wu
- School of Chemical Engineering; Zhejiang University of Technology; No. 18 Chaowang Road Hangzhou 310032 China
| | - HaiMin Shen
- School of Chemical Engineering; Zhejiang University of Technology; No. 18 Chaowang Road Hangzhou 310032 China
| | - Peng Cao
- School of Chemical Engineering; Zhejiang University of Technology; No. 18 Chaowang Road Hangzhou 310032 China
| |
Collapse
|
7
|
Zhen W, Zheng Y. Synthesis, characterization, and thermal stability of poly (lactic acid)/zinc oxide pillared organic saponite nanocomposites via ring-opening polymerization ofd,l-lactide. POLYM ADVAN TECHNOL 2015. [DOI: 10.1002/pat.3727] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Weijun Zhen
- Key Laboratory of Oil and Gas Fine Chemicals, Ministry of Education and Xinjiang Uygur Region; Xinjiang University; Urumqi 830046 China
| | - Youya Zheng
- Key Laboratory of Oil and Gas Fine Chemicals, Ministry of Education and Xinjiang Uygur Region; Xinjiang University; Urumqi 830046 China
| |
Collapse
|