1
|
Ye J, Xia L, Li H, de Arquer FPG, Wang H. The Critical Analysis of Membranes toward Sustainable and Efficient Vanadium Redox Flow Batteries. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2402090. [PMID: 38776138 DOI: 10.1002/adma.202402090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 05/07/2024] [Indexed: 05/29/2024]
Abstract
Vanadium redox flow batteries (VRFB) are a promising technology for large-scale storage of electrical energy, combining safety, high capacity, ease of scalability, and prolonged durability; features which have triggered their early commercial implementation. Furthering the deployment of VRFB technologies requires addressing challenges associated to a pivotal component: the membrane. Examples include vanadium crossover, insufficient conductivity, escalated costs, and sustainability concerns related to the widespread adoption of perfluoroalkyl-based membranes, e.g., perfluorosulfonic acid (PFSA). Herein, recent advances in high-performance and sustainable membranes for VRFB, offering insights into prospective research directions to overcome these challenges, are reviewed. The analysis reveals the disparities and trade-offs between performance advances enabled by PFSA membranes and composites, and the lack of sustainability in their final applications. The potential of PFSA-free membranes and present strategies to enhance their performance are discussed. This study delves into vital membrane parameters to enhance battery performance, suggesting protocols and design strategies to achieve high-performance and sustainable VRFB membranes.
Collapse
Affiliation(s)
- Jiaye Ye
- School of Chemistry and Physics, Faculty of Science, Queensland University of Technology, Brisbane, QLD, 4001, Australia
- Centre for Materials Science, Queensland University of Technology, Brisbane, QLD, 4001, Australia
| | - Lu Xia
- ICFO-Institut de Ciències Fotòniques, The Barcelona Institute of Science and Technology, Castelldefels, Barcelona, 08860, Spain
| | - Huiyun Li
- Center for Automotive Electronics, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| | - F Pelayo García de Arquer
- ICFO-Institut de Ciències Fotòniques, The Barcelona Institute of Science and Technology, Castelldefels, Barcelona, 08860, Spain
| | - Hongxia Wang
- School of Chemistry and Physics, Faculty of Science, Queensland University of Technology, Brisbane, QLD, 4001, Australia
- Centre for Materials Science, Queensland University of Technology, Brisbane, QLD, 4001, Australia
| |
Collapse
|
2
|
Do XH, Abbas S, Ikhsan MM, Choi SY, Ha HY, Azizi K, Hjuler HA, Henkensmeier D. Membrane Assemblies with Soft Protective Layers: Dense and Gel-Type Polybenzimidazole Membranes and Their Use in Vanadium Redox Flow Batteries. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2206284. [PMID: 36319463 DOI: 10.1002/smll.202206284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Indexed: 06/16/2023]
Abstract
Polybenzimidazole (PBI) membranes show excellent chemical stability and low vanadium crossover in vanadium redox flow batteries (VRFBs), but their high resistance is challenging. This work introduces a concept, membrane assemblies of a highly selective 2 µm thin PBI membrane between two 60 µm thick highly conductive PBI gel membranes, which act as soft protective layers against external mechanical forces and astray carbon fibers from the electrode. The soft layers are produced by casting phosphoric acid solutions of commercial PBI powder into membranes and exchanging the absorbed acid into sulfuric acid. A conductivity of 565 mS cm-1 is achieved. A stability test indicates that gel mPBI and dense PBI-OO have higher stability than dense mPBI and dense py-PBI, and gel/PBI-OO/gel is successfully tested for 1070 cycles (ca. 1000 h) at 100 mA cm-2 in the VRFB. The initial energy efficiency (EE) for the first 50 cycles is 90.5 ± 0.2%, and after a power outage stabilized at 86.3 ± 0.5% for the following 500 cycles. The initial EE is one of the highest published so far, and the materials cost for a membrane assembly is 12.35 U.S. dollars at a production volume of 5000 m2 , which makes these membranes very attractive for commercialization.
Collapse
Affiliation(s)
- Xuan Huy Do
- Hydrogen · Fuel Cell Research Center, Korea Institute of Science and Technology (KIST), Seoul, 02792, Korea
| | - Saleem Abbas
- Center for Energy Storage Research, Korea Institute of Science and Technology (KIST), Seoul, 02792, Korea
| | - Muhammad Mara Ikhsan
- Hydrogen · Fuel Cell Research Center, Korea Institute of Science and Technology (KIST), Seoul, 02792, Korea
- Energy & Environment Technology, KIST School, University of Science and Technology (UST), Seoul, 02792, Korea
| | - Seung-Young Choi
- Hydrogen · Fuel Cell Research Center, Korea Institute of Science and Technology (KIST), Seoul, 02792, Korea
- Polymer & Materials Chemistry, Department of Chemistry, Lund University, Lund, 221 00, Sweden
| | - Heung Yong Ha
- Center for Energy Storage Research, Korea Institute of Science and Technology (KIST), Seoul, 02792, Korea
- Energy & Environment Technology, KIST School, University of Science and Technology (UST), Seoul, 02792, Korea
| | - Kobra Azizi
- Blue World Technologies, Egeskovvej 6C, Kvistgaard, 3490, Denmark
| | - Hans Aage Hjuler
- Blue World Technologies, Egeskovvej 6C, Kvistgaard, 3490, Denmark
| | - Dirk Henkensmeier
- Hydrogen · Fuel Cell Research Center, Korea Institute of Science and Technology (KIST), Seoul, 02792, Korea
- Center for Energy Storage Research, Korea Institute of Science and Technology (KIST), Seoul, 02792, Korea
| |
Collapse
|
3
|
Long J, Huang W, Li J, Yu Y, Zhang B, Li J, Zhang Y, Duan H. A novel permselective branched sulfonated polyimide membrane containing crown ether with remarkable proton conductance and selectivity for application in vanadium redox flow battery. J Memb Sci 2022. [DOI: 10.1016/j.memsci.2022.121343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
4
|
Sulfonated polyimide membrane containing poly [bis (4-aminodiphenyl bissulfonate) phosphoronitrile] flexible chains for vanadium redox flow battery. POLYMER 2022. [DOI: 10.1016/j.polymer.2022.125667] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
5
|
He Z, Wang G, Wei S, Li G, Zhang J, Chen J, Wang R. A novel fluorinated acid-base sulfonated polyimide membrane with sulfoalkyl side-chain for vanadium redox flow battery. Electrochim Acta 2021. [DOI: 10.1016/j.electacta.2021.139434] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
6
|
Long J, Xu W, Xu S, Liu J, Wang Y, Luo H, Zhang Y, Li J, Chu L. A novel double branched sulfonated polyimide membrane with ultra-high proton selectivity for vanadium redox flow battery. J Memb Sci 2021. [DOI: 10.1016/j.memsci.2021.119259] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
7
|
Düerkop D, Widdecke H, Schilde C, Kunz U, Schmiemann A. Polymer Membranes for All-Vanadium Redox Flow Batteries: A Review. MEMBRANES 2021; 11:214. [PMID: 33803681 PMCID: PMC8003036 DOI: 10.3390/membranes11030214] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Revised: 03/01/2021] [Accepted: 03/05/2021] [Indexed: 01/08/2023]
Abstract
Redox flow batteries such as the all-vanadium redox flow battery (VRFB) are a technical solution for storing fluctuating renewable energies on a large scale. The optimization of cells regarding performance, cycle stability as well as cost reduction are the main areas of research which aim to enable more environmentally friendly energy conversion, especially for stationary applications. As a critical component of the electrochemical cell, the membrane influences battery performance, cycle stability, initial investment and maintenance costs. This review provides an overview about flow-battery targeted membranes in the past years (1995-2020). More than 200 membrane samples are sorted into fluoro-carbons, hydro-carbons or N-heterocycles according to the basic polymer used. Furthermore, the common description in membrane technology regarding the membrane structure is applied, whereby the samples are categorized as dense homogeneous, dense heterogeneous, symmetrical or asymmetrically porous. Moreover, these properties as well as the efficiencies achieved from VRFB cycling tests are discussed, e.g., membrane samples of fluoro-carbons, hydro-carbons and N-heterocycles as a function of current density. Membrane properties taken into consideration include membrane thickness, ion-exchange capacity, water uptake and vanadium-ion diffusion. The data on cycle stability and costs of commercial membranes, as well as membrane developments, are compared. Overall, this investigation shows that dense anion-exchange membranes (AEM) and N-heterocycle-based membranes, especially poly(benzimidazole) (PBI) membranes, are suitable for VRFB requiring low self-discharge. Symmetric and asymmetric porous membranes, as well as cation-exchange membranes (CEM) enable VRFB operation at high current densities. Amphoteric ion-exchange membranes (AIEM) and dense heterogeneous CEM are the choice for operation mode with the highest energy efficiency.
Collapse
Affiliation(s)
- Dennis Düerkop
- Institute of Recycling, Ostfalia University of Applied Sciences, Robert-Koch-Platz 8a, 38440 Wolfsburg, Germany; (H.W.); (A.S.)
| | - Hartmut Widdecke
- Institute of Recycling, Ostfalia University of Applied Sciences, Robert-Koch-Platz 8a, 38440 Wolfsburg, Germany; (H.W.); (A.S.)
| | - Carsten Schilde
- Institute of Particle Technology, Braunschweig University of Technology, Volkmaroder Straße 5, 38100 Braunschweig, Germany;
| | - Ulrich Kunz
- Institute of Chemical and Electrochemical Process Engineering, Clausthal University of Technology, Leibnizstraße 17, 38678 Clausthal-Zellerfeld, Germany;
| | - Achim Schmiemann
- Institute of Recycling, Ostfalia University of Applied Sciences, Robert-Koch-Platz 8a, 38440 Wolfsburg, Germany; (H.W.); (A.S.)
| |
Collapse
|
8
|
Novel sulfonated polyimide membrane blended with flexible poly[bis(4-methylphenoxy) phosphazene] chains for all vanadium redox flow battery. J Memb Sci 2021. [DOI: 10.1016/j.memsci.2020.118800] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
9
|
Long J, Yang H, Wang Y, Xu W, Liu J, Luo H, Li J, Zhang Y, Zhang H. Branched Sulfonated Polyimide/Sulfonated Methylcellulose Composite Membranes with Remarkable Proton Conductivity and Selectivity for Vanadium Redox Flow Batteries. ChemElectroChem 2020. [DOI: 10.1002/celc.201901887] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Jun Long
- State Key Laboratory of Environment-friendly Energy Materials School of Materials Science and EngineeringSouthwest University of Science and Technology Mianyang 621010 P.R.China
| | - Hongyan Yang
- State Key Laboratory of Environment-friendly Energy Materials School of Materials Science and EngineeringSouthwest University of Science and Technology Mianyang 621010 P.R.China
| | - Yanlin Wang
- State Key Laboratory of Environment-friendly Energy Materials School of Materials Science and EngineeringSouthwest University of Science and Technology Mianyang 621010 P.R.China
| | - Wenjie Xu
- State Key Laboratory of Environment-friendly Energy Materials School of Materials Science and EngineeringSouthwest University of Science and Technology Mianyang 621010 P.R.China
| | - Jun Liu
- State Key Laboratory of Environment-friendly Energy Materials School of Materials Science and EngineeringSouthwest University of Science and Technology Mianyang 621010 P.R.China
| | - Huan Luo
- State Key Laboratory of Environment-friendly Energy Materials School of Materials Science and EngineeringSouthwest University of Science and Technology Mianyang 621010 P.R.China
| | - Jinchao Li
- State Key Laboratory of Environment-friendly Energy Materials School of Materials Science and EngineeringSouthwest University of Science and Technology Mianyang 621010 P.R.China
| | - Yaping Zhang
- State Key Laboratory of Environment-friendly Energy Materials School of Materials Science and EngineeringSouthwest University of Science and Technology Mianyang 621010 P.R.China
| | - Hongping Zhang
- State Key Laboratory of Environment-friendly Energy Materials School of Materials Science and EngineeringSouthwest University of Science and Technology Mianyang 621010 P.R.China
| |
Collapse
|
10
|
Membranes Fabricated by Solvent treatment for Flow Battery: Effects of initial structures and intrinsic properties. J Memb Sci 2019. [DOI: 10.1016/j.memsci.2019.02.011] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
11
|
High Proton Selectivity Sulfonated Polyimides Ion Exchange Membranes for Vanadium Flow Batteries. Polymers (Basel) 2018; 10:polym10121315. [PMID: 30961240 PMCID: PMC6402033 DOI: 10.3390/polym10121315] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2018] [Revised: 11/21/2018] [Accepted: 11/22/2018] [Indexed: 11/16/2022] Open
Abstract
High proton selectivity is the ultimate aim for the ion exchange membranes (IEMs). In this study, two kinds of sulfonated polyimides (SPI)—non-fluorinated and fluorine-containing polyimide—with about 40% sulfonation degree were synthesized by one-step high temperature polymerization. High proton selectivity IEMs were prepared and applied in vanadium flow batteries (VFB). The chemical structures, physicochemical properties and single cell performance of these membranes were characterized. The results indicate that high molecular weight of SPIs can guarantee the simultaneous achievement of good mechanical and oxidative stability for IEMs. Meanwhile, the proton selectivity of SPI membrane is five times higher than that of Nafion115 membranes due to the introduction of fluorocarbon groups. Consequently, the single cell assembled with SPI membranes exhibits excellent energy efficiency up to 84.8% at a current density of 100 mA·cm−2, which is 4.6% higher than Nafion115. In addition, the capacity retention is great after 500 charge–discharge cycles. All results demonstrate that fluorinated SPI ion exchange membrane has a bright prospect in new energy field.
Collapse
|
12
|
Chen D, Chen X, Ding L, Li X. Advanced acid-base blend ion exchange membranes with high performance for vanadium flow battery application. J Memb Sci 2018. [DOI: 10.1016/j.memsci.2018.02.039] [Citation(s) in RCA: 59] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
13
|
Lu W, Yuan Z, Zhao Y, Zhang H, Zhang H, Li X. Porous membranes in secondary battery technologies. Chem Soc Rev 2018; 46:2199-2236. [PMID: 28288217 DOI: 10.1039/c6cs00823b] [Citation(s) in RCA: 162] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Secondary batteries have received huge attention due to their attractive features in applications of large-scale energy storage and portable electronic devices, as well as electrical vehicles. In a secondary battery, a membrane plays the role of separating the anode and cathode to prevent the occurrence of a short circuit, while allowing the transport of charge carriers to achieve a complete circuit. The properties of a membrane will largely determine the performance of a battery. In this article, we review the research and development progress of porous membranes in secondary battery technologies, such as lithium-based batteries together with flow batteries. The preparation methods as well as the required properties of porous membranes in different secondary battery technologies will be elucidated thoroughly and deeply. Most importantly, this review will mainly focus on the optimization and modification of porous membranes in different secondary battery systems. And various modifications on commercial porous membranes along with novel membrane materials are widely discussed and summarized. This review will help to optimize the membrane material for different secondary batteries, and favor the understanding of the preparation-structure-performance relationship of porous membranes in different secondary batteries. Therefore, this review will provide an extensive, comprehensive and professional reference to design and construct high-performance porous membranes.
Collapse
Affiliation(s)
- Wenjing Lu
- Division of Energy Storage, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian 116023, P. R. China.
| | | | | | | | | | | |
Collapse
|
14
|
Zhang Y, Zhang S, Huang X, Zhou Y, Pu Y, Zhang H. Synthesis and properties of branched sulfonated polyimides for membranes in vanadium redox flow battery application. Electrochim Acta 2016. [DOI: 10.1016/j.electacta.2016.05.116] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
15
|
Huang X, Zhang S, Zhang Y, Zhang H, Yang X. Sulfonated polyimide/chitosan composite membranes for a vanadium redox flow battery: influence of the sulfonation degree of the sulfonated polyimide. Polym J 2016. [DOI: 10.1038/pj.2016.42] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
16
|
Li J, Zhang Y, Zhang S, Huang X. Sulfonated polyimide/s-MoS2 composite membrane with high proton selectivity and good stability for vanadium redox flow battery. J Memb Sci 2015. [DOI: 10.1016/j.memsci.2015.04.053] [Citation(s) in RCA: 88] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
17
|
Sulfonated poly(imide-siloxane) membrane as a low vanadium ion permeable separator for a vanadium redox flow battery. Polym J 2015. [DOI: 10.1038/pj.2015.51] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
|
18
|
Noack J, Roznyatovskaya N, Herr T, Fischer P. The Chemistry of Redox-Flow Batteries. Angew Chem Int Ed Engl 2015; 54:9776-809. [PMID: 26119683 DOI: 10.1002/anie.201410823] [Citation(s) in RCA: 219] [Impact Index Per Article: 24.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2014] [Indexed: 11/07/2022]
Abstract
The development of various redox-flow batteries for the storage of fluctuating renewable energy has intensified in recent years because of their peculiar ability to be scaled separately in terms of energy and power, and therefore potentially to reduce the costs of energy storage. This has resulted in a considerable increase in the number of publications on redox-flow batteries. This was a motivation to present a comprehensive and critical overview of the features of this type of batteries, focusing mainly on the chemistry of electrolytes and introducing a thorough systematic classification to reveal their potential for future development.
Collapse
Affiliation(s)
- Jens Noack
- Redox Flow Batteries Project Group, Fraunhofer Institute for Chemical Technology, Applied Electrochemistry, Joseph-von-Fraunhofer-Strasse 7, 76327 Pfinztal (Germany).
| | - Nataliya Roznyatovskaya
- Redox Flow Batteries Project Group, Fraunhofer Institute for Chemical Technology, Applied Electrochemistry, Joseph-von-Fraunhofer-Strasse 7, 76327 Pfinztal (Germany)
| | - Tatjana Herr
- Redox Flow Batteries Project Group, Fraunhofer Institute for Chemical Technology, Applied Electrochemistry, Joseph-von-Fraunhofer-Strasse 7, 76327 Pfinztal (Germany)
| | - Peter Fischer
- Redox Flow Batteries Project Group, Fraunhofer Institute for Chemical Technology, Applied Electrochemistry, Joseph-von-Fraunhofer-Strasse 7, 76327 Pfinztal (Germany)
| |
Collapse
|
19
|
Noack J, Roznyatovskaya N, Herr T, Fischer P. Die Chemie der Redox-Flow-Batterien. Angew Chem Int Ed Engl 2015. [DOI: 10.1002/ange.201410823] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
20
|
Doan TNL, Hoang TKA, Chen P. Recent development of polymer membranes as separators for all-vanadium redox flow batteries. RSC Adv 2015. [DOI: 10.1039/c5ra05914c] [Citation(s) in RCA: 80] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
A key component for all-vanadium redox flow batteries is the membrane separator, which separates the positive and negative half-cells and prevents the cross-mixing of vanadium ions, while providing required ionic conductivity.
Collapse
Affiliation(s)
- The Nam Long Doan
- Department of Chemical Engineering and Waterloo Institute for Nanotechnology
- University of Waterloo
- Waterloo
- Canada
| | - Tuan K. A. Hoang
- Department of Chemical Engineering and Waterloo Institute for Nanotechnology
- University of Waterloo
- Waterloo
- Canada
| | - P. Chen
- Department of Chemical Engineering and Waterloo Institute for Nanotechnology
- University of Waterloo
- Waterloo
- Canada
| |
Collapse
|